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Sided and Symmetrized Bregman Centroids
Frank Nielsen,Member, IEEE,and Richard Nock,Nonmember, IEEE

Abstract—We generalize the notions of centroids (and barycen-
ters) to the broad class of information-theoretic distortion mea-
sures called Bregman divergences. Bregman divergences form
a rich and versatile family of distances that unifies quadratic
Euclidean distances with various well-known statistical entropic
measures. Since besides the squared Euclidean distance, Bregman
divergences are asymmetric, we consider theleft-sided and right-
sided centroids and the symmetrized centroids as minimizers of
average Bregman distortions. We prove that all three centroids
are unique and give closed-form solutions for the sided centroids
that are generalized means. Furthermore, we design a provably
fast and efficient arbitrary close approximation algorithm for
the symmetrized centroid based on itsexact geometric charac-
terization. The geometric approximation algorithm requires only
to walk on a geodesic linking the two left/right sided centroids.
We report on our implementation for computing entropic centers
of image histogram clusters and entropic centers of multivariate
normal distributions that are useful operations for processing
multimedia information and retrieval. These experiments illus-
trate that our generic methods compare favorably with former
limited ad-hocmethods.

Index Terms—Information geometry, centroid, Bregman infor-
mation, information radius, Legendre duality, Kullback-L eibler
divergence, Bregman divergence, Bregman power divergence,
Burbea-Rao divergence, Csisźar f -divergences.

I. I NTRODUCTION AND MOTIVATIONS

Content-based multimedia retrieval applications with their
prominent image retrieval systems (CBIRs) are very popular
nowadays with the broad availability of massive digital mul-
timedia libraries. CBIR systems spurred an intensive line of
research for betterad-hocfeature extractions and effective yet
accurate geometric clustering techniques. In a typical CBIR
system [13], database images are processed offline during a
preprocessingstep by various feature extractors computing
image characteristics such as color histograms or points of
interest. These features are aggregated intosignaturevectors,
say {pi}i, that represent handles to images. At query time,
whenever an on-line query image is given, the system first
computes its signature, and then search for the first, sayh,
best matches in the signature space. This image retrieval task
requires to define an appropriatesimilarity (or dissimilarity)
measure between any pair(pi, pj) of signatures. Designing an
appropriate distance is tricky since the signature space isoften
heterogeneous (ie., cartesian product of feature spaces com-
bining for examples various histograms with other geometric
features) and the usual Euclidean distance orLp-norms do not
always make sense. For example, it has been shown better to
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use the information-theoretic relative entropy, known as the
Kullback-Leibler divergence (orI-divergence for short), to
measure theoriented distancebetween image histograms [13].
The definition of the Kullback-Leibler divergence [14] for two
continuous probability densities1 p(x) andq(x) is as follows:

KL(p(x)||q(x)) =

∫

x

p(x) log
p(x)

q(x)
dx.

The Kullback-Leibler divergence of statistical distributions
p(x) and q(x) is called therelative entropysince it is equal
to the cross-entropy ofp(x) and q(x) minus the entropy
H(p(x)) =

∫

x
p(x) log 1

p(x)dx of p(x):

KL(p(x)||q(x)) = H×(p(x)||q(x)) −H(p(x)) ≥ 0

with the cross-entropy:

H×(p(x)||q(x)) =

∫

x

p(x) log
1

q(x)
dx

The Kullback-Leibler divergence represents the average loss
(measured in bits if the logarithm’s basis is2) of using another
code to encode a random variableX . The relative entropy
can also be interpreted as the information gain achieved
aboutX if p can be used instead ofq (see [14] for various
interpretations in information theory). For discrete random
variables, the statistical Kullback-Leibler divergence on two
real-valuedd-dimensional probability vectorsp andq encoding
the histogram ditributions is defined [6] as:

KL(p||q) =

d
∑

i=1

p(i) log
p(i)

q(i)
,

where p(i) and q(i) denote thed coordinates of proba-
bility vectors p and q, respectively (with bothp, q be-
longing to the d-dimensional probability simplexSd =
{(x(1), ..., x(d)) | ∑d

i=1 xi = 1 and∀i xi > 0}, an open con-
vex set). The|| in the notationKL(p||q) emphasizes that the
distortion measure is not symmetric (ie., oriented distance),
since we haveKL(p||q) 6= KL(q||p).

Notations: Throughout the paper, letpj , xj , cj, ... de-
note d-dimensional real-valued vectors ofRd, and let
p
(i)
j , x

(i)
j , c

(i)
j , ..., 1 ≤ i ≤ d denote their coordinates. Sets

P , Ci, ... are denoted using calligraphic letters.
Efficiencyis yet another key issue of CBIR systems since we

do not want to compute the similarity measure (query,image)
for each image in the database. We rather want beforehand to

1A formal definition considersprobability measuresP and Q defined
on a measurable space(X ,A). These probability measures are assumed
dominated by aσ-finite measureµ with respective densitiesp = dP

dµ
and

q = dQ
dµ

. The Kullback-Leibler divergence is then defined asKL(P ||Q) =
∫

dP
dµ

log(dP
dµ

/dQ
dµ

)dµ. See [6] a recent study on information and divergences
in statistics.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 2

clusterthe signatures efficiently during the preprocessing stage
for fast retrieval of the best matches given query signature
points. A first seminal work by Lloyd in 1957 [15] proposed
the k-means iterative clustering algorithm for solving vector
quantization problems. Briefly, thek-means algorithm starts
by choosingk seeds2 for cluster centers, associate to each
point its “closest” cluster “center,” update the various cluster
centers, and reiterate until either convergence is met or the
difference of the “loss function” between any two successive
iterations goes below a prescribed threshold. Lloyd chose to
minimize thesquaredEuclidean distance since the minimum
average intra-cluster distance yields centroids, thecenters of
massof the respective clusters. Lloyd [15] further proved that
the iterativek-means algorithmmonotonicallyconverges to a
local optima of the quadratic function loss (minimum variance
loss):

k
∑

i=1

n
∑

pj∈Ci

||pj − ci||2.

ClusterCi’s centerci is defined by the following minimiza-
tion problem

ci = arg min
c

∑

pj∈Ci

||c− pj ||2, (1)

= arg min
c∈Rd

AVGL2
2
(Ci, c), (2)

=
1

|Ci|
∑

pj∈Ci

pj , (3)

where|Ci| denotes the cardinality ofCi, and theci’s andpi’s
are real-valuedd-dimensional vectors. That is, the minimum
average squared distance of the cluster center to the cluster
points is reached uniquely by the centroid: The center of
mass of the cluster. Note that considering the Euclidean dis-
tance instead of the squared Euclidean distance yields another
remarkablecenter point of the cluster called the Fermat-
Weber point [18]. Although the Fermat-Weber point is also
provably unique, it does not have closed-form solutions. Itis
thus interesting to ask oneself what other kinds of distances
in Eq. 2 (besides the squared distance) yield simple closed-
form solutions that are of interests for processing multimedia
information. Half a century later, Banerjee et al. [19] showed
in 2004 that the celebratedk-means algorithmextends toand
remarkablyonly works [20] for a broad family of distortion
measures called Bregman divergences [21], [22]. LetR

+

denote the non-negative part of the real line:R
+ = [0, +∞).

In this paper, we consider only Bregman divergences defined
on vector pointspi ∈ R

d in fixed dimension.3

Bregman divergencesDF form a family of distortion mea-
sures that are defined by a strictly convex and differentiable
generator functionF : X → R

+ on a convex domain

2Forgy’s initialization [16] consists merely in choosing atrandom the seeds
from the source vectors. Arthur and Vassilvitskii [17] proved that a better
careful initialization yields expected guarantees on the clustering.

3See the concluding remarks in Section VI for extensions of Bregman
divergences to matrices [23], [3], and recent functional extensions [24] of
Bregman divergences.

F

X
pq

(p, F (p))

(q, F (q))

Hq

DF (p||q)

potential function

Fig. 1. Geometric interpretation of a univariate Bregman divergence.
DF (.||q) is the vertical distance between the potential function plot F =
{(x, F (x)) | x ∈ X} and the hyperplaneHq tangent toF at (q, F (q)).

domF = X ⊆ R
d (with dim X = d) as

DF (p||q) = F (p)− F (q)− < p− q,∇F (q) >,

where < ·, · > denotes the inner product (also commonly
called the “dot” product):

< p, q >=

d
∑

i=1

p(i)q(i) = pT q,

and∇F (q) denotes the gradient ofF at vector pointq:

∇F (q) =

[

∂F (q)

∂x(1)
, ...,

∂F (q)

∂x(d)

]

.

See Figure 1 for a geometric interpretation of Bregman
divergences. Thus Bregman divergences define aparameter-
ized family of distortions measuresDF that unify the squared
Euclidean distance with the statistical Kullback-Leiblerdiver-
gence:

• Namely, the squared Euclidean distance is a Bregman
divergence in disguise obtained for the generatorF (x) =
∑d

i=1(x
(i))2 that represents the paraboloid potential

function (see Figure 1), or the quadratic loss on vector
points in thek-means algorithm.

• The Kullback-Leibler divergence is yet another Breg-
man divergence in disguise obtained for the generator
F (x) =

∑d
i=1 x(i) log x(i) that represents the negative

Shannon entropy on probability vectors [14] (normalized
unit length vectors lying on thed-dimensional probability
simplexS

d).
A Bregman divergenceDF is saidseparable[19], [25] if its

generator can be obtained coordinate-wise from a univariate
generatorf as:

F (x) =

d
∑

i=1

f(x(i)).

Table I reports the generators of common univariate Bregman
divergences (ie., divergences defined on scalarsx ∈ R —
d = 1). Multivariate separable Bregman divergences defined
onx ∈ R

d can be easily constructed piecewise from univariate
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DomainX FunctionF Gradient F (x)
dx

= F ′(x) Inverse gradient(F ′(x))−1 DivergenceDF (p||q)
R Squared function Squared loss

x2 2x x
2

(p − q)2

R+, α ∈ N Norm-like Norm-like

α > 1 xα αxα−1 ( x
α

)
1

α−1 pα + (α − 1)qα − αpqα−1

R+ Unnormalized Shannon entropy Kullback-Leibler divergence (I-divergence)
x log x− x log x exp(x) p log p

q
− p + q

Exponential Exponential loss
R exp x exp x log x exp(p)− (p− q + 1) exp(q)

R
+∗ Burg entropy Itakura-Saito divergence

− log x − 1
x

− 1
x

p
q
− log p

q
− 1

[0, 1] Bit entropy Logistic loss
x log x + (1− x) log(1 − x) log x

1−x
exp x

1+exp x
p log p

q
+ (1− p) log 1−p

1−q

Dual bit entropy Dual logistic loss
R log(1 + exp x) exp x

1+exp x
log x

1−x
log 1+exp p

1+exp q
− (p − q) exp q

1+exp q

[−1, 1] Hellinger-like Hellinger-like
−
√

1− x2 x√
1−x2

x√
1+x2

1−pq√
1−q2

−
√

1− p2

TABLE I
COMMON UNIVARIATE BREGMAN DIVERGENCESDF USED FOR CREATING SEPARABLEBREGMAN DIVERGENCES.

Bregman divergences. The generalized quadratic distances4

||p−q||2Q = (p−q)T Q(p−q) defined for ad×d positive def-
inite matrix Q are the only symmetric Bregman divergences5

obtained from the non-separable generatorF (x) = xT Qx,
see [25], [23].

Thus in Barnerjee et al. [19], the originalk-means algorithm
is extended into a meta-algorithm, called the Bregmank-
means, that works for any given Bregman divergence. Fur-
thermore, Barnerjee et al. [20], [19] proved the property
that the mean is theminimizer of the expected Bregman
divergence. The fundamental underlying primitive for these
center-basedclustering algorithms is to find the intrinsicbest
single representativeof a cluster with respect to a distance
function d(·, ·). As mentioned above, the centroid of a point
setP = {p1, ..., pn} (with P ⊂ X ) is defined as the optimizer
of the minimum average distance:

c = argmin
p

1

n

∑

i

d(p, pi).

For oriented distance functions such as aforementioned Breg-
man divergences that are not necessarily symmetric, we thus
need to distinguishsided and symmetrizedcentroids as fol-
lows:

cF
R = arg min

c∈X

1

n

n
∑

i=1

DF (pi|| c ),

cF
L = arg min

c∈X

1

n

n
∑

i=1

DF ( c ||pi),

4The squared Mahalanobis distance is a generalized quadratic distance
obtained by choosing matrixQ as the inverse of the variance-covariance
matrix [25].

5Note that the quadratic form of distances||p− q||2Q = (p− q)T Q(p− q)
amounts to compute the squared Euclidean distance on transformed points
with the mappingx 7→ Lx, whereL is the triangular matrix of Cholesky
decompositionQ = LT L since ||p − q||2Q = (p − q)T LT L(p − q) =

||Lp− Lq||2.

cF = arg min
c∈X

1

n

n
∑

i=1

DF (pi|| c ) + DF ( c ||pi)

2
.

The first right-type and left-type centroidscF
R and cF

L are
calledsided centroids(with the superscriptL standing for left,
andR for right), and the third type centroidcF is called the
symmetrizedBregman centroid. Except for the class of gen-
eralized quadratic distances with generatorFQ(x) = xT Qx,
SF (p; q) = DF (p||q)+DF (q||p)

2 is not a Bregman divergence,
see [25] for a proof. Since the three centroids coincide
with the center of mass for symmetric Bregman divergences
(generalized quadratic distances), we consider in the remain-
der asymmetric Bregman divergences. For a given point set
P = {p1, ..., pn}, we write for short the minimum averages
as:

AVGF (P||c) =
1

n

n
∑

i=1

DF (pi||c), (4)

AVGF (c||P) =
1

n

n
∑

i=1

DF (c||pi), (5)

AVGF (c;P) =
1

n

n
∑

i=1

SF (c; pi) = AVGF (P ; c), (6)

so that we get respectively the three kinds of centroids as:

cF
R = argmin

c∈X
AVGF (P||c), (7)

cF
L = argmin

c∈X
AVGF (c||P), (8)

cF = argmin
c∈X

AVGF (P ; c). (9)

We use the semi-colon “;” notation6 in symmetrized di-
vergenceSF (c; pi) and average meanAVGF (P ; c) to in-
dicate that it is symmetric:SF (c; pi) = SF (pi; c) and

6We reserve the comma notation ”,” in divergences to stress out the metric
property.
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AVGF (P ; c) = AVGF (c;P). The Jensen-Shannon diver-
gence [26], [27] (symmetrized Kullback-Leibler divergence
obtained forF (x) =

∑d
i=1 x(i) log x(i), the negative Shannon

entropy) and COSH centroids [28], [29] (symmetrized Itakura-
Saito divergenceSF , obtained for the Burg entropy [19], [30]:
F (x) = −∑d

i=1 log x(i)) are certainly the most famous sym-
metrized Bregman centroids, widely used in image and sound
processing. These symmetrized centroids play a fundamental
role in information retrieval (IR) applications that require to
handle symmetric information-theoretic distances. Note that
Bregman divergences can also be assembled block-wise for
processing multimedia information and retrieval combining
both auditory and visual signals. Table II presents a table
of common Bregman divergences (or symmetrized Bregman
divergences) in action for processing multimedia signals in
real-world applications. This table is by no means exhaustive.
Banerjee et al. [19] proved a bijection between regular ex-
ponential families and a corresponding subclass of Bregman
divergences called regular Bregman divergences. They exper-
imentally showed that clustering exponential families with
the corresponding Bregman divergences yields better results.
This exponential family/Bregman divergence bijection indi-
cates why some Bregman divergences are better suited than
others. For example in sound processing, the speech power
spectra can be modeled by exponential family densities of the
form λe−λx whose corresponding associated regular Bregman
divergence is no less than the Itakura-Saito divergence. We
refer the reader to the first comprehensive “Dictionary of
distances” [9] (especially, chapter 21 dealing with “Imageand
Audio Distances”) for further hints and explanations for which
divergence is useful for which applications.

A. Kullback-Leibler divergence of exponential families as
Bregman divergences

In statistics, exponential families [19], [25] represent a
large class of popular discrete and continuous distributions
with prominent members such as Bernoulli, multinomial, beta,
gamma, normal, Rayleigh, Laplacian, Poisson, Wishart, etc.
just to name a few. The probability mass/density functions of
exponential families are parametric distributions that can be
written using the following canonical decomposition:

p(x|θ) = exp{〈θ, t(x)〉 − F (θ) + C(x)},
wheret(x) denotes thesufficient statisticsandθ represents the
natural parameters. Since log

∫

x p(x|θ)dx = log 1 = 0, we
haveF (θ) = log

∫

x
exp{〈θ, t(x)〉+ C(x)}dx. F is called the

log normalizer functionand fully characterizes the exponential
family EF . TermC(x) ensures density normalization.

It turns out that the Kullback-Leibler divergence of distribu-
tions p(x|θp) andp(x|θq) belonging to the same exponential
family EF is equivalent to the Bregman divergenceDF for the
log normalizer function on swapped natural parameters:

KL(p(x|θp)||p(x|θq)) = DF (θq||θp)

See [25] for a proof. Thus a left-sided/right-sided/symmetrized
Kullback-Leibler centroid on a set of distributions of the

same exponential family is a corresponding right-sided/left-
sided/symmetrized Bregman centroid on a set of vectors of
the natural spaceX .

B. Properties of sided and symmetrized centroids

In practice, once the proper Bregman divergence is cho-
sen, we still need to choose between the left-sided, right-
sided or symmetrized centroid. These centroids exhibit dif-
ferent characteristics that help choose the proper centroid for
the given application. Without loss of generality7, consider
the most prominent asymmetric Bregman divergence: The
Kullback-Leibler divergence. Furthermore, for illustrative pur-
poses, consider a set ofn normal distributions{N1, ...,Nn}.
Each normal distributionNi has probability density function
pi(x|µi, σ

2
i ) (pdf. for short):

pi(x|µi, σ
2
i ) =

1√
2πσi

exp

(

− (x− µi)

2σi
2

)

that can be modeled by a corresponding 2D pointpi =
(µi, σi

2) of mean µi and varianceσ2 in parameter space
X = R× R

+
∗ . The Kullback-Leibler divergence between two

normals has the following closed-form solution8:

KL(p(x|µp, σ2
p)||p(x|µq , σ

2
q )) =

1

2

(

2 log
σq

σp
+

σ2
p

σ2
q

+
(µq − µp)

2

σ2
q

− 1

)

.

Observe that the closed-form formula is computed for 2D
pointspi = (p

(1)
i = µi, p

(2)
i = σ2

i ) in the parameter spaceX .
For identical normal variancesσ2

p = σ2
q the Kullback-Leibler

divergence amounts to a weighted squared Euclidean distance.
Figure 2 displays an example of left/right sided and sym-

metrized centroids of normals for a set that consists of two
normals:N1 = N (−4, 22 = 4) andN2 = N (5, 0.82 = 0.64).
We observe the following properties:

• The Kullback-Leibler right-sided centroid is“zero-
avoiding” so that its corresponding density function tries
to cover the support of all input normals,

• The Kullback-Leibler left-sided centroid is“zero-
forcing” so that it focuses on the highest mass mode
normal.

That zero-avoiding/zero-forcing terminology is related to
the description of Minka [11] (pages 3-4) that considered
Gaussian mixture simplification of a2-component Gaussian
mixture to a single Gaussian component. The Kullback-
Leibler left-sided centroid prefers to better represent only
the highest-mode individual of the set while the right-sided
centroid prefers to stretch over all individuals. Following yet
another terminology of Winn and Bishop [31], we observe
when modeling the “mean” probability density function that
the Kullback-Leibler left-sided centroid exhibits anexclusive
behavior (ignore modes of the set to select the highest one)

7Indeed, as shown earlier, Bregman divergences can be interpreted as equiv-
alent Kullback-Leibler divergences on corresponding parametric exponential
families in statistics by swapping the argument order [19],[25].

8The Kullback-Leibler divergence of normals is equivalent to a Bregman
divergence for a corresponding generatorF by swapping argument order. See
[19], [25].
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while the Kullback-Leibler right-sided centroid displaysan
inclusive property.

To get a mathematical flavor of these zero-forcing/zero-
avoiding behaviors, consider without loss of general-
ity9 the Kullback-Leibler divergence on finite discrete
set of distributions (ie., multinomial distributions with
d outcomes). The right-sided centroid is the minimizer
cR = argc min 1

n

∑n
i=1 KL(pi||c). That is, we seek for

the d-dimensional probability vectorc that minimizes

min 1
n

∑n
i=1

∑d
j=1 p

(j)
i log

p
(j)
i

c(j) . Thus, intuitively whenever

p
(j)
i 6= 0, the minimization process ought to choosec(j) 6= 0.

Otherwise, settingc(j) = 0 yields pi log
p
(j)
i

c(j) → ∞ (ie.,
the Kullback-Leibler divergence is unbounded). That is, the
right-sided Kullback-Leibler centroid (that is a left-sided
Bregman centroid) is zero-avoiding. Note that this minimiza-
tion is equivalent to maximizing the average cross-entropies
1
n

∑n
i=1

∑d
j=1 p

(j)
i log c(j), and thus the right-sided Kullback-

Leibler centroidc is zero-avoiding for allp(j)
i 6= 0.

Similarly, the left-sided Kullback-Leibler centroid
cL = argc min 1

n

∑n
i=1 KL(c||pi) is obtained by minimizing

min 1
n

∑n
i=1

∑d
j=1 c

(j)
i log c(j)

p
(j)
i

. This minimization is zero-

forcing since whenever there exists ap(j)
i = 0, the

minimization tasks chooses to setc(j) = 0. That means
that the right-sided Bregman centroid (a left-sided Kullback-
Leibler divergence in disguise) is zero-forcing.

The symmetrized Kullback-Leibler centroid is defined as
the minimizer of the Jensen-Shannon divergence (which has
always finite value). That is, the symmetrized centroid mini-
mizes thetotal divergenceto the average probability density
m(x) = p(x)+q(x)

2 as follows:

c = arg min
c∈X

1

2
KL(p(x)||m(x)) +

1

2
KL(q(x)||m(x)).

Therefore the symmetrized centroid strikes a balance between
the two zero-forcing and zero-avoiding properties with respect
to the mean distribution.

C. Related work, contributions and paper organization

Prior work in the literature is sparse and disparate. We
summarize below main references that will be concisely revis-
ited in section III under our notational conventions. Ben-Tal
et al. [32] studiedentropic meansas the minimum average
optimization for various distortion measures such as thef -
divergences and Bregman divergences. Their study is limited
to the sided left-type (generalized means) centroids. Basseville
and Cardoso [33] compared in the 1-page paper the gen-
eralized/entropic mean values for two entropy-based classes
of divergences:f -divergences [34] and Jensen-Shannon di-
vergences [35]. The closest recent work to our study is
Veldhuis’ approximation method [36], [37] for computing the
symmetrical Kullback-Leibler centroid.

9As explained by Banerjee et al. [19], [25], the Kullback-Leibler divergence
of distributions of the same exponential families is a Bregman divergence on
the natural parameters of these distributions obtained by swapping the order
of the arguments. Arbitrary probability measures can be approximated by
multinomial distributions that belong to the exponential family.

N1 = N (−4, 4)

N2 = (5, 0.64)
Left-side Kullback-Leibler centroid

(zero-forcing)

Right-sided Kullback-Leibler centroid
zero-avoiding

Symmetrized centroid

Fig. 2. Visualizing the fundamental properties of the left-sided, the right-
sided and the symmetrized centroids (withN1 = N (−4, 22 = 4) andN2 =
N (5, 0.82 = 0.64)): The right-sided centroid (thin dashed red line) is zero-
avoiding and tries to cover the support of both normals. The left-sided centroid
(thick dashed blue line) is zero-forcing and focuses on the highest mode
(smallest variance). The symmetrized centroid (medium dashed green line)
exhibits a trade-off between these two zero-avoiding/zero-forcing properties.

We summarize our contributions as follows:

• In section III, we show that the two sided Bregman
centroidscF

R andcF
L with respect to Bregman divergence

DF areuniqueand easily obtained asgeneralized means
for the identity and∇F functions, respectively. We
characterize Sibson’ s notion ofinformation radius[38]
for these sided centroids, and show that they are both
equal to theF -Jensen difference, a generalized Jensen-
Shannon divergence [39] also known as Burbea-Rao
divergences [40].

• Section IV proceeds by first showing how to reduce the
symmetrizedmin AVGF (c;P) optimization problem into
a simpler system that depends only on the two sided
centroidscF

R andcF
L . We then geometrically characterize

exactlythe symmetrized centroid as the intersection point
of the geodesic linking the sided centroids with a new
type of divergence bisector: the mixed-type bisector. This
yields a simple and efficient dichotomic search procedure
that provably converges fast to the exact symmetrized
Bregman centroid.

• The symmetrized Kullback-Leibler divergence (J-
divergence) and symmetrized Itakura-Saito divergence
(COSH distance) are often used in sound/image appli-
cations, where our fast geodesic dichotomic walk algo-
rithm converging to the unique symmetrized Bregman
centroid comes in handy over former complexadhoc
methods [27], [28], [26], [41], [42]. Section V considers
applicationsof the generic geodesic-walk algorithm to
two cases:

– The symmetrized Kullback-Leibler for probability
mass functions represented asd-dimensional points
lying in the (d− 1)-dimensional simplexSd. These
discrete distributions are handled as multinomials of



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 6

Divergence name Formula GeneratorF (x) for DF Examples of application domains

(squared) Mahalanobis MA(p; q) = (p − q)T A(p− q) F (x) = xT Ax Facility locations
(gen. quadratic loss,A semi-positive definite matrix) (operations research)

Kullback-Leibler KL(p||q) =
∑d

i=1 p(i) log p(i)

q(i) H(x) =
∑

i x(i) log x(i) Statistical analysis

(negative Shannon entropy)

Jensen-Shannon JS(p; q) =
∑d

i=1(p(i) − q(i)) log p(i)

q(i) symmetrized Kullback-Leibler Image retrieval

Itakura-Saito IS(p||q) =
∑d

i=1

(

p(i)

q(i) − log p(i)

q(i) − 1
)

B(x) = −∑i log x(i) Sound processing

(Burg entropy)

COSH COSH(p; q) = 1
2

(

∑d
i=1

(

p(i)

q(i) + q(i)

p(i)

))

− d symmetrized Itakura-Saito Sound retrieval

COSH(p; q) = 1
2

∑d
i=1

(
√

p(i)

q(i) −
√

q(i)

p(i)

)2

TABLE II
BREGMAN OR SYMMETRIZEDBREGMAN DIVERGENCES WITH CORRESPONDING CORE APPLICATION DOMAINS .

the exponential families [25] withd − 1 degrees of
freedom. We instantiate the generic geodesic-walk
algorithm for that setting, show how it compares
favorably with the prior convex optimization work
of Veldhuis [36], [37], [41], and validate formally
experimental remarks of Veldhuis.

– The symmetrized Kullback-Leibler of multivariate
normal distributions. We describe the geodesic-walk
for this particular mixed-typeexponential family
of multivariate normals, and explain the Legendre
mixed-type vector/matrix dual convex conjugates
defining the corresponding Bregman divergences.
This yields a simple, fast and elegant geometric
method compared to the former overly complex
method of Myrvoll and Soong [27] that relies on
solving Riccati matrix equations.

But first, we start in Section II by introducing the dually
flat space construction from an arbitrary convex function. This
section may be skimmed through at first reading since it is
devoting to define the sided Bregman centroids under the
framework of dually flat spaces of information geometry.

II. GEOMETRY UNDERLYING BREGMAN DIVERGENCES:
DUALLY FLAT MANIFOLDS

We concisely review the construction of dually flat mani-
folds from convex functions. This construction lies at the very
heart of information geometry [43]. A full description of this
construction is presented in the comprehensive survey chapter
of Amari [10] (see also [44], [45]). Information geometry [43]
originally emerged from the studies ofinvariant propertiesof
a manifold of probability distributionsD, say the manifold of
univariate normal distributions:

D = {p(x|µ, σ2) =

1

σ
√

2π
exp

(

− (x− µ)2

2σ2

)

| µ ∈ R, σ ∈ R
+
∗ }.

Information geometry relies on differential geometry and in
particular on the sophisticated notion ofaffine connections10

10Connections relate the vector tangent spaces for infinitesimal displace-
ments on the manifold. A riemannian connection (also calledLevi-Civita con-
nection) is such that parallel transport gives an isometry between the tangent
planes. To contrast with, an affine connection uses an affine transformation.

(pioneered by Cartan [46]) whose explanation is beyond the
scope of this paper [43]. We rather describe the three most
fundamental items of dually flat manifolds:

• The fundamental convex duality and the dual coordinate
systems arising from Legendre transformation, and

• The generalized Pythagorean relation, and
• The notion of Bregman projection.

These descriptions will enlighten geometrically the results of
the paper. The point is to show that Bregman divergences
form the canonical distancesof dually flat manifolds arising
when studying family of probability distributions. Those flat
geometries nicely generalize the familiar Euclidean geometry.
Furthermore, these flat geometries reveal a fundamental ge-
ometric duality that is hidden when dealing with the regular
Euclidean geometry.

A. Riemannian metric associated to a convex function

Consider a smooth real-valued convex functionF (θ) de-
fined in an open setX of R

d, where θ denotes a fixed
coordinate system. Notice that the notion of function convexity
depends on the considered coordinate systemθ:

F ((1− λ)θ1 + λθ2) ≤ (1− λ)F (θ1) + λF (θ2).

The second derivatives of the functionF form its Hessian
matrix ∇2F = (gij) that is a positive definite matrix11

depending on its positionθ:

∇2F (θ) = (gij(θ)) = (∂i∂jF (θ)) ≻ 0,

where∂i = ∂
∂θ(i) and θ = (θ(1), ..., θ(d)). For two infinitesi-

mally nearby pointsθ and θ + dθ, define thesquareof their
distance by

ds2 =< dθ, dθ >=
∑

i,j

gij(θ)dθ(i)dθ(j),

where< dθ, dθ > denote the inner product. A manifold with
such an infinitesimal distance is called a Riemannian manifold,
and matrixg = (gij) is called the Riemannian metric. Observe
thatds2 is obtained from the second-order term of the Taylor
expansion ofF (θ + dθ):

11A matrix M is positive definite iff. for allx we havexT Mx > 0. We
write M ≻ 0 to denote the positive-definiteness of the matrixM .
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F : z = F (θ)

(0,−F ∗(η))

θ

z =< θ, η > −F ∗(η′)

Fig. 3. Legendre transformation of a strictly convex function F : The z-
intercept(0,−F ∗(η)) of the tangent hyperplaneHθ : z =< η, θ > −F ∗(η)
of the potential function defines the value of the Legendre transformF ∗ for
the dual coordinateη. Any hyperplane passing through another point of the
potential function and parallel toHθ necessarily intersects thez-axis above
−F ∗(η).

F (θ + dθ) = F (θ) +
∑

i

∂iF (θ)dθ(i) +
1

2

∑

i,j

gij(θ)dθ(i)dθ(j).

A geodesicΓPQ of manifoldD is defined by thestraight line
connecting two pointsP and Q (with respective coordinates
θP = θ(P ) andθQ = θ(Q) in the θ-coordinate system):

ΓPQ = {X(λ), λ ∈ [0, 1] | θX(λ) = (1− λ)θP + λθQ}.

When F (θ) = 1
2

∑

i θ(i)2 is the paraboloid function, we
havegij = δij the Krönecker symbol:

δij =

{

1, i = j,
0, i 6= j.

and the geometry is Euclidean because of the implied squared
distanceds2 =

∑

i dθ(i)2. In order to retrieve the global
geometrical structure of the manifold, we need the geometry
to be independent of the choice of the coordinate system. The
following section reveals that theθ-coordinate system admits
a dualη-coordinate system.

B. Convex duality and dual coordinate systems from Legendre
transformation

Consider the gradient∇F (θ) = η defined by the following
partial derivatives:

η(i) =
∂

∂θ(i)
F (θ).

There is a one-to-one correspondence [10] betweenθ and
η so that we can useη as another coordinate system. The
transformation mappingθ to η (with θ(i) mutually reciprocal
to η(i)) is the Legendre transformation [43] defined for any
convex functionF as follows:

F ∗(η) = max
θ∈X
{< θ, η > −F (θ)}.

Figure 3 visually depicts the Legendre transformation. (The
drawing illustrates why the Legendre transformation is also
sometimes loosely called the “slope transformation.”)

Table III displays two examples of Legendre transformation.
(For the geometry of exponential families in statistics, the
primalθ-coordinate system is called the natural coordinate sys-
tem and the dualη-coordinate system is called the expectation
or moment coordinate system.) The dual convex conjugatesF
and F ∗ are called potential functions (or contrast functions)
and satisfy the following fundamental equality:

F (θ) + F ∗(η)− < θ, η >= 0.

The inverse transformationη → θ is given by the gradient of
F ∗:

θ = ∇F ∗(η),

with θ(i) = ∂
∂η(i) F

∗(θ). That is,θ andη arecoupledand form
a dual coordinate systemof the geometry implied by a pair
of Legendre convex function(F, F ∗). The dual Riemannian
metric associated withF ∗ is

g∗ij =
∂2

∂η(i)∂η(j)
F ∗(η),

and we have the remarkable property that

(g∗ij) = (gij)
−1

That is, Riemannian metric(g∗ij) is the inverse matrix of the
Riemannian metric(gij). It follows from the construction that
these two metrics are geometrically the same [10], as we have
identical infinitesimal lengths:

∑

gijdθ(i)dθ(j) =
∑

g∗ijdη(i)dη(j).

C. Bregman divergences from the dual coordinate systems

A distortion measure, called divergence, between two points
P andQ of the geometric manifold (either indexed byθ or η
coordinate system) is defined as:

DF (P ||Q) = F (θP ) + F ∗(ηQ)− < θP , ηQ >,

with < θP , ηQ >= θT
P ηQ =

∑

θ(i)η(i). We haveD(P ||Q) ≥
0. Changing the role ofP andQ, or θ andη, we get the dual
divergence:

DF∗(P ||Q) = F ∗(ηP ) + F (θQ)− < ηP , θQ >,

so that

DF (P ||Q) = DF∗(Q||P ).

When Q is close toP , we write Q = P + dP and get the
squared Riemannian distance as:

D(P ||Q) = D(P ||P + dP )

=
1

2

∑

gijdθ(i)dθ(j) =
1

2

∑

g∗ijdη(i)dη(j).

In particular, this squared Riemmanian approximation means
that the canonical divergence doesnot satisfy12 the triangle
inequality. Next, we show that we get a remarkable general-
ization of Pythagoras’ theorem.

12Indeed, notice that thesquaredEuclidean distance obtained from the
paraboloid function does not satisfy the triangle inequality.
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Logistic loss/binary relative entropy

F (θ) = log(1 + exp θ) DF (θ||θ′) = log 1+exp θ
1+exp θ′ − (θ − θ′) exp θ′

1+exp θ′ ∇F (θ) = exp θ
1+exp θ

= η

F ∗(η) = η log η + (1 − η) log(1 − η) DF∗(η′||η) = η′ log η′

η
+ (1− η) log 1−η′

1−η
∇F ∗(η) = log η

1−η
= θ

Exponential loss/Unnormalized Shannon entropy

F (θ) = exp θ DF (θ||θ′) = exp θ − exp θ′ − (θ − θ′) exp θ′ ∇F (θ) = exp θ = η

F ∗(η) = η log η − η DF∗(η′||η) = η′ log η′

η
+ η − η′ ∇F ∗(η) = log η = θ

TABLE III
TWO EXAMPLES OFLEGENDRE TRANSFORMATIONS WITH THEIR ASSOCIATED DUAL PARAMETERIZATIONS.

P

Q
R

DF (P ||R)

DF (Q||R)

DF (P ||Q)

Γ∗

PQ

ΓQR

Fig. 4. Illustrating the generalized Pythagorean theorem:For Γ∗
PQ ⊥ ΓQR,

we haveDF (P ||R) = DF (P ||Q) + DF (Q||R).

D. Generalized Pythagoras’ theorem

Consider two curvesθ(t) and θ′(t) parameterized by a
scalart in the θ-coordinate system, and assume w.l.o.g that
these curves intersect att = 0: θ(0) = θ′(0). Using the dual
coordinate systemη, we similarly haveη(0) = η′(0). The
tangent vector of a curveθ(t) is at t is the vector:

dθ

dt
=

(

dθ(1)(t)

dt
, ...,

dθ(n)(t)

dt

)

of derivatives with respect tot. The two curves are said to be
orthogonalat the intersection point when their inner product
vanishes:

<
dθ

dt
,
dθ′

dt
>=

∑

gij
dθ(i)

dt

dθ′
(i)

dt
= 0.

Using the two coordinate systems, this is equivalent to

<
dθ

dt
,
dη′

dt
>= 0.

Dually flat manifolds exhibit a generalized Pythagoras’
theorem:

Theorem 2.1 (Generalized Pythagoras’ theorem [43]):
When the dual geodesicΓ∗

PQ connecting P and Q is
orthogonal to the geodesicΓQR connectingQ and R (see
Figure 4), we have:DF (P ||R) = DF (P ||Q) + DF (Q||R),
or dually DF∗(P ||R) = DF∗(P ||Q) + DF∗(Q||R).

Notice that when we consider the paraboloid convex func-
tion F (θ) =

∑

i(θ
(i))2, the metric(gij) = (g∗ij) is the identity

matrix and therefore the primal/dual geodesics coincide.

P

Γ Γ∗

∂R

D

PR
⊥ = argminQ∈RDF (P ||Q)

PL
⊥ = argminQ∈RDF (Q||P )

Fig. 5. Illustrating the sided Bregman projectionsPR
⊥ andPL

⊥ of a point
P ∈ X for a convex regionR: The dual geodesicΓ∗ connectingP to PR

⊥

and the geodesicΓ connectingP to PL
⊥ are orthogonal to the boundary

∂R.

E. Dual convexity and sided Bregman projections

We say that a regionR is convex (or θ-convex) when
the geodesicconnecting any two pointsP, Q ∈ R is fully
contained inR. That is,

∀P, Q ∈ X , λ ∈ [0, 1], (1− λ)θP + λθQ ∈ R.

Similarly, regionR is said dual convex(or η-convex) when
thedual geodesicconnecting any two pointsP, Q ∈ R is fully
contained inR:

∀P, Q ∈ X , λ ∈ [0, 1], (1 − λ)ηP + ληQ ∈ R.

Let PR
⊥ ∈ R be the point that minimizesDF (P ||Q)

for Q ∈ R, and PL
⊥ ∈ R be the point that minimizes

DF∗(P ||Q) = DF (Q||P ) for Q ∈ R ⊂ X . PL
⊥ is called the

Bregman projection13 andPR
⊥ the dual Bregman projection.

We have the following projection theorem [43], [10] illus-
trated in Figure 5:

Theorem 2.2 ([43], [10]): When R is convex, PR
⊥ is

unique and the dual geodesicΓ∗ connectingP to PR
⊥ is

orthogonal to the boundary ofR. Similarly, whenR is dual
convex,PL

⊥ is unique and the geodesicΓ connectingP to
PL

⊥ is orthogonal to the boundary ofR.

13In information geometry [43],PR
⊥ is called the reverseI-projection

or the dual geodesic projection. Dually,PL
⊥ is called theI-projection or

geodesic projection.
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F. Geometry of symmetrized Bregman divergences

As mentionned in the introduction, the symmetrized Breg-
man divergenceSF is typically not a Bregman divergence14

because the convexity argument may fail as reported in [25].
Therefore the underlying geometry of symmetrized Bregman
divergence does not fit the dually flat manifolds presented
above. However, the symmetrized Bregman divergence can be
interpreted using the framework of Csiszárf -divergence [34]
(also called Ali-Silvey divergence [47]). In particular the
geometry implied by the symmetrized Kullback-Leibler diver-
gence isnot flat anymore [48], [44]. We refer to the work of
Vos [48] for explanations.

We now turn to the study of sided and symmetrized Breg-
man centroids. In the remainder, we consider computing either
in the θ or η coordinate system. It shall be clear that all
following results may be dually interpreted using the coupled
dual coordinate system or the dual Legendre convex conjugate.

III. T HE SIDED BREGMAN CENTROID

A. Right-type centroid

We first prove that the right-type centroidcF
R is independent

of the considered Bregman divergenceDF :

cF (P) = p̄ =
1

n

n
∑

i=1

pi

is always the center of mass. Although this result is well-
known in disguise in information geometry [43], it was again
recently brought up to the attention of the machine learning
community by Banerjee et al. [19] who proved that Lloyd’s
iterativek-means “centroid” clustering algorithm [15] gener-
alizes to the class of Bregman divergences. We state the result
and give the proof for completeness and familiarizing us with
notations.

Theorem 3.1:The right-type sided Bregman centroidcF
R of

a setP of n pointsp1, ...pn, defined as the minimizer for the
average right divergencecF

R = argminc

∑n
i=1

1
nDF (pi||c) =

arg minc AVGF (P||c), is unique, independent of the selected
divergenceDF , and coincides with the center of masscF

R =
cR = p̄ = 1

n

∑n
i=1 pi.

Proof: For a given pointq, the right-type average diver-
gence is defined as

AVGF (P||q) =

n
∑

i=1

1

n
DF (pi||q).

Expanding the termsDF (pi||q)’s using the definition of Breg-
man divergence, we get

AVGF (P||q) =

n
∑

i=1

1

n
(F (pi)− F (q)− < pi − q,∇F (q) >) .

Subtracting and addingF (p̄) to the right-hand side yields

14Besides the class of symmetric quadratic distances that also bears the
name of Mahalanobis distances [25].

AVGF (P , q) =

(

n
∑

i=1

1

n
F (pi)− F (p̄)

)

+

(

F (p̄)− F (q)−
n
∑

i=1

1

n
< pi − q,∇F (q) >

)

,

=

(

n
∑

i=1

1

n
F (pi)− F (p̄)

)

+

(

F (p̄)− F (q)−
〈

n
∑

i=1

1

n
(pi − q),∇F (q)

〉)

,

=

(

1

n

n
∑

i=1

F (pi)− F (p̄)

)

+ DF (p̄||q).

Observe that since
∑n

i=1
1
nF (pi) − F (p̄) is independent

of q, minimizing AVGF (P||q) is equivalent to minimizing
DF (p̄||q). Using the fact that Bregman divergencesDF (p||q)
are non-negative,DF (p||q) ≥ 0, and equal to zeroif and only
if p = q, we conclude that

cF
R = arg min

q
AVGF (P||q) = p̄,

namely the center of mass of the point set.
The minimization remainder, representing the “information

radius” (by characterizing for the relative entropy the notion
introduced by Sibson [38] for probability measures), is fora
point setP ⊂ X :

P = {p1, ..., pn} ⊂ R
d 7→ R

+

JSF (P) =
1

n

n
∑

i=1

F (pi)− F (p̄) ≥ 0,

which bears the name of theF -Jensen difference15 [40]. For
F (x) = −H(x) =

∑d
i=1 x(i) log x(i) the negative Shannon

entropy,JSF is known as the Jensen-Shannon divergence [39]:

JS(P) = H(
1

n

n
∑

i=1

pi)−
n
∑

i=1

1

n
H(pi).

For a multinomial distribution withd outcomes, the Shan-
non entropy can also be interpreted as an index ofdiver-
sity [40] of the distribution. The Jensen differenceJS(p; q) =

H(p+q
2 ) − H(p)+H(q)

2 is therefore a difference of diversity:
Namely, the diversity of the mixed distributionp+q

2 minus the
average diversity of the source distributions. Following Burbea
and Rao [40], the Jensen-Shannon divergence can naturally be
extended to a mixture ofn distributions with a vector ofa
priori weightsw as follows:

JS(P , w) = H(

n
∑

i=1

wipi)

n
∑

i=1

wiH(pi).

15In the paper [40], it is used for strictly concave functionH(x) = −F (x)
on a weight distribution vectorπ: Jπ(p1, ..., pn) = H(

∑n
i=1 πipi) −

∑n
i=1 πiH(pi). Here, we consider uniform weighting distributionπ = u

(with πi = 1
n

).
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It follows from the concavity of Shannon entropyH that
JS(P , w) ≥ 0. This generalized Jensen difference is the same
as the mutual information [40]. See also the related definition
of Jensen-Tsallis divergence [49] for nonextensive Tsallis
entropies. Thus the minimization score of the right-sided
Bregman centroid is the information radius of the population,
a measure of diversity. Note that the information radius is
always bounded. Banerjee et al. [19] called the information
radius theBregman information(and the sided centroids the
best Bregman representatives). It is remarkable to notice that
for the squared generator, the information radius turns outto
be the sample variance1n

∑n
i=1 ||pi−cF

R|| = 1
n

∑n
i=1 ||pi−p̄||.

For the Kullback-Leibler Bregman divergence, the information
radius can be interpreted as the mutual information [19] p.
1711.

The information retrieval criterionJS(P ; Q) is continu-
ously connected with the classical statistical Bayesian criterion
e(P ; Q) as shown by Liese and Vajda [6] using the notion of
Arimoto entropies [50], [51], wheree(P ; Q) denote the error
of the Bayesian identification of an object from the set of two
objects having distributionsP andQ.

B. Dual divergence and left-type centroid

Using the Legendre convex conjugation twice, we get the
following (dual) theorem for the left-sided Bregman centroid:

Theorem 3.2:The left-sided Bregman centroidcF
L , defined

as the minimizer for the average left divergencecF
L =

arg minc∈X AVGF
L(c||P), is the unique pointcF

L ∈ X such
that cF

L = (∇F )−1(p̄′) = (∇F )−1(
∑n

i=1∇F (pi)), where
p̄′ = cF∗

R (PF
′) is the center of mass for the gradient point

setPF
′ = {p′i = ∇F (pi) | pi ∈ P}.

Proof: Using the dual Bregman divergenceDF∗ induced
by the convex conjugateF ∗ of F , we observe that the left-type
centroid

cF
L = arg min

c∈X
AVGF (c||P)

is obtainedequivalentlyby minimizing the dual right-type
centroid problem on the gradient point set:

arg
′

min
c′∈X

AVGF∗(PF
′||c′),

where we recall that p′ = ∇F (p) and PF
′ =

{∇F (p1), ...,∇F (pn)} denote the gradient point set. Thus the
left-type Bregman centroidcF

L is computed as thereciprocal
gradientof the center of mass of the gradient point set

cF∗

R (PF
′) =

1

n

n
∑

i=1

∇F (pi).

That is, we get

cF
L = (∇F )−1(

n
∑

i=1

1

n
∇F (pi)) = (∇F )−1(p̄′).

It follows that the left-type Bregman centroid isunique.
Observe that the duality also proves that the information ra-

dius for the left-type centroid is thesameF -Jensen difference
(Jensen-Shannon divergence for the convex entropic function
F ).

Corollary 3.3: The information radius equality
AVGF (P||cF

R) = AVGF (cF
L ||P) = JSF (P) =

1
n

∑n
i=1 F (pi) − F (p̄) > 0 is the F -Jensen-Shannon

divergence for the uniform weight distribution.

C. Centers and barycenters as generalized means

We show that both sided centroids are generalized means
also called quasi-arithmetic orf -means. We first recall the ba-
sic definition of generalized means16 that generalizes the usual
arithmetic and geometric means. For astrictly continuousand
monotonousfunction f , the generalized mean[52], [12], [8]
of a sequenceV of n real positive numbersV = {v1, ..., vn}
is defined as

Mf (V) = f−1

(

1

n

n
∑

i=1

f(vi)

)

.

The generalized means include the Pythagoras’ arithmetic,
geometric, and harmonic means, obtained respectively for
functions f(x) = x, f(x) = log x and f(x) = 1

x (see
Table IV). Note that sincef is injective, its reciprocal function
f−1 is properly defined. Further, sincef is monotonous, it
is noticed that the generalized mean is necessarily bounded
between theextremal setelementsmini vi andmaxi vi:

min
i∈{1,...,n}

xi ≤Mf (V) ≤ max
i∈{1,...,n}

xi.

In fact, finding these minimum and maximum set elements can
be treated themselves as a special generalizedpower mean,
another generalized mean forf(x) = xp in the limit case
p→ ±∞.

Generalized means can be extended to weighted means
using ana priori normalized weight vectorw (with ∀i, wi ≥ 0
and

∑n
i=1 wi = 1):

Mf (V ; w) = f−1

(

n
∑

i=1

wif(vi)

)

.

By default, we consider the uniform distribution so that
wi = 1

n∀i ∈ {1, ..., n}. These means can also be naturally
extended tod-dimensional positive vectorsP = {p1, ..., pn}
(with ∀i, pi ∈ (R+)d) following the Eq. 10. For example, the
arithmetic mean of a set of positive vector pointsP (obtained
with generatorf(x) = Ix = x, whereI is thed × d identity
matrix) is its center of mass:

Mf (P) =
1

n

d
∑

i=1

pi.

(In fact, choosingf(x) = Qx for any positive-definite matrix
Q yields the center of mass.) In the remainder, we consider
generalized means on vectors although these notions have been
interestingly extended to a broader setting like matrices.See
for example the axiomatic approach of Petz and Temesi [8]
that defines means17 on matrices using the framework of
operator means via operator monotone functions.

16Studied independently in 1930 by Kolmogorov and Nagumo, see[52]. A
more detailed account is given in [53], Chapter 3.

17Following [8], the geometric mean of two positive matricesA andB is
found asA

1
2 (A−

1
2 BA−

1
2 )

1
2 A

1
2 .
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These generalized (vector) means highlight a bijection:
Bregman divergenceDF ↔ ∇F -means.

The one-to-one mapping holds because Bregman generator
functions F are strictly convex and differentiable functions
chosen up to an affine term [25]. This affine invariant property
transposesto generalized means as an offset/scaling invariant
property:

Mf (P) = MAf+b(P),

for any invertible matrixA and vectorb.
Although we have considered centroids for simplicity to

show the relationship between Bregman centroids and gener-
alized means (ie., uniform weight distribution on the inputset
P), our approach generalizes straightforwardly tobarycenters
defined as solutions of minimum average optimization prob-
lems for arbitrary unit weight vectorw (∀i, wi ≥ 0 with
||w|| = 1):

Theorem 3.4:Bregman divergences are in bijection with
generalized means. The right-sided barycenterrF (w) is in-
dependent ofF and computed as the weighted arithmetic
mean on the vector point set, a generalized mean for the
identity function: rF (P ; w) = r(P ; w) = Mx(P ; w) with
Mf (P ; w) = f−1(

∑n
i=1 wif(vi)). The left-sided Bregman

barycenterLF (w) is computed as a generalized mean on the
point set for the gradient function∇F : LF (P) = M∇F (P ; w).
The information radius of sided Bregman barycenters is de-
fined by theJensen divergenceof the mixture of vectors:
BRF (P ; w) =

∑d
i=1 wiF (pi)− F (

∑d
i=1 wipi).

The seminal paper of Burbea and Rao [40] considered
multinomial distributions ind-dimensional real vector spaces
where aJ-divergence measure is by means of an arbitrary
separableentropic function (Eq. 13 of [40]). It is interesting
to note that Rényi [54] also made use of generalized means
for defining entropiesHα of orderα.

A (weighted) mean is saidhomogeneousif and only if we
have for any non-negative scalar factorλ ≥ 0:

Mf (λP ; w) = λMf (P ; w).

It is well-known [53], [12] that a generalized mean is
homogeneous (or linear scale free) if and only if the generator
function f belongs to the family{fα}α (for α ∈ R) of
functions defined by:

fα(x) =

{

x
1−α

2 α 6= 1,
log x α = 1

For α = 1, we get f1(x) = log x. This function is
modulo a constant thef -means related to the Kullback-Leibler
divergence, since we have:

(x log x)′ ≡ax+b log x.

D. Dominance relationships of sided centroid coordinates

Table IV illustrates the bijection between Bregman diver-
gences and generalizedf -means for the Pythagoras’ means
(ie., extend to separable Bregman divergences):

We give a characterization of the coordinatescF
R

(i)
of the

right-type average centroid (center of mass) with respect to
those of the left-type average centroid, thecF

L
(i)

coordinates.
Corollary 3.5: Provided that∇F is convex (e.g., Kullback-

Leibler divergence), we havecF
R

(i) ≥ cF
L

(i)
for all i ∈

{1, ..., d}. Similarly, for concave gradient function (e.g., ex-
ponential loss), we havecF

R
(i) ≤ cF

L
(i)

for all i ∈ {1, ..., d}.
Proof: Assume∇F is convex and apply Jensen’s inequal-

ity to 1
n

∑n
i=1∇F (pi). Consider for simplicity without loss of

generality 1D functions. We have

1

n

n
∑

i=1

∇F (pi) ≤ ∇F (
1

n

n
∑

i=1

pi).

Because(∇F )−1 is a monotonous function, we get

cF
L = (∇F )−1(

1

n

n
∑

i=1

∇F (pi)), (10)

≤ (∇F )−1(∇F (
1

n

n
∑

i=1

pi)), (11)

=
1

n

n
∑

i=1

pi = cF
R. (12)

Thus we conclude thatcF
R

(i) ≥ cF
L

(i) ∀i ∈ {1, ..., d} for
convex∇F (proof performed coordinatewise). For concave
∇F functions (i.e., dual divergences of∇F -convex primal
divergences), we simply reverse the inequality (e.g., the expo-
nential loss dual of the Kullback-Leibler divergence).

Note that Bregman divergencesDF may neither have their
gradient∇F convex nor concave. The bit entropy

F (x) = x log x + (1− x) log(1− x)

yielding the logistic lossDF is such an example. In that case,
we cannota priori order the coordinates ofcF

R andcF
L .

IV. SYMMETRIZED BREGMAN CENTROID

A. Revisiting the optimization problem

For asymmetric Bregman divergences, the symmetrized
Bregman centroid is defined by the following optimization
problem

cF = arg min
c∈X

n
∑

i=1

DF (c||pi) + DF (pi||c)
2

,

= arg min
c∈X

AVG(P ; c).

We simplify this optimization problem to anotherconstant-
size system relying only the right-type and left-type sided
centroids,cF

R and cF
L , respectively. This will prove that the

symmetrized Bregman centroid is uniquely defined as the
zeroing argument of a sided centroid function by generalizing
the approach of Veldhuis [36] that studied thespecial case
of the symmetrized discrete Kullback-Leibler divergence,also
known asJ-divergence.

Lemma 4.1:The symmetrized Bregman centroidcF is
unique and obtained by minimizingminq∈X DF (cF

R||q) +
DF (q||cF

L): cF = argminq∈X DF (cF
R||q) + DF (q||cF

L ).
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Bregman divergenceDF F ←→ f = F ′ f−1 = (F ′)−1 f -mean

(entropy/loss functionF ) (Generalized means)

Squared Euclidean distance 1
2
x2 ←→ x x Arithmetic mean

(half squared loss)
∑n

j=1
1
n

xj

Kullback-Leibler divergence x log x− x ←→ log x exp x Geometric mean

(Ext. neg. Shannon entropy) (
∏n

j=1 xj)
1
n

Itakura-Saito divergence − log x ←→ − 1
x

− 1
x

Harmonic mean

(Burg entropy) n
∑n

j=1
1

xj

TABLE IV
BIJECTION BETWEENBREGMAN DIVERGENCES AND GENERALIZEDf -MEANS EXPLICITED FOR THEPYTHAGORAS’ MEANS.

Proof: We have previously shown that the right-type
average divergence can be rewritten as

AVGF (P||q) =

(

n
∑

i=1

1

n
F (pi)− F (p̄)

)

+ DF (p̄||q).

Using Legendre transformation, we have similarly

AVGF (q||P) = AVGF∗(PF
′||q′),

= (

n
∑

i=1

1

n
F ∗(p′i)− F ∗(p̄′)) + DF∗(p̄′F ||q′F ).

But

DF∗(p̄′F ||q′F ) = DF∗∗(∇F ∗ ◦ ∇F (q)||∇F ∗(

n
∑

i=1

∇F (pi))),

= DF (q||cF
L ),

sinceF ∗∗ = F , ∇F ∗ = ∇F−1 and∇F ∗ ◦ ∇F (q) = q from
Legendre duality. Combining these two sum averages, it comes
that minimizing

arg min
c∈X

1

2
(AVGF (P||q) + AVGF (q||P))

boils down to minimizing

argmin
q∈X

DF (cF
R||q) + DF (q||cF

L),

after removing all terms independent ofq. The solution is
unique since the optimization problem

arg min
q∈X

DF (cF
R||q) + DF (q||cF

L )

can be itself rewritten as

argmin
q∈X

DF∗(∇F (q)||∇F (cF
R)) + DF (q||cF

L),

where∇F (q) is monotonous andDF (·||·) andDF∗(·||·) are
both convex in the first argument (but not necessarily in the
second). Therefore the optimization problem is convex and
admits a unique solution.

c
F

R

c
F

L

q⊥

q

Fig. 7. The symmetrized Bregman centroid necessarily lies on the geodesic
passing through the two sided centroidscF

R andcF
L .

B. Geometric characterization

We now characterize the exact geometric location of the
symmetrized Bregman centroid by introducing a new type of
bisector18 called the mixed-type bisector:

Theorem 4.2:The symmetrized Bregman centroidcF is
uniquely defined as the minimizer ofDF (cF

R||q)+DF (q||cF
L ).

It is defined geometrically ascF = ΓF (cF
R, cF

L)∩MF (cF
R, cF

L),
where ΓF (cF

R, cF
L) = {(∇F )−1((1 − λ)∇F (cF

R) +
λ∇F (cF

L )) | λ ∈ [0, 1]} is the geodesic linkingcF
R to

cF
L , and MF (cF

R, cF
L) is the mixed-type Bregman bisector:

MF (cF
R, cF

L) = {x ∈ X | DF (cF
R||x) = DF (x||cF

L )}.
Proof: First, let us prove by contradiction thatq nec-

essarily belongs to the geodesicΓ(cF
R, cF

L). Assumeq does
not belong to that geodesic and consider the pointq⊥ that is
the Bregman perpendicular projectionof q onto the (convex)
geodesic [25]:

q⊥ = arg min
t∈Γ(cF

R,cF
L)

DF (t||q)

18See [25] for the affine/curved and symmetrized bisectors studied in the
context of Bregman Voronoi diagrams.
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Geometry flat manifold
(coordinate free)

Coordinate systems
(dually coupled)

Pi

CR

CL

θ(θX ⊂ R
d)

η(ηX ⊂ R
d)

X

Computational methods

Pj

θL

θR

ηL

ηR

DF (Pi||Pj)

θi

θj

ηi

ηj
DF (θi||θj)

DF∗(ηi||ηj)

DF (θi||θj) = F (θi) − F (θj)− < θi − θj ,∇F (θj) > DF∗(ηj ||ηi) = F ∗(ηj) − F ∗(ηi)− < ηj − ηi,∇F ∗(ηi) >

DF (θj ||θi) DF∗(ηj ||ηi)

η = ∇F (θ)

θ = ∇F ∗(η)

∇F
∗ = (∇F )−1

Fig. 6. Interpretation of the sided Bregman centroids on thedually flat manifold.

as depicted in Figure 7. UsingBregman Pythagoras’ theorem19

twice (see [25]), we have:

DF (cF
R||q) ≥ DF (cR||q⊥) + DF (q⊥||q)

and

DF (q||cF
L ) ≥ DF (q||q⊥) + DF (q⊥||CF

L ).

Thus, we get

DF (cF
R||q) + DF (q||cF

L ) ≥ DF (cF
R||q⊥) +

DF (q⊥||cF
L ) + (DF (q⊥||q) + DF (q||q⊥)).

But since

DF (q⊥||q) + DF (q||q⊥) > 0,

we reach the contradiction since

DF (cF
R||q⊥) + DF (q⊥||cF

L) < DF (cF
R||q) + DF (q||cF

L ).

Thereforeq necessarily belongs to the geodesicΓ(cF
R, cF

L).
Second, let us show thatq necessarily belongs to the mixed-
type bisector. Assume it is not the case. ThenDF (cF

R||q) 6=
DF (q||cF

L) and suppose without loss of generality that
DF (cF

R||q) > DF (q||cF
L ). Let ∆ = DF (cF

R||q)−DF (q||cF
L) >

0 and l0 = DF (q||cF
L ) so that

DF (cF
R||q) + DF (q||cF

L) = 2l0 + ∆.

19Bregman Pythagoras’ theorem is also called the generalizedPythago-
ras’ theorem, and is stated as follows:DF (p||q) ≥ D(p||PΩ(q)) +
DF (PΩ(q)||q) where PΩ(q) = arg minω∈Ω DF (ω||q) is the Bregman
projection ofq onto a convex setΩ, see [19].

Now moveq on the geodesic towardscF
R by an amount such

that DF (q||cF
L ) ≤ l0 + 1

2∆. Clearly,DF (cF
R||q) < l0 and

DF (cF
R||q) + DF (q||cF

L ) < 2l0 +
1

2
∆

contradicting the fact thatq was not on the mixed-type
bisector.

The equation of the mixed-type bisectorMF (p, q) is neither
linear inx nor in x′ = ∇F (x) (nor in x̃ = (x, x′)) because of
the termF (x), and can thus only be manipulated implicitly
in the remainder:MF (p, q) = {x ∈ X | F (p) − F (q) −
2F (x)− < p, x′ > + < x, x′ > + < x, q′ > − < q, q′ >=
0}. The mixed-type bisector is not necessarily connected (eg.,
extended Kullback-Leibler divergence), and yields the full
spaceX for symmetric Bregman divergences (ie., generalized
quadratic distances).

Using the fact that the symmetrized Bregman centroid
necessarily lies on the geodesic linking the two sided centroids
cF
R andcF

L , we get the following corollary:

Corollary 4.3: The symmetrized Bregman divergence mini-
mization problem is both lower and upper bounded as follows:
JSF (P) ≤ AVGF (P ; cF ) ≤ DF (cF

R||cF
L).

Figure 8 displays the mixed-type bisector, and sided and
symmetrized Bregman centroids for the extended20 Kullback-
Leibler (eKL) and Itakura-Saito (IS) divergences.

20We relax the probability distributions to belong to the positive orthant
R

d
+ (ie., unnormalized probability mass function) instead of the open simplex
Sd.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX2009 14

(a) (b)
cF
R = (0.47, 0.78), cF

L = (0.25, 0.76), AVGF (P||cF
R,L) = 4.29 cF

R = (0.43, 0.11), cF
L = (0.13, 0.07), AVGF (P||cF

R,L) = 22.70

cF = (0.35, 0.77), , AVGF (P; cF ) = 3.96 cF = (0.24, 0.09), AVGF (P; cF ) = 16.91

(c) (d)
cF
R = (0.62, 0.59), cF

L = (0.70, 0.63), AVGF (P||cF
R,L) = 14.71 cF

R = (0.50, 0.52), cF
L = (0.57, 0.57), AVGF (P||cF

R,L) = 3.49

cF = (0.66, 0.61), AVGF (P; cF ) = 14.63 cF = (0.54, 0.55), AVGF (P; cF ) = 3.47

Fig. 8. Bregman centroids for (a) the extended Kullback-Leibler, (b) Itakura-Saito, (c) Logistic , and (d) exponentiallosses (divergences) on the open
squareX =]0, 1[2. Right- and left-sided, and symmetrized centroids are displayed respectively as thick red, blue and purple points. Thegeodesic linking the
right-type centroid to the left-type one is shown in grey, and the mixed-type bisector is displayed in purple.

C. A simple geodesic-walk dichotomic approximation algo-
rithm

The exact geometric characterization of the symmetrized
Bregman centroid provides us a simple method to approxi-
mately converge tocF : Namely, we perform a dichotomic walk
(bisection search) on the geodesic linking the sided centroids
cF
R and cF

L . This dichotomic search yields a novel efficient
algorithm that enables us to solve forarbitrary symmetrized
Bregman centroids, beyond the former Kullback-Leibler case21

of Veldhuis [36]: We initially considerλ ∈ [λm = 0, λM = 1]

21Veldhuis’ method [36] is based on the general purpose Lagrangian
multiplier method with a normalization step. It requires toset up one threshold
for the outer loop and two prescribed thresholds for the inner loops. For
example, Aradilla et al. [41] set the number of steps of the outer loop and
inner loops to ten and five iterations each, respectively. Appendix A provides
a synopsis of Veldhuis’ method.

and repeat the following steps untilλM − λm ≤ ǫ, for ǫ > 0
a prescribedprecision threshold:

• Geodesic walk. Compute interval midpoint
λh = λm+λM

2 and corresponding geodesic point

qh = (∇F )−1((1 − λh)∇F (cF
R) + λh∇F (cF

L)),

• Mixed-type bisector side.Evaluate the sign of

DF (cF
R||qh)−DF (qh||cR

L),

• Dichotomy. Branch on[λh, λM ] if the sign is negative,
or on [λm, λh] otherwise.

Note thatanypoint on the geodesic (including the midpoint
q 1

2
) or on the mixed-type bisector provides an upperbound

AVGF (P ; qh) on the minimization task. Although it was noted
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experimentally by Veldhuis [36] for the Kullback-Leibler di-
vergence that this midpoint provides “experimentally” a good
approximation, let us emphasize that isnot true in general, as
depicted in Figure 8(b) for the Itakura-Saito divergence.

Theorem 4.4:The symmetrized Bregman centroid can be
approximated within a prescribed precision by a simple di-
chotomic walk on the geodesicΓ(cF

R, cF
L) helped by the mixed-

type bisectorMF (cF
R, cF

L). In general, symmetrized Bregman
centroids do not admit closed-form solutions.

In practice, we can control the stopping criterionǫ by taking
the difference

WF (q) = DF (cF
R||q)−DF (q||cR

L)

between two successive iterations since it monotonically de-
creases. The number of iterations can also be theoretically
upper-bounded as a function ofǫ using the maximum value
of the Hessian

hF = max
x∈Γ(cF

R,cF
L)
||HF (x)||2

along the geodesicΓ(cF
R, cF

L) by mimicking the analysis
in [55] (See Lemma 3 of [55]).

V. A PPLICATIONS OF THE DICHOTOMIC GEODESIC-WALK

ALGORITHM

A. Bregman power symmetrized divergences

In sound processing, the Itakura-Saito divergence is often
used as thede factodistortion measure for comparing two
spectra envelopes [29]. That is, a set of discrete all-pole model
coefficients are first extracted so that the distance betweenany
two sound spectra is later measured at the harmonic peaksx(i),
for i ∈ {1, ..., d}— see [29]. It turns out that the Itakura-Saito
divergence ond-dimensional real-valued probability vectors:

IS(p||q) =

d
∑

i=1

(

p(i)

q(i)
− log

p(i)

q(i)
− 1

)

= DF (p||q),

is yet another separable Bregman divergence in disguise ob-
tained for the strictly convex generator function

F (x) = −
d
∑

i=1

log x(i),

where functionF (x) is commonly called the Burg entropy.
Wei and Gibson [29] showed that the least-mean square on
the COSH distance:

COSH(p; q) =
IS(p||q) + IS(q||p)

2
,

the symmetrized Itakura-Saito divergence, yields better22 and
smoother discrete all-pole spectral modeling results thanby
using the Itakura-Saito divergence. Moreover, in some appli-
cations such as in concatenative speech synthesis, the COSH
distance is considered for minimizing artifacts in speech di-
phone synthesis. However, one may also consider alternatively
the symmetrized Kullback-Leibler distance for the same task

22Refer to Fig. 2 and Fig. 3 of [29]. It is said that “...the COSH distance
measure is the best criterion measure...” (dixit)

by choosing different feature extractors [26]. Interestingly,
both the Itakura-Saito and the Kullback-Leibler divergences
can beencapsulatedinto a common parameterized family of
distortions measuresDFα , generated by the following set of
strictly convex and differentiablepower functiongenerators:

Fα : X ⊂ (R+
∗ )d 7→ R

+

Fα(x) =











∑d
i=1 x(i) − log x(i) − 1 α = 0

∑d
i=1

1
α(1−α) (−(x(i))α + α(i) − α + 1) α ∈ (0, 1)

∑d
i=1 x(i) log x(i) − x(i) + 1 α = 1

That family of power generatorsFα (with F0 and F1 the
limits for α → 0 and α → 1) yields the corresponding
family of Bregman power divergencesDFα for real-valued
d-dimensional probability vectorsp andq:

DF0(p||q) =
d
∑

i=1

(

log
q(i)

p(i)
+

p(i)

q(i)
− 1

)

,

=

d
∑

i=1

(

p(i)

q(i)
− log

p(i)

q(i)

)

− d.

DFα(p||q) =

1

α(1− α)

d
∑

i=1

(

(q(i))α − (p(i))α + α(q(i))α−1(p(i) − q(i))
)

,

for α ∈ (0, 1).

DF1(p||q) =

d
∑

i=1

p(i) log
p(i)

q(i)
− p(i) + q(i).

The Itakura-Saito (DF0) and extended23 Kullback-Leibler
(DF1) divergences represent the two extremities of the generic
family that is axiomatically justificated as the notion of pro-
jection in least-mean square problems [35]. This parametric
family of Bregman divergencesDFα are the symmetrized
Bregman-Csiszár power divergence is defined

SFα(p; q) =
DFα(p||q) + DFα(q||p)

2
,

SFα(p; q) =
d
∑

i=1

1

1− α
(q(i)α−1

(p(i) − q(i)) + p(i)α−1
(q(i) − p(i))),

23Defined over the positive orthant of unnormalized probability density
functions. Considering the extended Kullback-Leibler measure makes a huge
difference from the practical point of view since the left-type centroidCF

L
always falls inside the domain. This is not anymore true if weconsider the
probability (d − 1)-dimensional probability simplexSd where the left-type
centroidCF

L falls outsideSd, and need to the projected back ontoSd using
a Kullback-Leibler (Bregman) projection. See Pelletier [56] for details. We
show how to bypass this problem in the next section by considering discrete
distribution as multinomials withd− 1 degrees of freedom.
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for 0 < α < 1. Since our generic symmetrized Bregman
centroid procedure allows to compute the centroid for any
Bregman divergence, we can also obviously apply it for this
important parameterized family. This is all the more important
for distance learning algorithms [57] that seek for the best
distance representative (ie., the bestα value) to perform24

a given task. Note that except for the class of generalized
quadratic distance with generatorsFQ(x) = xT Qx for a
positive definite matrixQ ≻ 0, the symmetrized Bregman
divergences are not of Bregman type [25], [32].

We now consider parameteric family of distributions which
admit a canonical decomposition of their probability density
functions. We start from the non-parametric probability mass
functions that are in fact parametric multinomials in disguise.

Historically, Read and Cressie [4], [6] considered that
family of power generators for studying properties of the
corresponding family of Csiszár’sIFα(p||q) power divergences
of order α ∈ R. Lafferty [58] investigated the Legendra
transform properties of these Bregman power divergences
DFα . Csiszár [35] proved that these divergences arise naturally
from axiomatic characterizations (Eq. (3.7) of [35]). Notice
that Csiszár and Bregman power divergences differ unless
α = 1, the Kullback-Leibler divergence.

B. Revisiting the centroid of symmetrized Kullback-Leibler
divergence

Consider a random variableQ on d events Ω =
{Ω1, ..., Ωd}, called the sample space. Its associated discrete
distribution q (with Pr(Q = Ωi) = q(i)) belongs to the
topologicallyopen(d−1)-dimensional probability simplexSd

of R
d
+:
∑d

i=1 q(i) = 1 and∀i ∈ {1, ..., d} qi > 0. Distributions
q arise often in practice from image intensity histograms25.
To measure the distance between two discrete distributionsp
andq, we use the Kullback-Leibler divergence also known as
relative entropy or discrimination information:

KL(p||q) =
d
∑

i=1

p(i) log
p(i)

q(i)
.

Note that this information measure isunboundedwhenever
there exists an indexi ∈ {1, ..., d} such thatq(i) = 0 andp(i)

is non-zero. But since we assumed that bothp andq belongs
to the open probability simplexSd, this case does not occur
in our setting:

0 ≤ KL(p||q) <∞
with left-hand side equality if and only ifp = q. The
symmetrized KL divergence

1

2
(KL(p||q) + KL(q||p))

is also calledJ-divergence or SKL divergence, for short.
The random variableQ can also be interpreted as a regular

exponential family member [25] in statistics of orderd − 1,

24Being more efficient while keeping accuracy is a key issue of search
engines as mentioned in the introduction.

25To ensure to all bins of the histograms are non-void, we add a small
quantity ǫ to each bin, and normalize to unit. This is the same as considering
the random variableQ + ǫU whereU is a unit random variable.

generalizing the Bernoulli random variable. Namely,Q is a
multinomialrandom variable indexed by a(d−1)-dimensional
parameter vectorθq. These multinomial distributions belong
to the broad class of exponential families [25] in statistics for
which have the important property that

KL(p(θp)||q(θq)) = DF (θq||θp),

see [25]. That is, this property allows us to bypass the fas-
tidious integral computations of Kullback-Leibler divergences
and replace it by a simple gradient derivatives for probability
distributions belonging to thesameexponential families. From
the canonical decomposition

exp(< θ, t(x) > −F (θ) + C(x))

of exponential families [25], it comes out that the natural
parameters associated with the sufficient statisticst(x) are

θ(i) = log
q(i)

q(d)
,

= log
q(i)

1−∑d−1
j=1 q(j)

sinceq(d) = 1 −∑d−1
j=1 q(j). The natural parameter space is

the topologically openRd−1. The log normalizer is

F (θ) = log(1 +

d−1
∑

i=1

exp θ(i)),

called the multivariatelogistic entropy. It follows that the
gradient is

∇F (θ) = η = (η(i))i

with

η(i) =
exp θ(i)

1 +
∑d−1

j=1 exp θ(j)

and yields thedual parameterizationof the expectation
parameters:

η = ∇θF (θ).

The expectation parameters play an important role in practice
for infering the distributions from identically and indepen-
dently distributed observationsx1, ..., xn. Indeed, the maxi-
mum likelihood estimator of exponential families is simply
given by the center of mass of the sufficient statistics computed
on the observations:

η̂ =
1

n

n
∑

i=1

t(xi),

see [59]. Observe in this case that the log normalizer function
is not separable:

F (x) 6=
d−1
∑

i=1

fi(x
(i)).

The functionF andF ∗ are dual convex conjugates obtained
by the Legendre transformation that maps both domains and
functions:

(XF , F )←→ (XF∗, F
∗).
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It follows by construction from the Legendre transformation
that the gradients of theseF andF ∗ functions arereciprocal
to each other:

∇F ∗ = ∇F−1, ∇F = (∇F ∗)−1.

This yields one method to deduce the convex conjugateF ∗

from the gradient∇F as the integral primitive of the inverse
of the gradient ofF :

F ∗ =

∫

(∇F )−1,

We get the inverse(∇F )−1 of the gradient∇F as

(∇F )−1(η) =

(

log
η(i)

1−∑d−1
j=1 η(j)

)

i

,

= θ.

Thus it comes that the Legendre convex conjugate is

F ∗(η) =

(

d−1
∑

i=1

η(i) log η(i)

)

+ (1−
d−1
∑

i=1

η(i)) log(1−
d−1
∑

i=1

η(i)),

thed-ary entropy. Observe that ford = 2, this yields the usual
bit entropy26 function

F ∗(η) = η log η + (1− η) log(1− η).

Further, reinterpretingF ∗ as the log normalizer of an ex-
ponential family distribution, we get the Dirichlet distribution,
which is precisely theconjugate prior[60] of multinomial dis-
tributions used in prior-posterior Bayesian updating estimation
procedures. We summarize the chain of duality as follows:

KL(pF ||qF ) = DF (θq||θp) =

DF∗(ηp||ηq) = KL(qF∗ ||pF∗

),

where pF indicate that the density functionpF follows the
distribution of the exponential familyEF with log normalizer
F .

To convert back from the multinomial(d− 1)-order natural
parametersθ to discreted-bin normalized probability mass
functions (eg., histograms)Λ ∈ Sd, we use the following
mapping:

q(d) =
1

1 +
∑d−1

j=1 (exp θ(j))

and

q(i) =
exp θ(i)

∑d−1
j=1 (1 + exp θ(j))

for all i ∈ {1, ..., d− 1}. This gives avalid (ie., normalized)
distribution q ∈ Sd for any θ ∈ R

d−1. Note that the
coefficients inθ may be either positive or negative depending
on the ratio of the probability of theith event with the last
one,q(d).

26This generalizes the 1D case of Kullback-Leibler’s Bernoulli divergence:
F (x) = log(1 + exp x) is the logistic entropy, F ′(x) = exp x

1+exp x
and

F ′−1 = log x
1−x

, andF ∗(x) = x log x + (1 − x) log(1 − x), is the dual
bit entropy.

As mentioned above, it turns out that the Kullback-Leibler
measure can be computed from the Bregman divergence
associated to the multinomial byswappingarguments:

KL(p||q) = DF (θq||θp),

where the Bregman divergence

DF (θq||θp) = F (θq)− F (θp)− < θq − θp,∇F (θp) >

is defined for the strictly convex (∇2F > 0) and diffentiable
log normalizer

F (θ) = log(1 +

d−1
∑

i=1

exp θ(i)).

The algorithm is summarized in Figure 9. We implemented
the geodesic-walk approximation algorithm for that context,
and observed in practice that the SKL centroid deviates much
(20% or more in information radius) from the “middle” point
of the geodesic (λ = 1

2 ), thus reflecting the asymmetry
of the underlying space. Further, note that our geodesic-
walk algorithmprovesthe empirical remarkof Veldhuis [36]
that “... the assumption that the SKL centroid is a linear
combination of the arithmetic and normalized geometric mean
must be rejected.” Appendix A displays Veldhuis’ method for
reference.

Computing the centroid of a set of image histograms, a cen-
ter robust to outliers, allows one to design novel applications
in information retrieval and image processing. For example,
we can performsimultaneous contrastimage enhancement by
first computing the histogram centroid of agroup of pictures,
and then performing histogram normalization to that same
reference histogram.

The plots of Figure 10 show the Kullback-Leibler sided
and symmetrized centroids on two distributions taken as the
intensity histograms of theapple images shown below.
Observe that the symmetrized centroid distributionmay be
aboveboth source distributions, but this isnever the case in
the natural parameter domain since the two sided centroids are
generalized means, and that the symmetrized centroid belongs
to the geodesic linking these two centroids (ie., a barycenter
mean of the two sided centroids).

Jensen-Shannon divergence (Table II) does not only play
an important role in image processing. In fact, it is also
related to some prominent approaches to supervised classifica-
tion throughout its continuous connection with classification-
calibrated surrogates [61]. More precisely, we have [6]:

JS(p; q) = lim
α→1

DGα(p; q) , (13)

with:

Gα(x) =

(

x1/α + 1
)α − 2α

2(1− α)
, x ∈ R+∗, α ∈ (0, 1) .(14)

Bregman DivergencesDGα are called Arimoto divergences.
Most notably, we have in addition to (13):

G0 = lim
α→0

Gα = max

{

0,
x− 1

2

}

, (15)

G1/2 =
√

1 + x2 −
√

2 . (16)
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INPUT:
n discrete distributions q1, ..., qn of Sd with

∀i ∈ {1, ..., n} qi = (q
(1)
i , ..., q

(d)
i )

CONVERSION:
Probability mass function → multinomial

∀i ∀k θ
(k)
i = log

q
(k)
i

1−
∑

d−1

i=1
q
(j)
i

F (θ) = log(1 +
∑d−1

j=1 exp θ(j))

∇F (θ) =

(

exp θ(i)

1+
∑

d−1

j=1
exp θ(j)

)

i∈{1,...,d−1}

(∇F )−1(η) =

(

log η(i)

1−
∑

d−1

i=1
η(j)

)

i∈{1,...,d−1}

INITIALIZATION:
Arithmetic mean: θF

R = 1
n

∑n
i=1 θi

∇F -mean: θF
L = ∇F−1( 1

n

∑n
i=1 ∇F (θi))

λm = 0, λM = 1

GEODESIC DICHOTOMIC WALK:
While λM − λm > precision do

λ = λm+λM

2
θ = (∇F )−1((1 − λ)∇F (cF

R) + λ∇F (cF
L))

if DF (cF
R||θ) > DF (θ||cF

L) then

CONVERSION:
Multinomial → Probability mass function

∀i q
(d)
i = 1

1+
∑

d−1

j=1
exp θ

(j)
i

∀i ∀k q
(k)
i =

exp θ
(k)
i

1+
∑

d−1

j=1
exp θ

(j)
i

λM = λ

else
λm = λ

Fig. 9. Synopsis of our symmetrized Kullback-Leibler centroid for discrete
distributions. The algorithm first converts the probability mass functions into
multinomials of the exponential families, and then performa dichotomic walk
on the geodesic linking the sided Kullback-Leibler centroids.

Since Bregman divergences are not affected by linear terms,
one can replace (15) and (16) respectively byG′

0 = G0 +
(1 − x)/2 and G′

1/2 = G1/2 − x +
√

2 while guaranteeing
DG0 = DG′

0
andDG1/2

= DG′
1/2

. These two new generators
are remarkable: the former leads to Hinge loss, while the latter
brings Matsushita’s loss [61], twoclassification calibrated
surrogates, functions that carry appealing properties forsuper-
vised learning [62]. Moreover, throughout a duality between
real-valued classification and density estimation which calls to
the Arimoto divergence and convex duality [61], the first one
becomes the popular empirical risk, while the second becomes
Schapire-Singer’s renownZ criterion for boosting pioneered
by Matsushita [61], [63]. Thus, Arimoto divergences make
a continuous connection between Jensen-Shannon divergence
and the empirical risk, throughout classification calibrated
surrogates. Without going in depth, this is interesting as any
Bregman (symmetrized) centroid defines, from the classifi-
cation standpoint, some optimal constant estimation of class
labels for a huge set of proper scoring rules [61].

C. Entropic means of multivariate normal distributions

The probability density function of an arbitaryd-variate
normalN (µ, Σ) with meanµ and variance-covariance matrix

Fig. 10. Centroids of image histograms with respect to the relative entropy.
The symmetrized centroid distribution is above both sourcedistributions for
intensity range[100−145], but this is never the case in the natural parameter
space.

Σ is given byPr(X = x) = p(x; µ, Σ) with:

p(x; µ, Σ) =
1

(2π)
d
2

√
detΣ

exp

(

− (x− µ)T Σ−1(x− µ)

2

)

.

It is certainly the engineer’s favorite family of distributions
that nevertheless becomes intricate to use as dimension goes
beyond 3D. The density function can be rewritten into the
canonical decomposition to yield an exponential family of
orderD = d(d+3)

2 (the mean vector and the positive definite
matrix Σ−1 accounting respectively ford and d(d+1)

2 param-
eters). The sufficient statistics isstackedonto a two-partD-
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dimensional vector

x̃ = (x,−1

2
xxT )

associated with the natural parameter

Θ̃ = (θ, Θ),

= (Σ−1µ,
1

2
Σ−1).

Accordingly, the source parameter are denoted byΛ̃ = (µ, Σ).
The log normalizer specifying the exponential family is

F (Θ̃) =
1

4
Tr(Θ−1θθT )− 1

2
log detΘ +

d

2
log π

(see [44], [43]). To compute the Kullback-Leibler divergence
of two normal distributionsNp = N (µp, Σp) and Nq =
N (µq, Σq), we use the Bregman divergence as follows:

KL(Np||Nq) = DF (Θ̃q||Θ̃p),

= F (Θ̃q)− F (Θ̃p)− < (Θ̃q − Θ̃p),∇F (Θ̃p) > .

The inner product< Θ̃p, Θ̃q > is a compositeinner product
obtained as the sum of inner products of vectors and matrices:

< Θ̃p, Θ̃q >=< Θp, Θq > + < θp, θq > .

For matrices, the inner product< Θp, Θq > is defined by the
trace of the matrix productΘpΘ

T
q :

< Θp, Θq >= Tr(ΘpΘ
T
q ).

In this setting, however, computing the gradient, inverse gra-
dient and finding the Legendre convex conjugates are quite
involved operations. Yoshizawa and Tanabe [44] investigated
in a unifying framework the differential geometries of the
families of probability distributions ofarbitrary multivariate
normals from both the viewpoint of Riemannian geometry
relying on the corresponding Fisher information metric, and
from the viewpoint of Kullback-Leibler information, yielding
the classic torsion-free flat shape geometry with dual affine
connections [43]. Yoshizawa and Tanabe [44] carried out
computations that yield the dual natural/expectation coordinate
systems arising from the canonical decompotion of the density
function p(x; µ, Σ):

H̃ =

(

η = µ
H = −(Σ + µµT )

)

,

⇐⇒ Λ̃ =

(

λ = µ
Λ = Σ

)

,

⇐⇒ Θ̃ =

(

θ = Σ−1µ
Θ = 1

2Σ−1

)

The strictly convex and differentiable dual Bregman genera-
tor functions (ie., potential functions in information geometry)
are

F (Θ̃) =
1

4
Tr(Θ−1θθT )− 1

2
log detΘ +

d

2
log π,

and

F ∗(H̃) = −1

2
log(1 + ηT H−1η)− 1

2
log det(−H)− d

2
log(2πe)

defined respectively both on the topologically open spaceR
d×

Cone−d . Note that removing constant terms does not change the
Bregman divergences. ThẽH ⇔ Θ̃ coordinate transformations
obtained from the Legendre transformation (with(∇F )−1 =
∇F ∗) are given by

H̃ = ∇Θ̃F (Θ̃),

=

(

∇Θ̃F (θ)
∇Θ̃F (Θ)

)

,

=

(

1
2Θ−1θ

− 1
2Θ−1 − 1

4 (Θ−1θ)(Θ−1θ)T

)

,

=

(

µ
−(Σ + µµT )

)

and

Θ̃ = ∇H̃F ∗(H̃),

=

(

∇H̃F ∗(η)
∇H̃F ∗(H)

)

,

=

(

−(H + ηηT )−1η
− 1

2 (H + ηηT )−1

)

,

=

(

Σ−1µ
1
2Σ−1

)

.

These formula simplifies significantly when we restrict our-
selves to diagonal-only variance-covariance matricesΣi,
spherical normalsΣi = σiI, or univariate normalsN (µi, σi).

Computing the symmetrized Kullback-Leibler centroid of a
set of normals (Gaussians) is an essential operation for clus-
tering sets of multivariate normal distributions using center-
basedk-means algorithm [64], [65]. Nock et al. [66] proposed
the framework of mixed Bregman divergences to manipulate
implicitly and efficiently symmetrized Bregman centroids by
pairs of left/right sided centroids. Myrvoll and Soong [27]de-
scribed the use of multivariate normal clustering in automatic
speech recognition. They derived a numerical local algorithm
for computing the multivariate normal centroid by solving
iteratively Riccati matrix equations, initializing the solution
to the so-called “expectation centroid” [42]. Their methodis a
complex and costly since it also involves solving for eigensys-
tems. In comparison, our geometric geodesic dichotomic walk
procedure for computing the entropic centroid, a Bregman
symmetrized centroid, yields an extremely fast and simple
algorithm withguaranteedperformance.

We report on our implementation for bivariate normal
distributions27 (see Figure 11). Observe that the right-type
Kullback-Leibler centroid is a left-type Bregman centroidfor
the log normalizer of the exponential family. Our method
allowed us to verify that the simple generalized∇F -mean
formula

cF
L(P) = (∇F )−1(

n
∑

i=1

1

n
∇F (pi))

27Random multivariate distributions are computed as follows: The mean
coordinatesµ has independent uniform random distribution in[0, 1], and the
variance-covariance matrixΣ is obtained from a Wishart distribution obtained
as Σ = AAT whereA is a triangular matrix with entries sampled from a
standard normal distribution.
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Fig. 11. Entropic sided and symmetrized centroids of
bivariate normal distributions. The two input bivariate normals
are m0 = (0.34029138065736869, 0.26130947813348798),

S0 =

[

0.43668091668767117 −0.42663095837289156
−0.42663095837289161 0.63899446830332574)

]

,

and m1 = (0.95591075380718404, 0.6544489172032838),

S1 =

[

0.79712692342719804 −0.033060250957646142
−0.033060250957646142 0.14609813043797121

]

.

The right, left and symmetrized centroids are respectivelygiven
as mR = (0.29050997932657774, 0.53527112890397821),

SR =

[

0.33728018979019664 −0.13844874409795613
−0.13844874409795613 0.2321103610207193

]

mF
L = (0.64810106723227623, 0.45787919766838603),

SF
L =

[

0.71165072320677747 −0.16933954090511438
−0.16933954090511441 0.43118595400867693

]

,

and mF = (0.42475123207621085, 0.5062178606510539),

S
F =

[

0.50780328118070528 −0.15653432651371618
−0.15653432651371618 0.30824860232457035

]

.

The geodesic half-length bound is found asm 1
2

=

(0.46930552327942698, 0.49657516328618234) with S 1
2

=
[

0.55643330303588234 −0.16081280872294987
−0.1608128087229499 0.33314553526979185

]

. The information

radii are0.83419372149741644 (for the left/right),0.64099815325721565
(symmetrized) and0.6525069280087431 (geodesic point withλ = 1

2
).

coincides with that of the paper [64]. Furthermore, we would
like to stress out that our method extends toarbitrary entropic
centroids of members of the same exponential family.

The Figure 11 plots the entropic right- and left-sided and the
symmetrized centroids in red, blue and green respectively for
a set that consists of two bivariate normals (D = d(d+3)

2 = 5).
The geodesic midpoint interpolant (obtained forλ = 1

2 ) is very
close to the symmetrized centroid, and shown in magenta.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have considered and shown that the two
sided and the symmetrized Bregman centroids are unique. The
right-type centroid is independent of the considered divergence
and always coincide with the center of mass of the point set.
The left-type centroid is a generalized mean which admits
the same Jensen-Shannon information radius as the right-type
centroid. The symmetrized Bregman centroid is geometrically
characterized as the unique intersection point of the geodesic
linking the sided centroids with the mixed-type bisector, and
can be approximated efficiently by a simple dichotomic walk.
The symmetrized centroid can thus also be interpreted as
a generalized mean on the two sided centroids. This work
extends straightforwardly to barycenters [56] as well by con-
sidering a normalized weight distributionw with ||w|| = 1.

Fig. 12. Entropic centroids for a set of ten bivariate normals: The figure
displays the entropic sided and symmetrized centroids (points in 5D shown
on the 2D plane using centered ellipsoids). The right-sidedcentroid, left-
sided centroid and symmetrized centroid are rasterized in red, blue and green,
respectively. The magenta ellipsoid depicts the point on the geodesic linking
the sided centroids forλ = 1

2
: This yields a fast approximation of the

symmetrized centroid.

For example, the left-type sided barycenter for weightw is
defined as

bF
L(P ; w) = arg min

c∈X

1

n

n
∑

i=1

wiDF (c||pi),

is a∇F -mean for weight vectorw, and has information radius
JSF (P ; w). Computing the symmetrized Bregman centroids
of multinomials (ie., the SKL centroid of histograms, see
also [67]) was successfully used for segmenting online music
flows [68]. Choosing the most appropriate distortion measure
to define a “center” and minimize nearest neighbor queries
is an important issue of contents-based multimedia retrieval
systems. Spellman et al. [69] carried out preliminary experi-
ments to emphasize on the fact that the MINMAX KL center
is computationally more efficient than the centroid for nearest
neighbor queries. The Bregman-Csiszár one-parameter family
of α-divergences may further provide a flexible framework for
tuning individually the “appropriate” distance function in each
cluster. Note that since the mixture of exponential families
is not an exponential family (eg., the family of Gaussian
mixtures is not an exponential family), our method does not
allow to compute the centroid of Gaussian mixtures [70].
However, since theproduct of exponential families is an
exponential family, we can compute the entropic centroids of
theses product distributions.

Finally, although Bregman divergences are an important
family of information-theoretic distance measures, thereare
by no means covering the full spectrum of distances. Csiszár
f -divergences [34] which includes the Bhattacharyya distance
is also another major family of parametrized distances that
intersects with the family of Bregman divergences only for
the Kullback-Leibler representative. It would be interested to
study the properties off -divergence centroids and barycenters.
Amari [12] fully characterized the centroids with respect to
α-divergences, a1-parameter family of Csiszár divergences
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parametrized by generatorsfα. Namely, Amari proved [12]
that the α-means which are the generalized means for the
correspondingfα generator minimize the average sum with re-
spect to theα-divergence. Rigazio et al. [71] presented another
work in that direction by approximating the Bhattacharyya
centroid of multivariate normals with diagonal covariancema-
trices using an iterative converging algorithm. The Kullback-
Leibler divergence is the only common divergence member of
Bregman and Csiszár families. Johnson and Sinanovic [72]
presented a symmetric resistor-average distance that does
not belong to the family off -divergences by averaging
two Kullback-Leibler distance using an harmonic mean for
which it would be interesting to compute the centroid too.
Teboulle [65] generalized this Bregmank-means algorithm
in 2007 by considering both hard and softcenter-based
clustering algorithms designed for both Bregman [21] and
Csiszárf -divergences [47], [34].

Although we have considered in this paper Bregman diver-
gences defined on a spaceX ⊂ R

d, Bregman divergences can
also be extended to handle other elements such as Hermitian
matrices [3]. See also the work on functional Bregman di-
vergences [24] that extends vector Bregman divergences to
measure spaces using Fréchet derivatives. Finally, observe
that for any given Bregman divergenceDF (p||q) used on a
finite vector setP , it is always possible to “metrize” this
distortion measure, by first symmetrizing it asSF (p; q) =
DF (p||q)+DF (q||p)

2 , and then finding the largest exponentα > 0
such that the triangle inequality on triplets of vectorspi, pj and
pk of P is satisfied:

Sα
F (pi, pk) ≤ Sα

F (pi, pj) + Sα
F (pj , pk) ∀pi, pj , pk ∈ P .

See [51] for related work on metric divergences.
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and JavaTM applets available at:
http://www.sonycsl.co.jp/person/nielsen/BregmanCentroids/

APPENDIX

Synopsis of Veldhuis’ and the generic geodesic-walk meth-
ods

Figure 13 summarizes the Veldhuis’J-divergence centroid
convex programming method [36].

Veldhuis’ algorithm

INITIALIZATION

Arithmetic mean:
∀k q̄(k) = 1

n

∑n

i=1 q
(k)
i

Geometric normalized mean:

∀k q̆(k) = q̃(k)

∑

d

i=1
q̃i

with ∀k q̃(k) =
(

∏n

i=1 q
(k)
i

)
1
n

α = −1

MAIN LOOP:
For 1 to 10

∀k y(k) = q̄(k)

q̆(k) exp α

∀k x(k) = 1

INNER LOOP 1:
For 1 to 5

∀k x(k) ← x(k) − x(k) log x(k)
−y(k)

log x(k)+1

α← α−
(
∑

d

i=1
x(k)q̆(k) exp α)−1

∑

d

i=1
x(k)q̆(k) exp α

INPUT:
n discrete distributions q1, ..., qn of Sd with

∀ i ∈ {1, ..., n} qi = (q
(1)
i , ..., q

(d)
i ).

INNER LOOP 2:
For 1 to 5

CENTROID:
∀k c(k) = x(k)q̆(k) expα

Fig. 13. Veldhuis’ approximation algorithm for theJ-divergence (sym-
metrized Kullback-Leibler divergence).
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