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The Minimum Enclosing Ball problem

Finding the Minimum Enclosing Ball (or the 1-center) of a finite
point set P = {p1, . . . , pn} in the metric space (X , dX (., .))
consists in finding c ∈ X such that

c = argminc ′∈X max
p∈P

dX (c ′, p)

Figure : A finite point set P and its minimum enclosing ball MEB(P)
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The approximating minimum enclosing ball problem

In a euclidean setting, this problem is

I well-defined: uniqueness of the center c∗ and radius R∗ of the
MEB

I computationally intractable in high dimensions.

We fix an ε > 0 and focus on the Approximate Minimum Enclosing
Ball problem of finding an ε-approximation c ∈ X of MEB(P) such
that

dX (c , p) ≤ (1 + ε)R∗ ∀p ∈ P.
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The approximating minimum enclosing ball problem: prior
work

Approximate solution in the euclidean case are given by Badoiu
and Clarkson’s algorithm [Badoiu and Clarkson, 2008]:

I Initialize center c1 ∈ P

I Repeat b1/ε2c times the following update:

ci+1 = ci +
fi − ci
i + 1

where fi ∈ P is the farthest point from ci .

How to deal with point sets whose underlying geometry is not
euclidean ?
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The approximating minimum enclosing ball problem: prior
work

This algorithm has been generalized to

I dually flat manifolds [Nock and Nielsen, 2005]

I Riemannian manifolds [Arnaudon and Nielsen, 2013]

Applying these results to hyperbolic geometry give the existence
and uniqueness of MEB(P), but

I give no explicit bounds on the number of iterations

I assume that we are able to precisely cut geodesics.
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The approximating minimum enclosing ball problem: our
contribution

We analyze the case of point sets whose underlying geometry is
hyperbolic.
Using a closed-form formula to compute geodesic α-midpoints, we
obtain

I a intrinsic (1 + ε)-approximation algorithm to the approximate
minimum enclosing ball problem

I a O(1/ε2) convergence time guarantee

I a one-class clustering algorithm for specific subfamilies of
normal distributions using their Fisher information metric
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Model of d-dimensional hyperbolic geometry: The
Poincaré ball model

The Poincaré ball model (Bd , ρ(., .)) consists in the open unit ball
Bd = {x ∈ Rd : ‖x‖ < 1} together with the hyperbolic distance

ρ (p, q) = arcosh

(
1 +

2‖p − q‖2

(1− ‖p‖2) (1− ‖q‖2)

)
, ∀p, q ∈ Bd .

This distance induces on the metric space (Bd , ρ) a Riemannian
structure.
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Geodesics in the Poincaré ball model

Shorter paths between two points (geodesics) are exactly

I straight (euclidean) lines passing through the origin

I circle arcs orthogonal to the unit sphere

Figure : “Straight” lines in the Poincaré ball model
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Circles in the Poincaré ball model
Circles in the Poincaré ball model

I look like euclidean circles
I but with different center

Figure : Difference between euclidean MEB (in blue) and hyperbolic
MEB (in red) for the set of blue points in hyperbolic Poincaré disk (in
black). The red cross is the hyperbolic center of the red circle while the
pink one is its euclidean center.
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Translations in the Poincaré ball model

Tp (x) =

(
1− ‖p‖2

)
x +

(
‖x‖2 + 2〈x , p〉+ 1

)
p

‖p‖2‖x‖2 + 2〈x , p〉+ 1

Figure : Tiling of the hyperbolic plane by squares
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Closed-form formula for computing α-midpoints

A point m is the α-midpoint p#αq of two points p, q for α ∈ [0, 1]
if

I m belongs to the geodesic joining the two points p, q

I m verifies
ρ (p,mα) = αρ (p, q) .

For the special case p = (0, . . . , 0), q = (xq, 0, . . . , 0), we have

p#αq := (xα, 0, . . . , 0)

with

xα =
cα,q − 1

cα,q + 1
, where cα,q := eαρ(p,q)

(
=

(
1 + xq
1− xq

)α)
.
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Closed-form formula for computing α-midpoints

Noting that

p#αq = Tp (T−p (p) #αT−p (q)) ∀p, q ∈ Bd

we obtain

I a closed-form formula for computing p#αq

I how to compute p#αq in linear time O(d)

I that these transformations are exact.
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(1+ε)-approximation of an hyperbolic enclosing ball of
fixed radius

For a fixed radius r > R∗, we can find c ∈ Bd such that

ρ (c ,P) ≤ (1 + ε)r ∀p ∈ P

with

Algorithm 1: (1 + ε)-approximation of EHB(P, r)
1: c0 := p1

2: t := 0
3: while ∃p ∈ P such that p /∈ B (ct , (1 + ε) r) do
4: let p ∈ P be such a point
5: α := ρ(ct ,p)−r

ρ(ct ,p)
6: ct+1 := ct#αp
7: t := t+1
8: end while
9: return ct
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Idea of the proof

By the hyperbolic law of
cosines :

ch (ρt) ≥ ch (h) ch (ρt+1)

ch (ρ1) ≥ ch (h)T ≥ ch (εr)T .
ct+1

ct

c∗

pt

h > εr

ρt+1

ρt

r ′ ≤ rr

θ

θ′

Figure : Update of ct

c© 2015 Frank Nielsen - Gaëtan Hadjeres 14



(1+ε)-approximation of an hyperbolic enclosing ball of
fixed radius

The EHB(P, r) algorithm is a O(1/ε2)-time algorithm which
returns

I the center of a hyperbolic enclosing ball with radius
(1 + ε)r

I in less than 4/ε2 iterations.

Our error with the true MEHB center c∗ verifies

ρ (c , c∗) ≤ arcosh

(
ch ((1 + ε) r)

ch (R∗)

)
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(1 + ε + ε2/4)-approximation of MEHB(P)

In fact, as R∗ is unknown in general, the EHB algorithm returns
for any r :

I an (1 + ε)-approximation of EHB(P) if r ≥ R∗

I the fact that r < R∗ if the result obtained after more than
4/ε2 iterations is not good enough.

This suggests to implement a dichotomic search in order to
compute an approximation of the minimal hyperbolic enclosing
ball. We obtain

I a O(1 + ε+ ε2/4)-approximation of MEHB(P)

I in O
(
N
ε2 log

(
1
ε

))
iterations.
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(1 + ε + ε2/4)-approximation of MEHB(P) algorithm

Algorithm 2: (1 + ε)-approximation of MEHB(P)
1: c := p1

2: rmax := ρ (c ,P); rmin = rmax
2 ; tmax := +∞

3: r := rmax;
4: repeat
5: ctemp := Alg1

(
P, r , ε2

)
, interrupt if t > tmax in Alg1

6: if call of Alg1 has been interrupted then
7: rmin := r
8: else
9: rmax := r ; c := ctemp

10: end if
11: dr := rmax−rmin

2 ; r := rmin + dr ;

tmax := log(ch(1+ε/2)r)−log(ch(rmin))
log(ch(rε/2))

12: until 2dr < rmin
ε
2

13: return c
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Experimental results

I The number of iterations does not depend on d .

Figure : Number of α-midpoint calculations as a function of ε in
logarithmic scale for different values of d .
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Experimental results

I The running time is approximately O(dn
ε2 ) (vertical translation

in logarithmic scale).

Figure : execution time as a function of ε in logarithmic scale for
different values of d .
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Applications

Hyperbolic geometry arises when considering certain subfamilies of
multivariate normal distributions.
For instance, the following subfamilies

I N
(
µ, σ2In

)
of n-variate normal distributions with scalar

covariance matrix (In is the n × n identity matrix),

I N
(
µ, diag

(
σ2

1, . . . , σ
2
n

))
of n-variate normal distributions with

diagonal covariance matrix

I N(µ0,Σ) of d-variate normal distributions with fixed mean µ0

and arbitrary positive definite covariance matrix Σ

are statistical manifolds whose Fisher information metric is
hyperbolic.
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Applications

In particular, our results apply to the two-dimensional
location-scale subfamily:

Figure : MEHB (D) of probability density functions (left) in the (µ, σ)
superior half-plane (right). P = {A,B,C}.
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Openings

Plugging the EHB and MEHB algorithms to compute clusters
centers in the approximation algorithm by [Gonzalez, 1985], we
obtain approximate algorithms for

I covering in hyperbolic spaces

I the k-center problem in O
(
kNd
ε2 log

(
1
ε

))
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Algorithm 3: Gonzalez farthest-first traversal approximation algo-
rithm
1: C1 := P, i = 0
2: while i ≤ k do
3: ∀j ≤ i , compute cj := MEB(Cj)
4: ∀j ≤ i , set fj := argmaxp∈P ρ(p, cj)
5: find f ∈ {fj} whose distance to its cluster center is maximal
6: create cluster Ci containing f
7: add to Ci all points whose distance to f is inferior to the

distance to their cluster center
8: increment i
9: end while

10: return {Ci}i
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Openings

The computation of the minimum enclosing hyperbolic ball does
not necessarily involve all points p ∈ P.

I Core-sets in hyperbolic geometry
I the MEHB obtained by the algorithm is an ε-core-set
I differences with the euclidean setting: core-sets are of size at

most b1/εc [Badoiu and Clarkson, 2008]
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Thank you!
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