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Abstract—We generalize the notions of centroids (and barycen-
ters) to the broad class of information-theoretic distortion mea-
sures called Bregman divergences. Bregman divergences for
a rich and versatile family of distances that unifies quadraic
Euclidean distances with various well-known statistical atropic
measures. Since besides the squared Euclidean distanceeBman
divergences are asymmetric, we consider thieft-sided and right-
sided centroids and the symmetrized centroids as minimizers of
average Bregman distortions. We prove that all three centris
are unique and give closed-form solutions for the sided centdids
that are generalized means. Furthermore, we design a provadp
fast and efficient arbitrary close approximation algorithm for
the symmetrized centroid based on itsexact geometric charac-
terization. The geometric approximation algorithm requires only
to walk on a geodesic linking the two left/right sided centrids.
We report on our implementation for computing entropic centers
of image histogram clusters and entropic centers of multivdate
normal distributions that are useful operations for processing
multimedia information and retrieval. These experiments llus-
trate that our generic methods compare favorably with forme
limited ad-hoc methods.

Index Terms—Information geometry, centroid, Bregman infor-
mation, information radius, Legendre duality, Kullback-L eibler
divergence, Bregman divergence, Bregman power divergence
Burbea-Rao divergence, Csiszr f-divergences.

I. INTRODUCTION AND MOTIVATIONS

use the information-theoretic relative entropy, known fas t

Kullback-Leibler divergence (of-divergence for short), to

measure theriented distancéetween image histograms [13].

The definition of the Kullback-Leibler divergence [14] favd

continuous probability densitits(z) andq(z) is as follows:
p(@) 4

KL(p(z)lg(x)) = / (a)1og 53

The Kullback-Leibler divergence of statistical distrilmurts
p(z) and¢(x) is called therelative entropysince it is equal
to the cross entropy of)( ) and ¢(x) minus the entropy

= [ pl= 1og—dx of p(z):
KL(p(z)|lq(z)) = H*(p(z)||q(x)) — H(p(x)) = 0
with the cross-entropy:
P (p(a)la(e) = [ plo)log —do
p(@)llal@)) = | ple)log 75

The Kullback-Leibler divergence represents the averags lo
(measured in bits if the logarithm’s basi2sof using another
code to encode a random variahle. The relative entropy

can also be interpreted as the information gain achieved

about X if p can be used instead qf (see [14] for various
interpretations in information theory). For discrete ramd

Content-based multimedia retrieval applications withirtheyariables, the statistical Kullback-Leibler divergenae two

prominent image retrieval systems (CBIRs) are very populaia|-valuedi-dimensional probability vectogsandq encoding
nowadays with the broad availability of massive digital mulkhe histogram ditributions is defined [6] as:

timedia libraries. CBIR systems spurred an intensive lifhe

research for bettemd-hocfeature extractions and effective yet
accurate geometric clustering techniques. In a typicalRCBI

(0]

Zp )1og (l

L(pllg) =

system [13], database images are processed offline during a } .
preprocessingstep by various feature extractors computingthere p(¥ and ¢) denote thed coordinates of proba-
image characteristics such as color histograms or points hility vectors p and ¢, respectively (with bothp,q be-

interest. These features are aggregated sigoaturevectors,

say {p;}:, that represent handles to images. At query timé(z*)

longing to the d-dimensional probability simplexSy
La@®) | S8 2 =1 andVi x; > 0}, an open con-

whenever an on-line query image is given, the system finggx set). Thef| in the notationKL(p||¢) emphasizes that the
computes its signature, and then search for the first,/saydistortion measure is not symmetric (ie., oriented distdnc
best matches in the signature space. This image retrieskal taince we havé{L(p||q) # KL(q||p).

requires to define an appropriagémilarity (or dissimilarity)

measure between any pdjr;, p;) of signatures. Designing annote d-dimensional real-valued vectors oR?,

appropriate distance is tricky since the signature spacttés

heterogeneous (ie., cartesian product of feature spagas c@®,C;, ...

Notations: Throughout the paper, let;,z;,c;,... de-
and let
51)705)7“ 1 < i < d denote their coordinates. Sets

are denoted using calligraphic letters.

7
p_j7

bining for examples various histograms with other georoetri Efficiencyis yet another key issue of CBIR systems since we
features) and the usual Euclidean distancé,gnorms do not do not want to compute the similarity measure (query,image)
always make sense. For example, it has been shown bettefotoeach image in the database. We rather want beforehand to
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clusterthe signatures efficiently during the preprocessing stage
for fast retrieval of the best matches given query signature
points. A first seminal work by Lloyd in 1957 [15] proposed
the k-means iterative clustering algorithm for solving vector
guantization problems. Briefly, the-means algorithm starts
by choosingk seed$ for cluster centers, associate to each
point its “closest” cluster “center,” update the variouastéer
centers, and reiterate until either convergence is met er th
difference of the “loss function” between any two successsiv
iterations goes below a prescribed threshold. Lloyd chose t
minimize thesquaredEuclidean distance since the minimum
average intra-cluster distance yields centroids, dbmters of
massof the respective clusters. Lloyd [15] further proved that
the iterativek-means algorithrmonotonicallyconverges to a
local optima of the quadratic function loss (minimum varianc
loss):

k

n
SN lp =il
p; €Ci

i=1

tion problem
¢ = argmcin Z lle — pjl %, 1)
p; €Ci
= arg cnelﬁ@ AVG:(Ci, 0), (2)
1
Cil
p; €C;

where|C;| denotes the cardinality af;, and thec;'s andp;'s

ig. 1.
r(.]|q) is the vertical distance between the potential functiort pfo=
{(z, F(z)) | = € X} and the hyperplané?, tangent toF at (¢, F'(q)).

].—

potential function

Dp(plla)

Hgy

g p

Geometric interpretation of a univariate Bregmamedjence.

domF = X C R4 (with dim X = d) as

Dr(pllg) = F(p) = Fla)— <p =4, VF(q) >,
ClusterC;’s centerc; is defined by the following minimiza- \yhere <

-,- > denotes the inner product (also commonly

called the “dot” product):

d

<pg>=>Y pWq" =p'yq,
=1

and VF'(q) denotes the gradient df at vector pointy:

J0F(q)
e

vF) - | =

" Q)

are real-valuedi-dimensional vectors. That is, the minimum See Figure 1 for a geometric interpretation of Bregman
average squared distance of the cluster center to the clustizergences. Thus Bregman divergences defimmmameter-
points is reached uniquely by the centroid: The center t#fedfamily of distortions measureBr that unify the squared
mass of the cluster. Note that considering the Euclidean dksuclidean distance with the statistical Kullback-Leibdirer-
tance instead of the squared Euclidean distance yieldh@nogence:

remarkablecenter pointof the cluster called the Fermat-
Weber point [18]. Although the Fermat-Weber point is also
provably unique, it does not have closed-form solutionss It
thus interesting to ask oneself what other kinds of distance
in Eq. 2 (besides the squared distance) yield simple closed-
form solutions that are of interests for processing multime .
information. Half a century later, Banerjee et al. [19] sleow

in 2004 that the celebratddmeans algorithnextends tcand
remarkablyonly works [20] for a broad family of distortion
measures called Bregman divergences [21], [22]. Ret
denote the non-negative part of the real liffe” = [0, +00).

o Namely, the squared Euclidean distance is a Bregman

divergence in disguise obtained for the generdtar) =

S°% («(D)2 that represents the paraboloid potential
function (see Figure 1), or the quadratic loss on vector
points in thek-means algorithm.

The Kullback-Leibler divergence is yet another Breg-
man divergence in disguise obtained for the generator
F(z) = %, W logz that represents the negative
Shannon entropy on probability vectors [14] (normalized
unit length vectors lying on thé-dimensional probability
simplexS%).

In this paper, we consider only Bregman divergences defineda Bregman divergenc® is saidseparablg19], [25] if its

on vector pointy; € R in fixed dimensior?

Bregman divergenceBr form a family of distortion mea-
sures that are defined by a strictly convex and differergiab
generator functionf’ : X — R* on a convex domain

2Forgy’s initialization [16] consists merely in choosingrahdom the seeds

generator can be obtained coordinate-wise from a unieariat
gfeneratorf as:

d
Fa) =3 f(@®).
=1

from the source vectors. Arthur and Vassilvitskii [17] pedvthat a better Table | reports the generators of common univariate Bregman

careful initialization yields expected guarantees on tlustering.

3See the concluding remarks in Section VI for extensions aggBran
divergences to matrices [23], [3], and recent functionakesions [24] of
Bregman divergences.

divergences (ie., divergences defined on scatars R —
d = 1). Multivariate separable Bregman divergences defined
onz € R? can be easily constructed piecewise from univariate
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Domain X || Function F’ || Gradient Fd(f) = F'(z) | Inverse gradient F’(z))~! || DivergenceDr(p||q)
R Squared function Squared loss

? 2z 3 (p—q)?
Ry,a € N [| Norm-like Norm-like

1

a>1 ¢ aze~?! (Z)e- T p® + (o —1)g® — apg®~!
RT Unnormalized Shannon entrop| Kullback-Leibler divergence (I-divergence)

zlogxr — x log exp(x) plogs —p+gq

Exponential Exponential loss
R exp T exp T log exp(p) — (p — g+ 1) exp(q)
RFx Burg entropy Itakura-Saito divergence

1 1

—logx -2 -2 %—logg—l
[0,1] Bit entropy Logistic loss

mlogm‘+ (1 —=x)log(l —x) log %= % plog%—i‘-(‘l—p)logtz

Dual bit entropy Dual logistic loss
R log(1 + exp ) e log 127 log TE0E — (p — a) TPenty
[—1,1] Hellinger-like Hellinger-like

/1= 22 _z z l-pa /T2

v 122 N V1o Vi-p
TABLE |

COMMON UNIVARIATE BREGMAN DIVERGENCESD r USED FOR CREATING SEPARABLEBREGMAN DIVERGENCES

Bregman divergences. The generalized quadratic distAnces Foo— argminlzn: Dr(pi|[c]) + Dr(c]lp:)
lp—4qll3, = (p—q)" Q(p—q) defined for ad x d positive def- ceX m 2 '

inite matrix Q are the only symmetric Bregman divergerices

obtained from the non-separable generadr) = 7 Qu, The first right-type and left-type centroidg, and ¢} are
see [25], [23]. calledsided centroidgwith the superscripL standing for left,

Thus in Barnerjee et al. [19], the originaimeans algorithm and 72 for right), and the third type centroid” is called the
is extended into a meta-algorithm, called the Bregnian sym_metnzecBreg_mar_w centr0|d._Except for the class of gen-
means, that works for any given Bregman divergence. Firlized qua]:()jratlc distances with generakey(z) = * Qu,
thermore, Barnerjee et al. [20], [19] proved the proper@F(P;Q) = Dl

=1

DrlellatPridle) i not a Bregman divergence,

that the mean is theninimizer of the expected Bregmansee [25] for a proof. Since the three centroids coincide
divergence. The fundamental underlying primitive for thegwith the center of mass for symmetric Bregman divergences
center-basedlustering algorithms is to find the intrinsiest  (generalized quadratic distances), we consider in the irema
single representativef a cluster with respect to a distancé&ler asymmetric Bregman divergences. For a given point set
function d(-, -). As mentioned above, the centroid of a poinP = {p1,-..,pn}, we write for short the minimum averages
setP = {p1,...,pn} (With P C X) is defined as the optimizer as-

of the minimum average distance

1 1<
= in—>Y dp,p;). AVGE(Pllec) = —=>» Dr(pillc), 4
= argmin 37 dlp.p) P(Plle) = 53 Delrile) @

For oriented distance functions such as aforementioneg-Bre 1 ¢
. . , AVG = =MD i), 5
man divergences that are not necessarily symmetric, we thus r(ellP) n ; r(ellp:) ®)

need to distinguistsided and symmetrizeccentroids as fol- L&
lows: AVGr(P) = —3 Srl(cp)=AVGr(Pio), (6)

1=1

e so that we get respectively the three kinds of centroids as:
k= arg min — ZDF(piH),

¢ i=1 k= arg min AVGFE(Plle), (7)

1 & ‘
Fo_ - , LA in AVG 8
cr, argmin — Zl Dr([c]p:), cr argmin r(c||P), (8)
a ' = arg mi}(l AVGEr(P;c). 9)

ce

4The squared Mahalanobis distance is a generalized quadiiiance

obtained by choosing matrix) as the inverse of the variance-covariance \zle yse the semi-colon o notatiénn symmetrized di-
AR Sr(c;p;) and AVGr(P;c) to in-
®Note that the quadratic form of distancks — q[|3, = (p —a)"Q(p—q) vergence F(_C’PZ) and average mea r(P;c) !
amounts to compute the squared Euclidean distance on arared points dicate that it is symmetric:Sr(c;p;)) = Sr(pi;c) and

with the mappingz — Lz, where L is the triangular matrix of Cholesky
decompositionQ = L”L since|lp — ql|3; = (p — ¢)"L"L(p — q) = We reserve the comma notation ”;” in divergences to stressheumetric
[|Lp — Lq||?. property.
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AVGp(P;c¢) = AVGr(c;P). The Jensen-Shannon diversame exponential family is a corresponding right-sidéd/le
gence [26], [27] (symmetrized Kullback-Leibler divergencsided/symmetrized Bregman centroid on a set of vectors of
obtained forF(z) = Y.%, () log z(", the negative Shannonthe natural spacé’.

entropy) and COSH centroids [28], [29] (symmetrized Itakur

=y (4) ' -
F(x). i logz™) are cerFame the ”.‘OS.t famous sym dn practice, once the proper Bregman divergence is cho-
metrized Bregman centroids, widely used in image and soun : . .
sen, we still need to choose between the left-sided, right-

processing. Thgse syrr_1metr|zed cent_r0|d_s play a fundgﬂner%tlged or symmetrized centroid. These centroids exhibit dif
role in information retrieval (IR) applications that reggiito

handle symmetric information-theoretic distances. Ndiat t ferent characteristics that help choose the proper cehtaoi

Bregman divergences can also be assembled block-wisetoef given application. Without loss of generafityconsider

; ) o . ) .~ the most prominent asymmetric Bregman divergence: The
processing multimedia information and retrieval combgnin . . .
. . . Kullback-Leibler divergence. Furthermore, for illustvat pur-
both auditory and visual signals. Table Il presents a table

of common Bregman divergences (or symmetrized Bregm 8565' consider a set ofnormal distributions(\Vy, .., N}

divergences) in action for processing multimedia signals | ach norgmal dIStrIbutIOId\/i.haS probability density function
real-world applications. This table is by no means exhaesti pi(x|pi,of) (pdf. for short):

Banerjee et al. [19] proved a bijection between regular ex- (2|, 02) = _(x—,ui)

ponential families and a corresponding subclass of Bregman Pil\TIHi, 0i) = V2ro; P 20;2

divergences called regular Bregman divergences. Theyrexp[?eIat can be modeled by a corresponding 2D pait =
imentally show_ed that cluster_lng exponen_t|al families hwit 11s,0:2) of mean ; and varianceo? in parameter space
the corresponding Bregman divergences yields bettertsesul, R x R+. The Kullback-Leibler divergence between two

This exponential famin/Breg.man divergence bijeCtior_‘HndHormals has the following closed-form solutfon
cates why some Bregman divergences are better suited than
others. For example in sound processing, the speech power KL(p($|/Lp,O'Z)Hp(x“Lq,a'g)) =
spectra can be modeled by exponential family densitiesef th o 02 (g — p1y)?
form Ae~** whose corresponding associated regular Bregman = (2 log £ + —Z + % — 1) .
divergence is no less than the Itakura-Saito divergence. We 9» 9 %
refer the reader to the first comprehensive “Dictionary @bserve that the closed-form formula is computed for 2D
distances” [9] (especially, chapter 21 dealing with “Imagel  points p, = (p§1> — Mzpr(-Q) = 02) in the parameter spack.
Audio Distances”) for further hints and explanations forieth Egr identical normal variancesf) = 03 the Kullback-Leibler
divergence is useful for which applications. divergence amounts to a weighted squared Euclidean distanc
Figure 2 displays an example of left/right sided and sym-

A. Kullback-Leibler divergence of exponential families agetrized centroids of normals for a set that consists of two
Bregman divergences normals:N; = N'(—4,2% = 4) and Ny = N(5,0.82 = 0.64).

In statistics, exponential families [19], [25] represent §Ve observe the following properties:
large class of popular discrete and continuous distribstio o The Kullback-Leibler right-sided centroid i$zero-
with prominent members such as Bernoulli, multinomialabet  avoiding” so that its corresponding density function tries
gamma, normal, Rayleigh, Laplacian, Poisson, Wishart, etc to cover the support of all input normals,
just to name a few. The probability mass/density functiohs 0 4+ The Kullback-Leibler left-sided centroid is‘zero-

exponential families are parametric distributions that te forcing” so that it focuses on the highest mass mode
written using the following canonical decomposition: normal.
That zero-avoiding/zero-forcing terminology is relatex t
p(z|0) = exp{(0,t(x)) — F(0) + C(x)}, the description of Minka [11] (pages 3-4) that considered

h q hauffici isticand h Gaussian mixture simplification of 2component Gaussian
w eretl(x) enotes tsgu icient stauztlcan_ repre_sentst € mixture to a single Gaussian component. The Kullback-
Eatura gaf:\rl‘neters mcglogfzp(:d )dxd_ IOg.l _Ho’dwﬁ Leibler left-sided centroid prefers to better representy on

aver'(0) = log [, exp{ (0, t(w)) + C(z)}dz. I s called the o pighest-mode individual of the set while the right-side
log r_10rmaI|zer functiorand fully chargctenzes the exponentiaggniroig prefers to stretch over all individuals. Follogipet
family £r. Term C(x) ensures depsny n.ormahzatlon. . .. another terminology of Winn and Bishop [31], we observe

_ It turns out that the KuIIback-L_e|bIerd|vergence of distri _when modeling the “mean” probability density function that
tions p(x|),) andpp(z|6,) belonging to the same exponentiaj .\ inack-Leibler left-sided centroid exhibits axclusive

family £p IS equale_nt to the Bregman divergenide for the behavior (ignore modes of the set to select the highest one)
log normalizer function on swapped natural parameters:

“Indeed, as shown earlier, Bregman divergences can berietedpas equiv-
alent Kullback-Leibler divergences on corresponding peataic exponential
KL(p($|9p)||p(x|9q)) = DF(9q||9p) families in statistics by swapping the argument order [{25].

. . . . 8The Kullback-Leibler divergence of normals is equivalentat Bregman
See [25] for a proof. Thus a left-sided/right-sided/synmmaet divergence for a corresponding generatoby swapping argument order. See

Kullback-Leibler centroid on a set of distributions of thgi19], [25].
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while the Kullback-Leibler right-sided centroid displays
inclusive property.

To get a mathematical flavor of these zero-forcing/zero-
avoiding behaviors, consider without loss of general-
ity the Kullback-Leibler divergence on finite discrete
set of distributions (ie., multinomial distributions with
d outcomes). The right-sided centroid is the minimizer
crk = arg,min+ > " KL(pi|[c). That is, we seek for
the d-dimensional probability vectorc that minimizes
min = 71 123 1p/)log C(]j Thus, intuitively whenever
Y ;é 0, the minimization process ought to choase # 0.

OtherW|se, settingc(?) 0 yields p; logcz—jj — o (ie.,
the Kullback-Leibler divergence is unbounded). That i€ th
right-sided Kullback-Leibler centroid (that is a left-e
Bregman centroid) is zero-avoiding. Note that this min@niz
tion is equivalent to maximizing the average cross-eng®pi
Ly 34 p¥ log e, and thus the right-sided Kullback-

Leibler centroidc is zero-avoiding for allp(” #0.
Similarly, the left-sided Kullback-Leibler
¢, = arg,min = > | KL(c||p;) is obtained by minimizing

RO)
min 2 S0 50 Do

(J)
forcing since Whenever there exists ;é” = 0, the
minimization tasks chooses to set) = 0. That means

Right-sided Kullback-Leibler centroid

Left-side Kullback-Leibler centroid
(zero-forcing)

Na = (5,0.64)

Symmetrized centroid

zero-avoiding

Ny = N(—4,4)

Fig. 2. Visualizing the fundamental properties of the &tted, the right-
sided and the symmetrized centroids (Whh = N (—4,22 = 4) and N> =
centroid N(5,0.8%2 = 0.64)): The right-sided centroid (thin dashed red line) is zero-
avoiding and tries to cover the support of both normals. Eftesided centroid
(thick dashed blue line) is zero-forcing and focuses on thghdst mode
This minimization is zero- (smallest variance). The symmetrized centroid (mediumhethgreen line)
exhibits a trade-off between these two zero-avoiding/ercing properties.

that the right-sided Bregman centroid (a left-sided Kutkba  We summarize our contributions as follows:

Leibler divergence in disguise) is zero-forcing. .
The symmetrized Kullback-Leibler centroid is defined as
the minimizer of the Jensen-Shannon divergence (which has
always finite value). That is, the symmetrized centroid mini
mizes thetotal divergenceo the average probability density

m(x) = w as follows:

(@) + §KL(g(a)|Im(x).

Therefore the symmetrized centroid strikes a balance ltwe
the two zero-forcing and zero-avoiding properties withpeet
to the mean distribution.

1
¢ = argmin 5 KL(p(2)||

C. Related work, contributions and paper organization

Prior work in the literature is sparse and disparate. We
summarize below main references that will be conciselysrevi
ited in section Il under our notational conventions. Beal-T
et al. [32] studiedentropic meansas the minimum average
optimization for various distortion measures such as fhe
divergences and Bregman divergences. Their study is limite
to the sided left-type (generalized means) centroids. &alfes
and Cardoso [33] compared in the 1-page paper the gen-
eralized/entropic mean values for two entropy-based etass
of divergences:f-divergences [34] and Jensen-Shannon di-
vergences [35]. The closest recent work to our study is
Veldhuis’ approximation method [36], [37] for computingeth
symmetrical Kullback-Leibler centroid.

9As explained by Banerjee et al. [19], [25], the Kullback4blei divergence
of distributions of the same exponential families is a Bragndivergence on
the natural parameters of these distributions obtainedwapging the order
of the arguments. Arbitrary probability measures can beragimated by
multinomial distributions that belong to the exponentiainily.

o« The symmetrized Kullback-Leibler

In section lll, we show that the two sided Bregman
centroidsck, andc with respect to Bregman divergence
Dp areuniqueand easily obtained ageneralized means
for the identity and VF functions, respectively. We
characterize Sibson’ s notion afformation radius[38]

for these sided centroids, and show that they are both
equal to theF-Jensen difference, a generalized Jensen-
Shannon divergence [39] also known as Burbea-Rao
divergences [40].

Section IV proceeds by first showing how to reduce the
symmetrizednin AVGr(c; P) optimization problem into

a simpler system that depends only on the two sided
centroidsck, andcf. We then geometrically characterize
exactlythe symmetrized centroid as the intersection point
of the geodesic linking the sided centroids with a new
type of divergence bisector: the mixed-type bisector. This
yields a simple and efficient dichotomic search procedure
that provably converges fast to the exact symmetrized
Bregman centroid.

divergenceJ-(
divergence) and symmetrized Itakura-Saito divergence
(COSH distance) are often used in sound/image appli-
cations, where our fast geodesic dichotomic walk algo-
rithm converging to the unique symmetrized Bregman
centroid comes in handy over former compledhoc
methods [27], [28], [26], [41], [42]. Section V considers
applicationsof the generic geodesic-walk algorithm to
two cases:

— The symmetrized Kullback-Leibler for probability
mass functions represented @slimensional points
lying in the (d — 1)-dimensional simplexs?. These
discrete distributions are handled as multinomials of
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Divergence name Formula GeneratorF'(z) for Dp Examples of application domains

(squared) Mahalanobis M4 (p;q) = (p — )T A(p — q) F(z) = 2T Ax Facility locations
(gen. quadratic lossA semi-positive definite matrix)  (operations research)

Kullback-Leibler KL(p|lg) = S, p® log Z’E—jz H(z) =Y, 2" loga® Statistical analysis
(negative Shannon entropy)

Jensen-Shannon IS(p;q) = L, (@ — ¢D)log 7;((—2; symmetrized Kullback-Leibler  Image retrieval

. (7) () B .

Itakura-Saito 1S(pllg) = XL, (Z(i) —log Py — 1) B(z) = -3, logz® Sound processing
(Burg entropy)

COSH COSH(p; q) = % ( ?:1 (5:; —+ ZZ)) )) —2d symmetrized Itakura-Saito Sound retrieval

d (i) (i)

COSH(p; q) = %Zi:1 ( Z(i) - \/Z(i))

TABLE Il
BREGMAN OR SYMMETRIZEDBREGMAN DIVERGENCES WITH CORRESPONDING CORE APPLICATION DMAINS.

the exponential families [25] witlhl — 1 degrees of (pioneered by Cartan [46]) whose explanation is beyond the
freedom. We instantiate the generic geodesic-waticope of this paper [43]. We rather describe the three most
algorithm for that setting, show how it comparesundamental items of dually flat manifolds:

favorably with the prior convex optimization work , The fundamental convex duality and the dual coordinate
of Veldhuis [36], [37], [41], and validate formally systems arising from Legendre transformation, and

experimental remarks of Veldhuis. « The generalized Pythagorean relation, and
— The symmetrized Kullback-Leibler of multivariate , The notion of Bregman projection.

normal distributions. We describe the geodesic-walig,gse descriptions will enlighten geometrically the resof

for this particular mixed-typeexponential family e paner. The point is to show that Bregman divergences
of multivariate normals, and explain the Legendrg, m he canonical distancesf dually flat manifolds arising
mixed-type vector/matrix dual convex conjugate§hen studying family of probability distributions. Thosetl
defining the corresponding Bregman divergencegeometries nicely generalize the familiar Euclidean getome
This yields a simple, fast and elegant geometrig iihermore, these flat geometries reveal a fundamental ge-

method compared to the former overly compleymetric duality that is hidden when dealing with the regular
method of Myrvoll and Soong [27] that relies Oong,,clidean geometry.

solving Riccati matrix equations.

But first, we start in Section Il by introducing the dually : . : : .
. . .. _’A. Riemannian metric associated to a convex function
flat space construction from an arbitrary convex functidmsT

section may be skimmed through at first reading since it is Consider a smooth real-vaLued convex functibiy) de-
devoting to define the sided Bregman centroids under tABed in an open sett’ of R? where ¢ denotes a fixed

depends on the considered coordinate system

[I. GEOMETRY UNDERLYING BREGMAN DIVERGENCES F((1= N0 4 M) < (1 — N F(61) + AF(6-).

DUALLY FLAT MANIFOLDS o ) ) .
We concisely review the construction of dually flat mani-—rhe second derivatives of the functia form its Hessian

folds from convex functions. This construction lies at theeyw (rjnatrlxd_VQF - (gij). .th;t 's a positive definite matrik
heart of information geometry [43]. A full description ofish epending on its positiot:

construqtion is presented in the comprehensive surveytehap V2F(0) = (g:;(0)) = (0;0;F(8)) = 0,

of Amari [10] (see also [44], [45]). Information geometry3]}4 5 I () .
originally emerged from the studies iivariant propertiesof Whered; = zgay andé = (9%, ..., 6'7). For two infinitesi-
a manifold of probability distribution®, say the manifold of Mally nearby point®) and¢ + do, define thesquareof their

univariate normal distributions: distance by
D = {p(a|p,0%) = ds® =< df,df >= Zgij(e)dH(Z)dH(J)a
1 (z — N)Q i i,7
ovar P <_ 202 | neR, o €RT} where< df,df > denote the inner product. A manifold with

Information geometrv relies on differential aeometry and .such an infinitesimal distance is called a Riemannian mkhifo
'on g y rel ! lal 9 y 'and maitrixg = (g;;) is called the Riemannian metric. Observe

particular on the sophisticated notion affine connection®’ thatds? is obtained from the second-order term of the Taylor

10Connections relate the vector tangent spaces for infimtstisplace- €XPansion ofF(0 + do):
ments on the manifold. A riemannian connection (also cdled-Civita con-
nection) is such that parallel transport gives an isomettyvben the tangent 1A matrix M is positive definite iff. for allz we havex™ Mz > 0. We
planes. To contrast with, an affine connection uses an affamsformation. write M > 0 to denote the positive-definiteness of the matrik



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 7

Table 1l displays two examples of Legendre transformation
(For the geometry of exponential families in statisticse th
primal §-coordinate system is called the natural coordinate sys-
tem and the duaj-coordinate system is called the expectation
or moment coordinate system.) The dual convex conjugates
and F* are called potential functions (or contrast functions)
and satisfy the following fundamental equality:

F)+ F*(n)— <0,n>=0.

0, -F(n)) The inverse transformation — 6 is given by the gradient of
.

. . . . 0 =YVE*(n),

Fig. 3. Legendre transformation of a strictly convex fuowtiF: The z- _
'”ft‘tarr]cept(to’ ;Iﬁ("))t.(’f ‘Zelﬁa”getrr‘]t hyplerp'a][lﬁ]e 12 =<n0> —I{f*(fn) with 0 = 55 *(0). That is,0 andy arecoupledand form
of the potential function defines the value of the LegendaesformF™* for . . .
the dual coordinate). Any hyperplane passing through another point of th& dual coordinate systemf_ the geometry 'mp"Ed_ by a p_alr
potential function and parallel tél, necessarily intersects theaxis above Of Legendre convex functioQF, F*). The dual Riemannian
—F*(n). metric associated witth™* is

32

Gij an(l) 877('7) (1),

and we have the remarkable property that
(955) = (9) ™"
A geodesid’p, of manifoldD is defined by thestraight line  That is, Riemannian metrigy;;) is the inverse matrix of the

connecting two points” and () (with respective coordinates Riemannian metri¢g;;). It follows from the construction that
0p = 0(P) andfy = 6(Q) in the 6-coordinate system): these two metrics are geometrically the same [10], as we have

Tpo = {X(\), A€ [0,1] | Ox( = (1— \)fp + Mo} identical mﬁmteswal Ie-ngths: | |
Z gijdﬁ(z)dG(J) — Z gfjdn(l)dﬁm-

C. Bregman divergences from the dual coordinate systems

1, i=j A distortion measure, called divergence, between two point
0ij = { 0’ i # j’ P and @ of the geometric manifold (either indexed Byor n
_ N ' o coordinate system) is defined as:
and the geometry is Euclidean because of the implied squared

distanceds? = 2, d0®”. In order to retrieve the global .
geometrical structure of the manifold, we need the geometry Dr(P|lQ) = F(0p) + F*(nq)— < Op,nq >,
to be independent of the choice of the coordinate system. Thgh < Op,ng >=05ng =S 60y, We haveD(P||Q) >

following section reveals that thcoordinate system admits(. Changing the role of andQ, or 6 andr, we get the dual
a dualn-coordinate system. divergence:

F(0+d0) = F(0) + 3 0iF(6)d6® + % S 435 (6)d0) o
i ]

When F(6) = 137, 9 is the paraboloid function, we
haveg;; = J;; the Kronecker symbol:

B. Convex duality and dual coordinate systems from Legendre "
Y y 9 Dp-(P||Q) = F*(np) + F(0g)— < np, 0o >,

transformation
Consider the gradier¥ F(¢) = n defined by the following SO that
partial derivatives: Dr(P||Q) = Dr-(Q||P).
n® = %F(@)_ When @ is close toP, we write @ = P + dP and get the

_ squared Riemannian distance as:
There is a one-to-one correspondence [10] betwtand

n so that we can us@ as another coordinate system. The D(P||Q) = D(P||P +dP)

X . . y : 1 , , 1 , :
trans_for_matlon mapping to n (with 9(_> mutually _remprocal - = Zgijdg(l)dg(a) - = ngjdﬁ(l)dﬁm-

to n()) is the Legendre transformation [43] defined for any 2 2

convex functionF' as follows: In particular, this squared Riemmanian approximation raean

that the canonical divergence doest satisfy*? the triangle
inequality. Next, we show that we get a remarkable general-

Figure 3 visually depicts the Legendre transformation.e(THZatlon of Pythagoras’ theorem.
drawm_g illustrates why the Legendre tranSform.anon iDals 12ngeed, notice that thequared Euclidean distance obtained from the
sometimes loosely called the “slope transformation.”) paraboloid function does not satisfy the triangle inedyali

F*(n) = max{< 6,n > —F(0)}.
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Logistic loss/binary relative entropy
7
F(6) = log(1 + exp0) Dp(6]|6') = log 1225 — (0 — 6) 220 | VF(9) = 15255 =
7
F*(n) = nlogn + (L —n)log(1 —n) | Dp«(y|ln) = n'log " + (1 — n) log VF*(n) =log ;1. =0

-n
1-n
Exponential loss/Unnormalized Shannon entropy

F(0) =expb Drp(0)|0") = exp —expt’ — (0 —0")expd’ | VF(0) =expf =1
F*(n) =nlogn—n Dp«(n'[ln) =n'log - +n—n' VIE*(n) =logn =0
TABLE Il

TWO EXAMPLES OFLEGENDRE TRANSFORMATIONS WITH THEIR ASSOCIATED DUAL PARAMEERIZATIONS.

FQR \‘
Dr(QIIR) 4 R
Q
Fig. 4. lllustrating the generalized Pythagorean theoleanI,, L 'gr,  Fig. 5. lllustrating the sided Bregman projectioRg -~ and P. - of a point
we haveDr(P||R) = Dr(P||Q) + Dr(Q||R)- P € X for a convex regiorR: The dual geodesiE™* connectingP to Pr "
and the geodesi& connectingP to P;, - are orthogonal to the boundary
IOR.

D. Generalized Pythagoras’ theorem

Consider two curved)(t) and ¢'(t) parameterized by a E. Dual convexity and sided Bregman projections
scalart in the ¢-coordinate system, and assume w.l.o.g thaty, say that a regiorR is convex (or §-convex) when

these curves intersect at= 0: 6(0) = 6'(0). Using the dual o geodesicconnecting any two point®,Q € R is fully
coordinate systerw, we similarly haven(0) = 7'(0). The gntained inR. That is

tangent vector of a curvé(t) is att is the vector:

1 n
do_ (6@ do™() VP,Q e X, A€ [0,1], (1—\)p + Mg € R.
dt dt 777 dt

f derivati ith h idto b Similarly, regionR is saiddual convex(or n-convex) when
of derivatives with respect ta T e two curves are said to bey 4 4] geodesiconnecting any two points, Q < R is fully
orthogonalat the intersection point when their inner pmducéontained inR:

vanishes:
d_9d_9’>_z -4@(19/@— VP,Q e X, A€[0,1], 1—=XNnp+Ang €R
atat T &TTa Tar ’ ’ b e Al =
Using the two coordinate systems, this is equivalent to Let P € R be the point that minimizeDr (P||Q)
for Q € R, and P,* € R be the point that minimizes
o dn’ __ Dp-(P||Q) = Dp(Q||P) for Q e R c X. P, is called the
dt’ dt ' Bregman projectiolf and Pz the dual Bregman projection.
Dually flat manifolds exhibit a generalized Pythagoras' Ve have the following projection theorem [43], [10] illus-

trated in Figure 5:

Theorem 2.2 ([43], [10]): When R is convex, Pr* is
When the dual geodesid},, connecting P and Q is unique and the dual geodesit connecting? to ],DRL is
orthogonal to the geodesiEor connectingQ and R (see orthogonalfq the _boundary GR. Similarly, whenR_ is dual
Figure 4), we haveDy(P||R) = Dp(P||Q) + Dr(Q||R), corlvgx,PL is unique and the geodesit connectingP to
or dually Dp-(P||R) = Dp-(P||Q) + Dp-(Q||R). P~ is orthogonal to the boundary &.

Notice that when we consider the paraboloid convex func-,, _ L -

In information geometry [43],Pr— is called the reversd-projection

. o N2 . o . . .
tion F(G) - Zi(e(z)) , the metr'c(gij) - (Q?j) !S the _'de.nt'ty or the dual geodesic projection. Duallf?;, - is called thel-projection or
matrix and therefore the primal/dual geodesics coincide. geodesic projection.

theorem:
Theorem 2.1 (Generalized Pythagoras’ theorem [43]):
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F. Geometry of symmetrized Bregman divergences

man divergencesr is typically not a Bregman divergenéé
because the convexity argument may fail as reported in [25].

Therefore the underlying geometry of symmetrized Bregman F(p) - F(q) — i% < pi— ¢, VF(q) >> ’

As mentionned in the introduction, the symmetrized Breg- P.0) (Z

divergence does not fit the dually flat manifolds presented ;
above. However, the symmetrized Bregman divergence can be
interpreted using the framework of Csiszgudivergence [34] - (
(also called Ali-Silvey divergence [47]). In particular eth i
geometry implied by the symmetrized Kullback-Leibler aive "4
gence isnot flat anymore [48], [44]. We refer to the work of <F(1‘)) —F(q) — —(pi — q), VF(q)>> ,
Vos [48] for explanations. im1

We now turn to the study of sided and symmetrized Breg- 1 <&
man centroids. In the remainder, we consider computingeith - <_ Z F(pi) — F(p)) + Dr(pllg)-
in the 6 or n coordinate system. It shall be clear that all '
following results may be dually interpreted using the cedpl Observe that sincé." | LF(p;) — F(p) is independent
dual coordinate system or the dual Legendre convex corgugaff ¢, minimizing AVGF(P||q) is equivalent to minimizing
Dr(pllq). Using the fact that Bregman divergendes (p||q)
are non-negative) r(p||q) > 0, and equal to zerd and only

IIl. THE SIDED BREGMAN CENTROID )
if p = ¢, we conclude that

A. Right-type centroid cE = argmin AVGr(P||q) = p,
q

We first prove that the right-type centraig} is independent

of the considered Bregman divergende-: namely the center of mass of the point set. [ ]
N The minimization remainder, representing the “informatio
. l Z radius” (by characterizing for the relative entropy theioot
n & introduced by Sibson [38] for probability measures), is dor

point setP C X:
is always the center of mass. Although this result is well-

known in disguise in information geometry [43], it was again

recently brought up to the attention of the machine learning P={p1,...pn} CR* = R"
community by Banerjee et al. [19] who proved that Lloyd’s 1 < B
iterative k-means “centroid” clustering algorithm [15] gener- ISF ZF pi) = F(p) 20,

alizes to the class of Bregman divergences. We state th# resu
and give the proof for completeness and familiarizing uiwitwhich bears the name of thE-Jensen differende [40]. For
notations. F(z) = —H(z) = 2%, 2 logz(® the negative Shannon

Theorem 3.1:The right-type sided Bregman centraiff of entropy,JS is known as the Jensen-Shannon divergence [39]:
a setP of n pointspy, ..p,, defined as the minimizer for the " "
average right divergence; = argmin. >, ; £ Dp(p;||c) = JS(P) = H(l Zpi) — Z lH(pi).
argmin. AVGr(P||c), is unique, independent of the selected n = "
divergenceDr, and coincides with the center of mas% =
CR=P= %Z?:l Di-

Proof: For a given pointy, the right-type average diver-

gence is defined as

For a multinomial distribution withi outcomes, the Shan-

non entropy can also be interpreted as an indexdigér-
sity [40] of the distribution. The Jensen different®(p; q) =
H(E1) — w is therefore a difference of diversity:

" q Namely, the diversity of the mixed distributicﬁqﬁ—q minus the
AVGp(Pllq) = Z gDF (pill9)- average diversity of the source distributions. Followingliea

=1 and Rao [40], the Jensen-Shannon divergence can natueally b
extended to a mixture of distributions with a vector of
priori weightsw as follows:

Expanding the term® r(p;|q)
man divergence, we get

s using the definition of Breg-

n

AVGE(Plla) = Z% (F(ps) = Fla)= <pi =, VF(a) >). JS(P,w) = H(i w;p;) zn:wiH(pi)-

=1

Subtracting and addlnﬁ'(ﬁ) to the right-hand side yields 15In the paper [40], it is used for strictly concave functifif(z) = —F(x)

on a weight distribution vectorr: Jx(p1,...,pn) = H( [ mipi) —
14Besides the class of symmetric quadratic distances that ksars the > [ ; m;H (p;). Here, we consider uniform weighting distribution = «
name of Mahalanobis distances [25]. (with m; = %).
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It follows from the concavity of Shannon entropy that Corollary 3.3: The information radius equality
JS(P,w) > 0. This generalized Jensen difference is the sand&/Gr(P||ck) = AVGr(cE||P) = JSp(P) =
as the mutual information [40]. See also the related dedimiti 2 >°" | F(p;) — F(p) > 0 is the F-Jensen-Shannon
of Jensen-Tsallis divergence [49] for nonextensive Tsalldivergence for the uniform weight distribution.
entropies. Thus the minimization score of the right-sided
Bregman centroid is the information radius of the pOpUIathC Centers and barycenters as genera”zed means
a measure of diversity. Note that the information radius is
always bounded. Banerjee et al. [19] called the informatio;r
radius theBregman informatior(and the sided centroids the
best Bregman representatives). It is remarkable to notiae t
for the squared generator, the information radius turnst@ut
be the sample varlapGT]gZizl ||pi_c.£|| = 7 it i =PIl of sequenc® of n real positive number¥” = {vy, ..., v, }
For the Kullback-Leibler Bregman divergence, the inforiomat :

. ) ) X is defined as
radius can be interpreted as the mutual information [19] p.

We show that both sided centroids are generalized means
so called quasi-arithmetic gFrmeans. We first recall the ba-
sic definition of generalized medfishat generalizes the usual
arithmetic and geometric means. Fostactly continuousand
monotonougunction f, the generalized meafb2], [12], [8]

1711. (I

The information retrieval criterionJS(P; Q) is continu- M) =1 <n ;f(@) '
ously connected with the classical statistical Bayesigaraon . N o .
e(P; Q) as shown by Liese and Vajda [6] using the notion O'lf'he ger!erallzed means include the Pythagoras ar_lthmetlc,
Arimoto entropies [50], [51], where(P; Q) denote the error geometric, and harmonic means, obtained respectively for

1 _ _ _ 1
of the Bayesian identification of an object from the set of twfyNctions f(z) = =z, f(z) = logz and f(z) = - (see
objects having distribution® and Q. Table 1V). Note that sincé is injective, its reciprocal function

f~1 is properly defined. Further, sincg is monotonous, it
is noticed that the generalized mean is necessarily bounded

B. Dual divergence and left-type centroid between theextremal seelementanin; v; andmax; v;:
Using the Legendre convex conjugation twice, we get the

following (dual) theorem for the left-sided Bregman ceiiro . rfinn}xi < My(V) < ie%{laxn} Li-

Theorem 3.2:The left-sided Bregman centroid’, defined In fact. findina th . d . |
as the minimizer for the average left divergench — n fact, finding these minimum and maximum set elements can

arg min.cx AVGE (¢||P), is the unique point¥’ € X such be treated them_selves as a special gen_eralixm_ier_mean,
that o = (VF)"L(p)) = (VF)"(X", VF(p:)), where another generalized mean fgi(z) = 2P in the limit case
L - i=1 1))

) = ¢E"(Py') is the center of mass for the gradient poinf — T .
b R (Pr) g P Generalized means can be extended to weighted means

setPF’ = pé =VF pi) i € Pt . L. . . . .
Proof:{Using thé dul;ll Bregn;:an divergené®-. induced usmg:ana priori normalized weight vectow (with Vi, w; > 0
and> " | w; = 1):

by the convex conjugateé* of F', we observe that the left-type
My(V;w) = f~1 (Z wz‘f(“i)) :
=1

centroid
cf = argnéi)rglAVGF(cHP)
By default, we consider the uniform distribution so that

is obtainedequivalentlyby minimizing the dual right-type

centroid problem on the gradient point set: wi = Vi € {1,...,n}. These means can also be naturally
, extended tod-dimensional positive vector® = {p1,...,pn}
arg min AVG g« (Pr'||¢), (with Vi, p; € (R)9) following the Eq. 10. For example, the
c'ex arithmetic mean of a set of positive vector poifitgobtained
where we recall thatp’ = VF(p) and Pr’ = with generatorf(z) = Iz = z, wherel is thed x d identity
{VF(p1),..., VF(p,)} denote the gradient point set. Thus thenatrix) is its center of mass:
left-type Bregman centroid’ is computed as thesciprocal d
gradientof the center of mass of the gradient point set M;(P) = 1 Zpi'
n
* 1 n i=1
cr (Pr') = n Z VE(pi). (In fact, choosingf(x) = Qx for any positive-definite matrix
=1 Q yields the center of mass.) In the remainder, we consider
That is, we get generalized means on vectors although these notions hawve be
" - interestingly extended to a broader setting like matriGee
= (VF)_l(Z —VFE(p)) = (VE) L (p)). for example the axiomatic approach of Petz and Temesi [8]
iz that defines meah% on matrices using the framework of

It follows that the left-type Bregman centroid isiique m Operator means via operator monotone functions.
Observe that the duality also proves that the informatien ra 16studied indenendently in 1930 by Kol aN (588 A
. qs . udied indepenaently Iin Yy Kolmogorov an agumo,

dius for the Ieft-type_ centroid is theameF'-Jensen dlff_erence more detailed account is given in [53], Chapter 3.

(Jensen-Shannon divergence for the convex entropic famcti 17|:o||owi?g [8], the geometric mean of two positive matricésand B is

). found asA2 (A2 BA~2)2 A2,
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These generalized (vector) means highlight a bijection:  We give a characterization of the coordina@i) of the
Bregman divergenc®r < VI'-means. right-type average centroid (center of mass) with respect t
The one-to-one mapping holds because Bregman generait@ise of the left-type average centroid, He” coordinates.

functions £ are strictly convex and differentiable functions Corollary 3.5: Provided thatV F' is convex (e.g., Kullback-

chosen up to an affine term [25]. This affine invariant properi ejpler divergence), we haveg(i) > 05@ for all i €

transposedo generalized means as an offset/scaling invaria{li, ...,d}. Similarly, for concave gradient function (e.g., ex-
property: ponential loss), we haveg(i) < cf-j(i) forall i € {1,...,d}.
M(P) = Masss(P), _ Plroof;lAssumeVF Is convex anq apply Jensen s inequal-
ity to = > | VF(p;). Consider for simplicity without loss of
for any invertible matrixA and vecton. generality 1D functions. We have
Although we have considered centroids for simplicity to 1 1
show the relationship between Bregman centroids and gener- - ZVF(pi) < VF(- Zpi),
alized means (ie., uniform weight distribution on the inpet ni4 ni4
‘P), our approach generalizes straightforwardptoycenters
defined as solutions of minimum average optimization pro
lems for arbitrary unit weight vectow (Vi, w; > 0 with 1
I|w]| = 1): c = (VE)'(~ > VFE(p), (10)

Theorem 3.4:Bregman divergences are in bijection with =t

Eecause(VF)‘l is a monotonous function, we get

n

generalized means. The right-sided barycemtéfw) is in- < (VF)‘I(VF(l Zpi))’ (11)
dependent ofF" and computed as the weighted arithmetic ni

mean on the vector point set, a generalized mean for the 1

identity function: »'(P;w) = 7(P;w) = M,(P;w) with = — Zpi = ck. (12)
Mi(P;w) = f~ (0, wif(v;)). The left-sided Bregman [t

barycenterL.” (w) is computed as a generalized mean on th]en () O
: ) : us we conclude thath:"’ > I vi € {1,...,d} for
point set for the gradient functio F: LY (P) = My r(P;w). R = "L C Lo
The information radius of sided Bregman barycenters is d Q}QV]?X Vf (prO.Of pgrfolrrg_ed coordmaé(;glse). For cpnc?ve
fined by theJensen divergencef the mixture of vectors: . unctions (|.e.,. ual divergences ~convex prima
BR - (P: w) — Z,; wiF(ps) — F(Z{i wips). divergences), we simply reverse the inequality (e.g., kpoe
’ p=1 T AT i=1 ngntial loss dual of the Kullback-Leibler divergence). m

The Se.m'”?" paper Of. Burbea qnd Rao [40] considere Note that Bregman divergencés- may neither have their
multinomial distributions ind-dimensional real vector spaces : .
adientV F' convex nor concave. The bit entropy

) i _gr
where aJ-divergence measure is by means of an arbnra%/

separableentropic function (Eq. 13 of [40]). It is interesting F(x) =zlogx + (1 — ) log(1 — x)
to note that Rényi [54] also made use of generalized means o )
for defining entropies,, of ordera. yielding the logistic los9Dr is such an example. In that case,

A (weighted) mean is saitiomogeneoui and only if we We cannota priori order the coordinates ef;; andcf .

have for any non-negative scalar factop 0:
IV. SYMMETRIZED BREGMAN CENTROID
My (AP; w) =AMy (P;w). A. Revisiting the optimization problem
It is well-known [53], [12] that a generalized mean is For asymmetric Bregman divergences, the symmetrized
homogeneous (or linear scale free) if and only if the geoeraBregman centroid is defined by the following optimization
function f belongs to the family{f,}. (for @ € R) of problem

functions defined by: " Dp(c|lps) + Dr(pi|c)

F _ .
L C = arggél/_lél — B 5
T a#£1, B ' .
Jalz) = { logz o= 1 = argrcrélgrflAVG(’P,c).

For @ = 1, we get fi(z) = logz. This function is We simplify this optimization problem to anotheonstant-
modulo a constant thé-means related to the Kullback-LeiblerSiZ€ System relying only the right-type and left-type sided
divergence, since we have: centroids,ck; and cf, respectively. This will prove that the

symmetrized Bregman centroid is uniquely defined as the
(xlogx) =quyp log . zeroing argument of a sided centroid function by generadizi

the approach of Veldhuis [36] that studied thpecial case
) i _ ) i ) of the symmetrized discrete Kullback-Leibler divergerailsp
D. Dominance relationships of sided centroid coordinates known as.J-divergence.
Table IV illustrates the bijection between Bregman diver- Lemma 4.1:The symmetrized Bregman centroid” is
gences and generalizetimeans for the Pythagoras’ meansinique and obtained by minimizinghingex Dr(ckl|q) +
(ie., extend to separable Bregman divergences): Dr(q|lch): ¢ = argmingex Dp(ck|lq) + Dr(ql|ck).
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Bregman divergenc® p F — f=F  fl=(FH"1 f-mean
(entropy/loss function¥') (Generalized means|
Squared Euclidean distance %xQ — T T Arithmetic mean
) 1
(half squared loss) i1 n Ty
Kullback-Leibler divergence zlogz —xz +«— log x exp T Geometric mean
(Ext. neg. Shannon entropy) (17 "Ej)%
Itakura-Saito divergence —logx — -1 -1 Harmonic mean
(Burg entropy) Ty
j=1=;
TABLE IV

BIJECTION BETWEENBREGMAN DIVERGENCES AND GENERALIZEDf-MEANS EXPLICITED FOR THEPYTHAGORAS' MEANS.

Proof: We have previously shown that the right-type q

average divergence can be rewritten as

n

AVGE(Pllq) = (Z F(p) - F@) + Dr(plla)

i=1

Using Legendre transformation, we have similarly

AVGr(q||P) = AVGpe-(Pr'lld),
- 1 * YN Vi
= Q_-F() — F* () + Dr-(wplla)-
=1
But

n

Dy (VF* o VF(q)[VE* (Y. VE(p:))),

=1

Dp-(Pilldr) =

- DF(qHCE)v

since F** = F, VF* = VF ' andVF* 0 VF(q) = q from

Cr

Fig. 7. The symmetrized Bregman centroid necessarily lrethe geodesic
passing through the two sided centroid$ and c?'.

B. Geometric characterization

Legendre duality. Combining these two sum averages, it some We now characterize the exact geometric location of the

that minimizing
argmiy 7 (AVG(Pllq) + AVGr(ql|P))
boils down to minimizing
argzréigg Dr(cgllg) + Dr(qller),

after removing all terms independent ¢f The solution is
unigue since the optimization problem

argmin Dr(cg||q) + Dr(qllcf)
qeX
can be itself rewritten as
argzréigg Dp-(VF(q)||VF(ck)) + Dr(qller),

where VF(q) is monotonous andr(-||-) and Dg-(-||-) are

symmetrized Bregman centroid by introducing a new type of
bisectot® called the mixed-type bisector:

Theorem 4.2:The symmetrized Bregman centroid” is
uniquely defined as the minimizer & (ck||q)+ Dr(g||ck).
Itis defined geometrically as” = 'p(ck, ¥ )N Mp(ck, cf),
where Tr(ck,cl) = {(VF)7Y((1 — NVF(cE) +
AVE(L)) | A € [0,1]} is the geodesic linkingeh; to
cf', and Mp(ckh, cf') is the mixed-type Bregman bisector:
Mp(cg,cp) ={z € X | Dp(cillz) = Dp(xllcf)}.

Proof: First, let us prove by contradiction that nec-
essarily belongs to the geodedi¢ch;, ¢f'). Assumeq does
not belong to that geodesic and consider the pginthat is
the Bregman perpendicular projectioof ¢ onto the (convex)
geodesic [25]:

min
tel(ch el

qL = arg Dr(t||q)

both convex in the first argument (but not necessarily in the
second). Therefore the optimization problem is convex and

admits a unique solution.
|

183ee [25] for the affine/curved and symmetrized bisectordietiin the
context of Bregman Voronoi diagrams.
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Geometry flat manifold Dr(P||P;)
(coordinate free)
TN
N
P
° Cr °
° °

/ Coordinate systems
(dually coupled) n(nx C RY)

.
Dp- (nillny) Do

W= V) n / e
A" Dpe (Ujﬂ’/i?)

A
° MF* = (VF)™!
&L o ( ) R Py n

o o

o 6=V ()

Dr(0:]16;) = F(0:) — F(0;)— < 0: — 0;, VF(8;) > Di- (n;|Jm) = F*(n;) — F*(mi)— < 0 — ni, VF* () >

Computational methods

Fig. 6. Interpretation of the sided Bregman centroids ondhally flat manifold.

as depicted in Figure 7. UsirBregman Pythagoras’ theorédfh  Now moveq on the geodesic towards;, by an amount such
twice (see [25]), we have: that Dp(q||c}) < 1o+ $A. Clearly, Dp(ck|lq) < lo and

Dr(cgllg) > Dr(crllqr) + Dr(qy|lq) . . 1
Dr(cgrllq) + Dr(gllcr) < 2lp + §A

and
Dr(q|lch) > Dr(qllgL) + Dr(q.||CE). contradicting the fact thay was not on the mixed-type
h ‘ bisector. [ ]
us, we ge The equation of the mixed-type bisectof(p, ¢) is neither
Dr(cBllq) + Dr(ql|cf) > Dr(chllqr) + linear inx nor inz’ = VF(z) (norinz = (x, ")) because of

F the term F'(x), and can thus only be manipulated implicitly
Dr(qrller) + (Dr(avlla) + Dr(qllqr))- i the rem(ai)nder'MF(p,q) — {7 € X | F(p) — Flg) —
But since 2F(z)— < p,a’ >+ <z, 2’ >+ <a,¢d > - <q,¢ >=

0}. The mixed-type bisector is not necessarily connected (eg.

Dr(qillg) + Dr(qllgr) > 0, extended Kullback-Leibler divergence), and yields thel ful

spaceX for symmetric Bregman divergences (ie., generalized
guadratic distances).
Dr(ckllgL) + Dr(qL||ch) < Dr(ck|lq) + Dr(q||cf). Using the fact that the symmetrized Bregman centroid

) - necessarily lies on the geodesic linking the two sided ogatr
Thereforeq necessarily belongs to the geodeS§ig,, ¢} ). ¢k andcl’, we get the following corollary:

Second, let us show thatnecessarily belongs to the mixed- Corollary 4.3: The symmetrized Bregman divergence mini-

type bls;actor. Assume It is r!ot the case. Tdéﬁ(cRHq.) G mization problem is both lower and upper bounded as follows:
Dr(q|lc;) and suppose without loss of generality thaj F FiF
F F _ P F Sr(P) < AVGr(P;c") < Dp(cgllcr).

Dp(cglla) > Dr(qller). Let A = Dr(cgllq)—Dr(qller) > . ) . . .

_ a Figure 8 displays the mixed-type bisector, and sided and
0 andly = Dr(g||c;) so that _ i

symmetrized Bregman centroids for the exterfdécullback-
Dr(ck|lg) + Dr(qllch) = 2lo + A. Leibler (eKL) and Itakura-Saito (IS) divergences.

we reach the contradiction since

19Bregman Pythagoras’ theorem is also called the generalzgtago-
ras’ theorem, and is stated as follow&r(p|lq) > D(p||Pa(q)) + 2OWe relax the probability distributions to belong to the pigsi orthant
Dr(Pq(q)|lq) where Pqo(q) = argmingcqo Dr(w||q) is the Bregman ]Ri (ie., unnormalized probability mass function) insteadhef bpen simplex
projection ofg onto a convex sef2, see [19]. s,



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 14

Divergence\Kullback-Leibler ivergence Itakura-Saito

(a) (b)
ef =(0.47,0.78), ¢} = (0.25,0.76), AVG p (P||ch ;) = 4.29 el =(0.43,0.11), cf = (0.13,0.07), AVG  (P||ch ;) =22.70
' = (0.35,0.77), , AVG p (P; ) = 3.96 = (0.24,0.09), AVG  (P; T') = 16.91
Divergence Logistic Loss . Divergence Exponential loss
.
L.
.
.
. .
.
L L]
(©) (d)
ef =(0.62,0.59), cf = (0.70,0.63), AVGp (P||ch ) = 14.71 el =(0.50,0.52), cf = (0.57,0.57), AVGp (P|lch ) =3.49
' = (0.66,0.61), AVG (P; ') = 14.63 ' = (0.54,0.55), AVG p (P; ") = 3.47

Fig. 8. Bregman centroids for (a) the extended Kullbackslezi (b) Itakura-Saito, (c) Logistic , and (d) exponentiasses (divergences) on the open
squareX =]0, 1[2. Right- and left-sided, and symmetrized centroids arelajsa respectively as thick red, blue and purple points. Jémdesic linking the
right-type centroid to the left-type one is shown in greyd dhe mixed-type bisector is displayed in purple.

C. A simple geodesic-walk dichotomic approximation alg@and repeat the following steps unflh; — A\, <e¢, fore > 0
rithm a prescribedprecision threshold:

The exact geometric characterization of the symmetrizede Geodesic ~ walk. Compute interval — midpoint
Bregman centroid provides us a simple method to approxi- A» = 2252 and corresponding geodesic point
mately converge te’”: Namely, we perform a dichotomic walk
(bisection search) on the geodesic linking the sided citgtro _ 1 F F
cF and cf. This dichotomic search yields a novel efficient %~ (VE) (1= M)V E(er) + MV E(er)),
algorithm that enables us to solve farbitrary symmetrized « Mixed-type bisector side.Evaluate the sign of
Bregman centroids, beyond the former Kullback-Leibleeéas P R
of Veldhuis [36]: We initially considea € [\, = 0, A\ = 1] Dr(cgllan) = Dr(gnller),

2lVeldhuis’ method [36] is based on the general purpose Lagiman » Dichotomy. Branch on[, Ax] if the sign is negative,

multiplier method with a normalization step. It requiresseé up one threshold oron [)‘mv )‘h] otherwise.
for the outer loop and two prescribed thresholds for the riflneps. For Note thatanypoint on the geodesic (including the midpoint

example, Aradilla et al. [41] set the number of steps of theeroloop and th ixed-t bi t id b d
inner loops to ten and five iterations each, respectivelypefylix A provides q%) or on the mixed-type bisector provides an upperboun

a synopsis of Veldhuis’ method. AVGFr(P;qp) on the minimization task. Although it was noted
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experimentally by Veldhuis [36] for the Kullback-Leiblei-d by choosing different feature extractors [26]. Interegiin
vergence that this midpoint provides “experimentally” ado both the Itakura-Saito and the Kullback-Leibler divergesic
approximation, let us emphasize thanist truein general, as can beencapsulatednto a common parameterized family of
depicted in Figure 8(b) for the Itakura-Saito divergence.  distortions measure®r_, generated by the following set of

Theorem 4.4:The symmetrized Bregman centroid can bstrictly convex and differentiablpower functiongenerators:
approximated within a prescribed precision by a simple di-
chotomic walk on the geodesitck;, ¢f') helped by the mixed-
type bisectorM p(ck, ¢f'). In general, symmetrized Bregman
centroids do not admit closed-form solutions.

F,: X c (RH)¢— R

In practice, we can control the stopping criterioby taking Zd ) 2@ —logz® — 1 a=0
the difference q Mo i
Folz) = T ara(-@)*+a® —a+1) ae(0,1)
Wr(q) = Dr(cglla) — Dr(gller) YL 2D loga® — 2 41 a=1

between two successive iterations since it monotonicadly d That family of power generatorg,, (with Fy and Iy the
creases. The number of iterations can also be theoreticdifgits for « — 0 and o — 1) yields the corresponding
upper-bounded as a function efusing the maximum value family of Bregman power divergenceSr, for real-valued

of the Hessian d-dimensional probability vectors and ¢:
hp = H 2
P e [Hp ()] d OGO
_ o _ Dp,(plla) = Z log =+~ — 1),
along the geodesid'(ck,cf’) by mimicking the analysis =1 p q
in [55] (See Lemma 3 of [55]). d () (3)
. g — .
£ q(l) q(z)
V. APPLICATIONS OF THE DICHOTOMIC GEODESIENALK i=1
ALGORITHM
A. Bregman power symmetrized divergences Dr. (pllg) =
In sound processing, the Itakura-Saito divergence is often ! ((q(i))a _ (p(i))a + a(q(i))afl(p(i) _ q(i))) ,
used as thale factodistortion measure for comparing two a(l—a) 4 1

1=

spectra envelopes [29]. That is, a set of discrete all-padeh

coefficients are first extracted so that the distance betaegn for o € (0,1).

two sound spectra is later measured at the harmonic péaks d 0

fori € {1,...,d} — see [29]. It turns out that the Itakura-Saito D _ 1o PG g,
divergence oni-dimensional real-valued probability vectors: m (#lla) ;p & g P e

4 /pd p@ The Itakura-Saito IDr,) and extended Kullback-Leibler
IS(pllq) = Z <W — log PG 1) = Dr(pll9), (Dr,) divergences represent the two extremities of the generic
i=1 family that is axiomaticallyjustificated as the notion of pro-
is yet another separable Bregman divergence in disguise @gtion in least-mean square problems [35]. This parametri
tained for the strictly convex generator function family of Bregman divergence®r  are the symmetrized

Bregman-Csiszar power divergence is defined

d
Fz) == loga®,
2 e ) D 0ll9) + D (gl

Sr.(piq ;
where functionF'(x) is commonly called the Burg entropy. 2
Wei and Gibson [29] showed that the least-mean square on
the COSH distance: Sk (p;q) =
IS(pllq) +IS(qllp) d
COSH(p; q) = , L@ @ _ gy 4 %L (g0 _ )
2 D@ 00 =)+ p0" (¢ = p)),

the symmetrized Itakura-Saito divergence, yields b&ttand =t
smoother discrete all-pole spectral modeling results than

using the Itakura-Saito divergence. Moreover, in someiappl 23Defined over the positive orthant of unnormalized probgbitdensity

cations such as in concatenative speech synthesis, the C%kﬁons. Considering the extended Kullback-Leibler mea makes a huge
distance is considered for minimizing artifacts in speeth diifference from the practical point of view since the Igfp¢ centroidCf’

i i walways falls inside the domain. This is not anymore true if seasider the
phone Synth?SIS' However, Or!e may. also consider altembatlvarobibility (d — 1)-dimensional probability sim)élezé‘d where the left-type
the symmetrized Kullback-Leibler distance for the samé tagentroidcf falls outsideS<, and need to the projected back o8 using

a Kullback-Leibler (Bregman) projection. See Pelletie6][%or details. We
22Refer to Fig. 2 and Fig. 3 of [29]. It is said that “...the COSKtance show how to bypass this problem in the next section by corisigleliscrete
measure is the best criterion measurediXif) distribution as multinomials witkl — 1 degrees of freedom.
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for 0 < a < 1. Since our generic symmetrized Bregmageneralizing the Bernoulli random variable. Namely,is a
centroid procedure allows to compute the centroid for amgultinomialrandom variable indexed by(d—1)-dimensional
Bregman divergence, we can also obviously apply it for thgarameter vectod,. These multinomial distributions belong
important parameterized family. This is all the more impatt to the broad class of exponential families [25] in statssfior
for distance learning algorithms [57] that seek for the besthich have the important property that
distance representative (ie., the bestvalue) to perforr
a given task. Note that except for the class of generalized KL(p(%p)l9(04)) = Dr (0]0),
quadratic distance with generatof$)(z) = 27Qx for a see [25]. That is, this property allows us to bypass the fas-
positive definite matrixQ = 0, the symmetrized Bregmantidious integral computations of Kullback-Leibler diverges
divergences are not of Bregman type [25], [32]. and replace it by a simple gradient derivatives for proligbil

We now consider parameteric family of distributions whiclilistributions belonging to theameexponential families. From
admit a canonical decomposition of their probability dgnsithe canonical decomposition
functions. We start from the non-parametric probabilityssia
functions that are in fact parametric multinomials in disgu exp(< 0, 4(z) > —F(f) + C(z))

Historically, Read and Cressie [4], [6] considered thaif exponential families [25], it comes out that the natural
family of power generators for studying properties of thparameters associated with the sufficient statigtic$ are
corresponding family of Csiszark-_ (p||q) power divergences
of order « € R. Lafferty [58] investigated the Legendra 09 = log-——
transform properties of these Bregman power divergences q

Dy, . Csiszar [35] proved that these divergences arise ngtural — log g

from axiomatic characterizations (Eq. (3.7) of [35]). Mmti 1— Z?;ll q)

that Csiszar and Bregman power divergences differ unless @ do1 o ' )

o = 1, the Kullback-Leibler divergence. sinceq® = 1— 375", ¢¥). The natural parameter space is
the topologically opeR?~*. The log normalizer is

B. Revisiting the centroid of symmetrized Kullback-Leible d—1 ‘

divergence F(0) =log(1+ Y expd®),

Consider a random variable) on d events Q@ = =1

{Q,...,Q4}, called the sample space. Its associated discré@/led the multivariatelogistic entropy It follows that the
distribution ¢ (with Pr(Q = Q) = ¢(*) belongs to the 9gradientis

topologicallyopen(d — 1)-dimensional probability simpleg? VF(#) =n= (n(i))i

of RZ: 327 ¢ = 1andVi € {1,...,d} ¢; > 0. Distributions

¢ arise often in practice from image intensity histogratns With

To measure the distance between two discrete distribufions () _ exp 0()

andq, we use the Kullback-Leibler divergence also known as = 14+ 3% L exp o

relative entropy or discrimination information: =t

J . and yields thedual parameterizationof the expectation
KL(p| |q) _ Zp(z) log % parameters:
i=1 q n = VoF(0).
Note that this information measure usiboundedvhenever
there exists an indeke {1, ...,d} such thaty¥ = 0 andp®
is non-zero. But since we assumed that bethnd ¢ belongs
to the open probability simple$?, this case does not occur
in our setting:

The expectation parameters play an important role in practi
for infering the distributions from identically and indepe
dently distributed observations, ..., z,,. Indeed, the maxi-
mum likelihood estimator of exponential families is simply
given by the center of mass of the sufficient statistics caegbu

0 < KL(p||q) < oo on the observations:
with Ieft-.hand sidg equality if and only ifp = ¢. The f = lzt(wi),
symmetrized KL divergence L

1 see [59]. Observe in this case that the log normalizer fancti
§(KL(pHQ) + KL{gllp)) is not separable:
is also called/-divergence or SKL divergence, for short. d—1
The random variabl€) can also be interpreted as a regular Fz)# Y fi(z®).
i=1

exponential family member [25] in statistics of ordér- 1,

Py - . , . . The functionF' and F* are dual convex conjugates obtained
Being more efficient while keeping accuracy is a key issue ezfrch by the L d f . h both d . d
engines as mentioned in the introduction. y the Legendre transformation that maps both domains an

25To ensure to all bins of the histograms are non-void, we addhalls functions:
quantity e to each bin, and normalize to unit. This is the same as comside
the random variable) + €U whereU is a unit random variable. (Xp, F) «— (Xp., F¥).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 17

It follows by construction from the Legendre transformatio As mentioned above, it turns out that the Kullback-Leibler
that the gradients of these and F* functions arereciprocal measure can be computed from the Bregman divergence
to each other: associated to the multinomial lswappingarguments:

VF*=VF', VF=(VF). KL(pl|lq) = Dr(0,16,),

This yields one method to deduce the convex conjudéte where the Bregman divergence

from the gradien’V F' as the integral primitive of the inverse

of the gradient ofF: Dp(0q]10p) = F(0q) — F(6p)— < 0q — 6, VF(6,) >
) is defined for the strictly convexXS?F > 0) and diffentiable

P = /(VFV ; log normalizer

We get the inverséVF)~! of the gradientVF as F(0) = log(1 + di:lexp 10))
. n(i) i=1
(VE)""(n) = |log T ,0 ) The algorithm is summarized in Figure 9. We implemented
_ ¢ =1 i the geodesic-walk approximation algorithm for that cohtex

and observed in practice that the SKL centroid deviates much

Thus it comes that the Legendre convex conjugate is (20% or more in information radius) from the “middle” point
i of the geodesic X = %), thus reflecting the asymmetry

. = i i = i ., Of the underlying space. Further, note that our geodesic-
F(n) = (Z 0" logn' )> +(1- ZU( )) log(1 — ZU( ))’ walk algorithmprovesthe empirical remarkof Veldhuis [36]
=t st that “... the assumption that the SKL centroid is a linear
the d-ary entropy Observe that fod = 2, this yields the usual compination of the arithmetic and normalized geometricmea
bit entropy*® function must be rejected.” Appendix A displays Veldhuis’ method for
* reference.
F(n) = nlogn + (1 = 1) log(L — ). Computing the centroid of a set of image histograms, a cen-
Further, reinterpreting™ as the log normalizer of an ex-ter robust to outliers, allows one to design novel applarai
ponential family distribution, we get the Dirichlet didtition, in information retrieval and image processing. For example
which is precisely theonjugate prior[60] of multinomial dis- we can perfornsimultaneous contrastnage enhancement by
tributions used in prior-posterior Bayesian updatingreation first computing the histogram centroid ofgaoup of pictures,
procedures. We summarize the chain of duality as follows:and then performing histogram normalization to that same
reference histogram.
KL(p"llg") = Dr (64]16,) - The plots of Figure 10 show the Kullback-Leibler sided
D+ (1p|Ing) = KL(¢" [Ip"™), and symmetrized centroids on two distributions taken as the
intensity histograms of theppl e images shown below.
Observe that the symmetrized centroid distributimay be
aboveboth source distributions, but this iseverthe case in
the natural parameter domain since the two sided centroéds a
generalized means, and that the symmetrized centroid ¢&lon
to the geodesic linking these two centroids (ie., a baryarent
mean of the two sided centroids).

i=1

where p" indicate that the density functiop’” follows the
distribution of the exponential famil§x with log normalizer
F.

To convert back from the multinomigll — 1)-order natural
parametery) to discreted-bin normalized probability mass
functions (eg., histograms) € S? we use the following

mapping. Jensen-Shannon divergence (Table 1) does not only play
gD = 1 an important role in image processing. In fact, it is also
14+ Zj;ll(exp 6)) related to some prominent approaches to supervised atassifi
tion throughout its continuous connection with classifmat
and calibrated surrogates [61]. More precisely, we have [6]:
. exp 6" .
¢ = —— P : JS(p;q) = lim Dg,(p;q) , (13)
Zj:]. (1+exp0(])) a—1

ith:
for all 7 € {1,...,d — 1}. This gives avalid (ie., normalized) W

distribution ¢ € S¢ for any § € R?!. Note that the () = (z1/* +1)% — 2o
coefficients ind may be either positive or negative depending 2(1 —«)
on the ratio of the probability of théth event with the last

,x €R,a € (0,1)(14)

Bregman Divergence®  are called Arimoto divergences.

(d) : .
one, g Most notably, we have in addition to (13):
26This generalizes the 1D case of Kullback-Leibler's Berfialivergence: . z—1
F(z) = log(1 + expz) is the logistic entropy F’'(z) = lfgf(;”z and Go = ilino Go = max 1 0, o (> (15)

F'~' =log 2, and F*(z) = zlogz + (1 — z) log(1 — z), is the dual

bit entropy Gijp = V1+2a?-— V2 . (16)
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INPUT:
n discrete distributions qi, ..., g, of S with

Vie{1,.,n} g=(¢", . d")

CONVERSION:

Probability mass function — multinomial
)

Vi vk 0% = log — L

1- q

F(0) =log(1+ Y0~ expd))

exp 01 Centroid theta (natural parameter space)
VF(0) = <7HZ§£’I po gm) : : . ,
=1 ic{1,....d—1}

1 —

.....

2
1 () Ri%h; z:entrui_dd b
— o n Left centroi
(VF) ) = log 1 § :d*l j 10 | Symmetrized centroid ------- B
i

INITTALIZATION:
Arithmetic mean: 65 = L 57
VF-mean: §f = VF~ (1Y VF(6;))
Am =0, =1

Coordinate

GEODESIC DICHOTOMIC WALK:
While Ay; — Ay, > precision do

A= )\"HEAM
0 = (VE)~((1 = \)VF(ck) + AVF(c]) i | | , m
if DF(CEHO) > DF(QHCE) then 0 50 100 150 200 250 300
Av =\ Centroid FuTenSiol (distributions)
else 0.09 T T T —
) S—
Am = A oo | Fighteenod, ——
Symmetrized centroid -------
CONVERSION: oorr 1
Multinomial — Probability mass function 0.06 ]
Vig = —— L 3
g 1+Z;:11 exp 951) g 0.05 4
. (k) _ exp GEk) g
Vivkq ' = 7”2?;11 p—e E 0.04 _
0.03 B
Fig. 9. Synopsis of our symmetrized Kullback-Leibler ceittrfor discrete |

distributions. The algorithm first converts the probapilihass functions into
multinomials of the exponential families, and then perfamichotomic walk
on the geodesic linking the sided Kullback-Leibler cemtsoi

Since Bregman divergences are not affected by linear terms,
one can replace (15) and (16) respectively @y = Go + "

(1 —-=2)/2 and G’l/2 = G2 — = + V2 while guaranteeing =
D¢, = D¢y and D¢, ,, = D¢ . These two new generators
are remarkable: the former leads to Hinge loss, while therat

brings Matsushita’s loss [61], twalassification calibrated

; i ; _Fig. 10. Centroids of image histograms with respect to thegive entropy.
surrogates, functions that carry appeallng propertlesmper The symmetrized centroid distribution is above both soulis&ributions for

vised learning [62] Moreover, thr(_)UghO_Ut a_dua"w betweentensity rangg100 — 145], but this is never the case in the natural parameter
real-valued classification and density estimation whidisd¢a space.

the Arimoto divergence and convex duality [61], the first one

becomes the popular empirical risk, while the second besome

Schapire-Singer’s renow# criterion for boosting pioneeredy s given byPr(X = z) = p(x; p, X) with:

by Matsushita [61], [63]. Thus, Arimoto divergences make

a continuous connection between Jensen-Shannon divergenc 1 (z — )Tz — p)
and the empirical risk, throughout classification calibdat p(zip, X) = 47\/—@(1) (- 5 )
surrogates. Without going in depth, this is interesting g a (2)2 Vet
Bregman (symmetrized) centroid defines, from the classifi[

i tandpoint timal tant estimation ofscl “is certainly the engineer’s favorite family of distritoms
cation standpoint, some optimai constant estimation Bl i yeyertheless becomes intricate to use as dimension goe
labels for a huge set of proper scoring rules [61].

beyond 3D. The density function can be rewritten into the

canonical decomposition to yield an exponential family of
C. Entropic means of multivariate normal distributions orderD = @ (the mean vector and the positive definite

The probability density function of an arbitarjvariate matrix ¥ ~! accounting respectively faf and@ param-
normal A/(p, ) with meany and variance-covariance matrixeters). The sufficient statistics sackedonto a two-partD-
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dimensional vector defined respectively both on the topologically open sfitte
Cone, . Note that removing constant terms does not change the
Bregman divergences. THé < O coordinate transformations

associated with the natural parameter obtained from the Legendre transformation (WifiF)~! =
V F*) are given by

= (z, —ixa:T)

© = (0,0),

T )

H = VéF(é),
2 ~

Accordingly, the source parameter are denoted\by (1, X). (
The log normalizer specifying the exponential family is ( ?6*19
)T )

F(©) = %Tr(@’le) — %1ogdet® + glogﬁ

_ f )
- T
(see [44], [43]). To compute the Kullback-Leibler divergen —(E+pnt)
of two normal distributionsN, = N(u,,%,) and Ny, = and
N (g, Xq), we use the Bregman divergence as follows: ~ ~
- © = VgizF*(H),
KL(NpHNq) = DFN(@qH@p)v~ R ~ ~ Hv - F*(n)
. _ ( —(H +an") )
The inner produck ©,,0, > is a compositeinner product —§(H+7777T)71 ’
obtained as the sum of inner products of vectors and matrices < DI )
<~ = ly-1
<0p, 0, >=<0,,0,>+<0,0;, >. 2>

These formula simplifies significantly when we restrict our-
selves to diagonal-only variance-covariance matriées
spherical normal&; = o;1, or univariate normalsV'(u;, o).
< 0p,04 >= Tr(@p(aqT). Computing the symmetrized Kullback-Leibler centroid of a
set of normals (Gaussians) is an essential operation far clu
|ng sets of multivariate normal distributions using teen

basedk-means algorithm [64], [65]. Nock et al. [66] proposed
the framework of mixed Bregman divergences to manipulate
|mpI|C|tIy and efficiently symmetrized Bregman centroidg b
airs of left/right sided centroids. Myrvoll and Soong [21§-
cribed the use of multivariate normal clustering in auttiena
speech recognition. They derived a numerical local algorit
for computing the multivariate normal centroid by solving
?ratlvely Riccati matrix equations, initializing the lation

the so-called “expectation centroid” [42]. Their methsd
complex and costly since it also involves solving for eigens
ems. In comparison, our geometric geodesic dichotomi& wal
procedure for computing the entropic centroid, a Bregman
symmetrized centroid, yields an extremely fast and simple

For matrices, the inner produet ©,,, ©, > is defined by the
trace of the matrix produd®, O :

In this setting, however, computing the gradient, invense 9,
dient and finding the Legendre convex conjugates are qu
involved operations. Yoshizawa and Tanabe [44] investidat
in a unifying framework the differential geometries of the
families of probability distributions ofrbitrary multivariate

normals from both the viewpoint of Riemannian geomet
relying on the corresponding Fisher information metricd an,
from the viewpoint of Kullback-Leibler information, yieilog

the classic torsion-free flat shape geometry with dual affine
connections [43]. Yoshizawa and Tanabe [44] carried il
computations that yield the dual natural/expectation divate

systems arising from the canonical decompotion of the d,ensg
function p(x; u, X):

o = ( n=H ) algorithm with guaranteedperformance.
=—(Z+pp") We report on our implementation for bivariate normal
A=pu distributiong” (see Figure 11). Observe that the right-type
A=X Kullback-Leibler centroid is a left-type Bregman centrdaat
- 6=x"1u the log normalizer of the exponential family. Our method
A = ( o= % ) allowed us to verify that the simple generaliz&¥F'-mean
formula
The strictly convex and differentiable dual Bregman genera .
tor functions (ie., potential functions in information geetry) |
are i (P)y=(VF) 'O ~VF(pi))

i=1
~ 1 1 d
F(©) = -Tr(07'97) — Zlogdet® + — logm, o S
2 2 27’Random multivariate distributions are computed as folloWse mean
and coordinates: has independent uniform random distribution[in1], and the
1 ] d variance-covariance matri is obtained from a Wishart distribution obtained
~ _ s = AAT where A is a triangular matrix with entries sampled from a
* _ T 1
F*(H) = -3 log(1+n" H "n) — B logdet(—H) — 5 10g 27Tegtandard normal distribution.
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Fig. 11. Entropic sided and symmetrized centroids of

bivariate normal distributions. The two input bivariate rmals

are  mo = 0 4362%351?3381?68%6{)77368696 2.2266613?(?5587;71235;185758)’ Fig. 12. Entropic centroids for a set of ten bivariate nosndlhe figure

So = [ _d 12663095837289161 0 63899446830332574) , displays the entropic sided and symmetrized centroidsn{pan 5D shown

' : on the 2D plane using centered ellipsoids). The right-sidedtroid, left-

and my = (0.95591075380718404, 0.6544489172032838), ) - h : "
0.79712692342719804 0.033060250957646142 sided centroid and symmetrized centroid are rasterizeddnhblue and green,

S = ’ o . respectively. The magenta ellipsoid depicts the point @ngéodesic linking

—0.033060250957646142 0.14609813043797121

; . N P S
The right, left and symmetrized centroids are respectivejwen ;h%zgi?zé:;rgégﬁgi dfoD\ = 3: This yields a fast approximation of the
as mp = (0.29050997932657774, 0.53527112890397821), Y ’

S _ 0.33728018979019664 —0.13844874409795613

R B —0.13844874409795613 0.2321103610207193
my = (0.64810106723227623, 0.45787919766838603),  For example, the left-type sided barycenter for weighis

. .
St —0.16933954090511441  0.43118595400867693 defined as

_ { 0.71165072320677747  —0.16933954090511438 }
and m?” = (0.42475123207621085, 0.5062178606510539),
gF . 0.50780328118070528  —0.15653432651371618

- —0.15653432651371618  0.30824860232457035 |
The geodesic half-length  bound is found asm: =

(0.46930552327942698, 0.49657516328618234) with S;
2

1 n
F . _ 3 . .
by (P;w) = arg min — _Eil w; Dp(cl|pi),

is aV F-mean for weight vectow, and has information radius

0.55643330303588234  —0.16081280872204987 | .o . JS r(P;w). Computing the symmetrized Bregman centroids
—0.1608128087229499 ~ ~ 0.33314553526979185 | of multinomials (ie., the SKL centroid of histograms, see
radii are0.83419372149741644 (for the left/right), 0.64099815325721565 . . .
(symmetrized) and).6525069280087431 (geodesic point with\ = %). also [67]) was SUCCQSSfu"y used for segmenting online eusi

flows [68]. Choosing the most appropriate distortion measur
to define a “center” and minimize nearest neighbor queries
coincides with that of the paper [64]. Furthermore, we would an important issue of contents-based multimedia retriev
like to stress out that our method extendsitbitrary entropic  systems. Spellman et al. [69] carried out preliminary eixper
centroids of members of the same exponential family. ments to emphasize on the fact that thenWlAx KL center
The Figure 11 plots the entropic right- and left-sided arel tlis computationally more efficient than the centroid for msar
symmetrized centroids in red, blue and green respectively heighbor queries. The Bregman-Csiszar one-parametélyfam
a set that consists of two bivariate normals £ @ =5). of a-divergences may further provide a flexible framework for
The geodesic midpoint interpolant (obtained fo %) is very tuning individually the “appropriate” distance functiaméach
close to the symmetrized centroid, and shown in magenta.cluster. Note that since the mixture of exponential fargilie
is not an exponential family (eg., the family of Gaussian
VI. CONCLUDING REMARKS AND DISCUSSION mixtures is not an exponential family), our method does not
In this paper, we have considered and shown that the tatbow to compute the centroid of Gaussian mixtures [70].
sided and the symmetrized Bregman centroids are unique. Hawever, since theproduct of exponential families is an
right-type centroid is independent of the considered digace exponential family, we can compute the entropic centroids o
and always coincide with the center of mass of the point s#fteses product distributions.
The left-type centroid is a generalized mean which admitsFinally, although Bregman divergences are an important
the same Jensen-Shannon information radius as the rigat-tfamily of information-theoretic distance measures, thare
centroid. The symmetrized Bregman centroid is geomelyicaby no means covering the full spectrum of distances. Csisza
characterized as the unique intersection point of the ggodef-divergences [34] which includes the Bhattacharyya distan
linking the sided centroids with the mixed-type bisectargd a is also another major family of parametrized distances that
can be approximated efficiently by a simple dichotomic walkntersects with the family of Bregman divergences only for
The symmetrized centroid can thus also be interpreted thg Kullback-Leibler representative. It would be inteegsto
a generalized mean on the two sided centroids. This wastudy the properties of-divergence centroids and barycenters.
extends straightforwardly to barycenters [56] as well by-co Amari [12] fully characterized the centroids with respeat t
sidering a normalized weight distribution with ||w|| = 1. «a-divergences, a-parameter family of Csiszar divergences
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parametrized by generatoys,. Namely, Amari proved [12]
that the a-means which are the generalized means for the
corresponding,, generator minimize the average sum with re-
spect to thex-divergence. Rigazio et al. [71] presented another
work in that direction by approximating the Bhattacharyya
centroid of multivariate normals with diagonal covariamea-
trices using an iterative converging algorithm. The Kutlha
Leibler divergence is the only common divergence member of
Bregman and Csiszar families. Johnson and Sinanovic [72]
presented a symmetric resistor-average distance that does
not belong to the family off-divergences by averaging
two Kullback-Leibler distance using an harmonic mean for
which it would be interesting to compute the centroid too.
Teboulle [65] generalized this Bregmanmeans algorithm

in 2007 by considering both hard and safnter-based
clustering algorithms designed for both Bregman [21] and
Csiszarf-divergences [47], [34].

Although we have considered in this paper Bregman diver-
gences defined on a spagec R¢, Bregman divergences can
also be extended to handle other elements such as Hermitian
matrices [3]. See also the work on functional Bregman di-
vergences [24] that extends vector Bregman divergences to
measure spaces using Fréchet derivatives. Finally, wbser
that for any given Bregman divergenée:(p||q) used on a
finite vector setP, it is always possible to “metrize” this
distortion measure, by first symmetrizing it &5 (p;q) =
w, and then finding the largest exponent- 0
such that the triangle inequality on triplets of vectprs; and
pi Of P is satisfied:

Fig.

See [51] for related work on metric divergences. 1
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APPENDIX [13]
Synopsis of Veldhuis’ and the generic geodesic-walk meth-
ods
Figure 13 summarizes the Veldhuig-divergence centroi
convex programming method [36].

4 14
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Veldhuis’ algorithm
INPUT:

n discrete distributions gz, ..., g, of S¢ with
Vie {177n} qi ( (1>77qz(d>)

4q;
INITIALIZATION

Arithmetic mean:
vk g®) = 15on q(k>
n

i=1 14
Geometric normalized mean:

1
Wk ) = & with k ¢ = (T, ¢Y) "
o=—1 i=1
MAIN LOOP:
For 1 to 10 -
VkyW = odoea
vk o®) =1
INNER LOOP 1:
For 1 to 5
(*) (k) _ gy (F)
vk (k) — (k) _ %
INNER LOOP 2:
For 1 to 5
(Zf: J;(k)d(k)exp a)—1
aa- g
CENTROID:

Vi ®) = 28 §*) exp o

13.  Veldhuis’ approximation algorithm for thé-divergence (sym-

metrized Kullback-Leibler divergence).
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