
Perspective click-and-drag area selections in pictures

Frank Nielsen
Sony Computer Science Laboratories Inc

3-14-13 Higashi Gotanda, 141-0022 Shinagawa-Ku, Tokyo, Japan
Frank.Nielsen@acm.org

Abstract

Pictures of man-made environments often exhibit
many perspectively slanted planar parts like buildings,
road or shop signages. In this paper, we present a novel
user interface for area selections in pictures using per-
spective click and drag operations. At preprocessing
stage, our system first recognizes convex quads from
multi-scale segmentations that it interprets as perspec-
tive rectangles. It then builds a nested quad hierarchy
labeled with quad-to-square homographies and inverse
transformations. During the interactive session, when-
ever a user selects an area by first clicking a corner and
then dragging the diagonally opposite corner, the sys-
tem proposes a perspective sub-rectangle matching the
dragged diagonal defined according to the homographies
of the selected quad of the hierarchy. We illustrate the
perspective click’n’drag prototype with common image
editing operations.

1 Introduction

The click-and-drag rectangular area selection1 is of-
ten used when editing images. Many pictures of man-
made environments display perspectively slanted pla-
nar parts where traditional rectangular area selection
fails to appropriately select regions as depicted in Fig-
ure 1. To overcome this problem, we propose a perspec-
tive dragging user interface. The closest work to our
perspective dragging UI is the graffiti annotation sys-
tem [3] in videos that paints on a planar surface such
as a taxi door or ground plane by tracking manually
input anchor tracks.

The paper is organized as follows: Section 2 de-
scribes the preprocessing stage of our system that
first recognizes convex quads (interpreted as perspec-
tive rectangles) from multi-scale image segmentations,
yielding a set of unorganized quads. Section 3 shows
how to build from the quad soup a nested quad hier-
archy labeled with homographies of quads to the unit
square. Section 4 presents the operation work flow dur-
ing the interactive session: Namely, whenever a user
selects an area by first clicking a corner and then drag-
ging the diagonally opposite corner, the system pro-
poses a perspective sub-rectangle exactly matching the
dragged diagonal defined according to the selected ho-
mographies of the quad hierarchy. Section 5 discusses
on some common image operations using the perspec-
tive click’n’drag UI. Finally, Section 6 discusses on cur-
rent limitations and hint at further extensions of the
system.

1See for example, the on-line demo at http://odyniec.net/

projects/imgareaselect/

Figure 1. Conventional rectangular (left) versus
perspective (right) dragging. Rectangular drag-
ging fails to properly select the NEW word part on
the panel without portion of COURT word because
those two parts are not separable by an horizon-
tal line.

2 Convex quad detection

At the preprocessing stage when loading an image,
the system first detects convex quads. Each convex
quad is interpreted as a potential rectangle imaged by
a pinhole camera under perspective projection. In the
remainder, we omit to mention the convex property
as all considered quads are convex. Those perspective
rectangles can be detected automatically using various
computer vision techniques. For example, one can ap-
ply an edge detection filter followed by a Hough trans-
form, and use additional information like the vanishing
point to infer proper quads, as described in [8]. Simi-
larly, Zhang and He [10] proposed a system for captur-
ing with a digital camera the contents of a white-board
based again on the Hough transform.
Because, we need to detect potentially many quads

in a cluttered environments, we implemented the fol-
lowing detection technique: First, we segment the im-
age using the fast statistical region merging algorithm
described in [6]. Then for each exterior contour of a
segmented region not touching the image boundary,
we first compute the contour diameter [5] [p1p3], and
define the convex quad by choosing point p2 as the far-
thest contour point above [p1p3], and similarly point p4
as the farthest contour point below [p1p3]. We then cal-
culate the Hausdorff distance between the exterior con-
tour to its convex quad approximation, and compare it
with a prescribed threshold. When the contour-quad
approximation distance falls below a threshold (eg., 5%
of diameter) and its area is large enough, we accept the
quad as a perspective rectangle. Since perspective rect-
angles can be nested in pictures2, we run the segmen-
tation algorithm and detect quads at different scales.
More importantly, since segmentation algorithms are
usually not perfect!, we can also use various other im-
age segmentation techniques (like mean-shift [11] or
normalized cuts [9]) to get a super-set of quads. Fi-

2For example, think of books and boxes lying on a table.

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN3-3

29

nally, we add the image rectangular boundary itself to
the convex quad soup Q. We next describe how to
select a proper subset of quads from this unorganized
collection of quads.

3 Nested convex quad hierarchy

We first sort the quads in decreasing order of their
area (see Section A). Then we build a nested quad
hierarchy H greedily by selecting convex quads that
do not partially overlap with the quads already in-
serted in the hierarchy. That is, we test for a quad
Q whether it intersects partially a quad of the hierar-
chy or not (Section A). It follows that we necessar-
ily pick up the rectangular bounding box of the im-
age as the root convex quad of H. When adding a
quad Q to H, we label the node with the projective
transformations of the convex quad to a unit square
U : Let us assume that we are given a set of n con-
vex quads {Qi = (p1,i, p2,i, p3,i, p4,i)}ni=1. We label
the quad corners so that p1,i is the leftmost point of
Qi, and (p1,i, p2,i, p3,i, p4,i) is oriented clockwise (Sec-
tion A). For each quad Qi, we compute the 3 × 3 ho-
mography matrix [4]Hi mappingQi to the unit square,
and its inverse H−1

i . An homography describes the
relationships of a plane imaged by perspective projec-
tion under two different viewpoints. To map a pixel
p = (x, y) belonging to a plane imaged in image I to
the corresponding pixel p′ = (x′, y′) in image I ′, we
use homogeneous coordinates [4]. That is, we add an
extra coordinate w, and lift p = (x, y) to p̃ = (x, y, w)
with w = 1. The vector points with a ˜ notation are
called the homogeneous coordinates of points. The ho-
mography [4] relates corresponding pixels as follows:

p̃′ = Hp̃.

We dehomogeneize p̃′ to find its pixel position p′ (in-
homogeneous coordinates) in I ′ by performing the per-
spective division:

p̃′ = (x′, y′, w′)→ p′ =

(
x′

w′
,
y′

w′

)
.

We use the normalized DLT technique (described
in Section B) for computing a homography given four
point correspondences (here, for the quad corners Qi

matching the unit square U). However, note that we
do not explicitly unwarp the quads onto unit images in
contrast to many Augmented Reality (AR) systems [7].

4 Perspective click’n’drag

4.1 Perspective sub-rectangle selection

The regular area dragging selection consists in click-
ing on a corner p1 and dragging the opposite corner
p3. The diagonal defines an axis-parallel bounding box
Q = (p1, p2, p3, p4). Perspective dragging similarly re-
lies on the fixed corner p1 and dragged corner p3 to
define a perspective sub-rectangle with one diagonal
coinciding with the line segment [p1p3]. We find the
deepest quad Q in the hierarchy H that contains both
points p1 and p3. We then compute by the attached
homography, the points p̃′1 and p̃′3 in the normalizing
unit square using homogeneous coordinates:

Figure 2. The rectangular quads indicate the tra-
ditional area selected by a click-and-drag inter-
action. The perspective quad indicates the per-
spective sub-rectangle selection.

p̃′1 = Hp̃1 =

[
x1

y1
w1

]
, p̃′3 = Hp̃3 =

[
x3

y3
w3

]
,

where p̃1 = (x1, y1, w1 = 1) and p̃3 = (x3, y3, w3 =
1). We obtain the points p′1 and p′3 in inhomogeneous
coordinates as:

p′1 =

(
x′1
w′1

,
y′1
w′1

)
, p̃′3 =

(
x′3
w′3

,
y′3
w′3

)
.

Let Q′ denote the axis-parallel bounding box of p′1
and p′3, we map back this orthogonal quad onto the
image by using the inverse homography H−1:

S ← H−1Q′,

where S denotes the perspective selection quad, and
MQ the quad obtained by mapping by some homog-
raphy M the four points of Q. Figure 2 shows some
quad selection obtained with this method. Note that
since we shall select perspective sub-rectangles, slight
errors in the homography estimation does not impact
significantly the area selection procedure. Since the di-
agonal [p1p3] is a diagonal of the selection quad S, we
described a more efficient implementation.

4.2 An efficient implementation

Without loss generality, let us assume that p1 is lo-
cated to the left of p3 (i.e., x1 ≤ x3, or otherwise rela-
bel those points by swapping them). We need to define
the two remaining corners p2 and p3 of the perspective
sub-rectangle such that the quad S = (p1, p2, p3, p4) is
oriented clockwise. First, we calculate the mapping of
p1 and p3 onto the unit square by the homography H :

p′1 = (x′1, y
′

1)
dehomogeneize←−−−−−−−−− p̃′1 = Hp̃1,

p′3 = (x′3, y
′

3)
dehomogeneize←−−−−−−−−− p̃′3 = Hp̃3,

Second, we define points p′2 and p′4 such the quad
(p′1, p

′

2, p
′

3, p
′

4) forms a rectangular bounding box with
diagonal [p′1p

′

3]. To express those point coordinates, let
us introduce the maxima/minima coordinates:

30

p1

p3

p̃′1 = Hp̃1

p̃′3 = Hp̃3

p̃′2 =

⎡
⎣ x̄′

ȳ′

1

⎤
⎦

p̃′4 =

⎡
⎣ x′

y′

1

⎤
⎦

p2 ← p′2

p4 ← p′4

perspective
dragging

Unit
square

H−1

H−1

H

H
regular
dragging

Figure 3. Perspective dragging: The user selects
p1 and drag p3. The system maps p1 and p3 to
p′1 and p′3 using the predefined convex quad-to-
square homography H . It then makes a rectan-
gular bounding box (p′1, p

′

2, p
′

3, p
′

4) with opposite
corners p′1 and p′3, and maps back p′2 and p′4 to
the image coordinate system using the inverse
square-to-convex quad homography H−1.

x′ = min{x′1, x′3}, x̄′ = max{x′1, x′3},
y′ = min{y′1, y′3}, ȳ′ = max{y′1, y′3}

If y′3 < y′1 (see Figure 3), points p′2 and p′4 have
coordinates:

p′2 = (x̄′, ȳ′), p̃′2 = (x̄′, ȳ′, 1)

p′4 = (x′, y′), p̃′4 = (x′, y′, 1).

Otherwise (i.e., y′3 > y′1), points p
′

2 and p′4 have co-
ordinates:

p′2 = (x′, ȳ′), p̃′2 = (x′, ȳ′, 1)

p′4 = (x̄′, y′), p̃′4 = (x̄′, y′, 1).

We get back the corresponding points p2 and p4 for
the source image by applying the inverse homography
transformation:

p2
dehomogeneize←−−−−−−−−− H−1p̃′2,

p4
dehomogeneize←−−−−−−−−− H−1p̃′4.

Finally, we draw the perspective sub-rectangle area
selection S = (p1, p2, p3, p4). This work flow is illus-
trated in Figure 3. Note that the perspective dragging
operation does not require to perform explicit image
unwarping.

5 Some image editing applications

Perspective dragging is the natural extension of
dragging for perspectively slanted portions in pictures.
Indeed, when the deepest quad containing both points
p1 and p3 is the root quad, we find the usual rect-
angular area selection procedure. This novel UI finds
broad applications for annotating planar areas in so-
cial picture networks, and for performing sub-image
internet queries, etc. We describe below the conve-
nient swapping image editing operation (beyond the
cut/copy/paste/inpaint operations). A swap opera-
tion is the exchange of the contents of two convex

Figure 4. Swap operation between two quads.

quads. Once, the first convex quad Q1 is selected, it
is swapped with another selected quad Q2. We need
an extra buffer image to keep the pixel contents of
Q1 while rewriting it with the pixel contents of Q2.
The backward mapping proceeds by inspecting all pix-
els of Q1. Let H1 denote the homography from Q1

to U (the unit square), and H2 the homography from
Q2 to U . We define the homography H12 from Q1

to Q2 by composition H12 = H1H
−1
2 , and its inverse

H21 = H−1
12 = H2H

−1
1 . Figure 4 displays the result of

a swap operation in a city image.

6 Conclusion and perspectives

We proposed a novel interactive system for perspec-
tive area selection in pictures. At preprocessing stage,
the system detects a super-set of convex quads and
builds a hierarchical nested quad structure with quad-
to-square homography and inverse transformations at-
tached to each node. Then during the interactive ses-
sion, from the 2-point click-and-drag events, we local-
ize the deepest quad in the hierarchy and based on
its attached homography transformations we propose
a corresponding sub-rectangle selection. Perspective
click’n’dragging is useful for image editing and anno-
tations. One limitation of the system is related to the
performance of the perspective rectangle detection al-
gorithms. Ongoing work consists in setting a bench-
mark like BSDS500 did for image segmentation [1].
However, the main difference with [1] to our advantage
is that we allow several recognition algorithms to run at
preprocessing stage to get a quad soup (preprocessing
can be operated remotely on a cloud infrastructure). It
remains for the system to cope with quads touching the
image boundary: In that case we need to estimate the
homography not from its bounding corners but rather
from texture deformation information, for example.
Finally, let us conclude by mentioning two extensions:
First, we would like to compute simultaneously more
robustly the convex quad-to-square homographies by
using the homography manifold constraints [2] (and
also find the best “unit” for the unit square). Second,
we would like to consider other perspective click’n’drag
operations like detecting ellipsoids on the images and
reinterpreted them as perspective balls (click-and-drag
user selection then can be diameter-based, or center-
radius-based, etc.).

References

[1] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and
Jitendra Malik. Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 33(5):898–916, May 2011.

[2] Anders Eriksson and Anton van den Hengel. Opti-
mization on the manifold of multiple homographies.

31

pages 24 –249, 2009.
[3] Dan B. Goldman, Chris Gonterman, Brian Curless,

David Salesin, and Steven M. Seitz. Video object an-
notation, navigation, and composition. In Proceedings
of the 21st annual ACM symposium on User interface
software and technology, UIST ’08, pages 3–12, New
York, NY, USA, 2008. ACM.

[4] R. I. Hartley and A. Zisserman. Multiple View Geome-
try in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

[5] Grégoire Malandain and Jean-Daniel Boissonnat. Com-
puting the diameter of a point set. In Discrete Geom-
etry for Computer Imagery (DGCI), pages 197–208,
2002.

[6] Richard Nock and Frank Nielsen. Statistical region
merging. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(11):1452–1458, 2004.

[7] Michael Rohs and Christof Roduner. Camera phones
with pen input as annotation devices. In Pervasive
workshop on Pervasive Mobile Interaction Devices (PER-
MID), pages 23–26, Munich, Germany, 2005.

[8] David Shaw and Nick Barnes. Perspective rectangle
detection. Proceedings of the Workshop of the Appli-
cation of, pages 1–152, 2006.

[9] Jianbo Shi and Jitendra Malik. Normalized cuts and
image segmentation. In Proceedings of the 1997 Con-
ference on Computer Vision and Pattern Recognition
(CVPR ’97), CVPR ’97, pages 731–737, Washington,
DC, USA, 1997. IEEE Computer Society.

[10] Zhengyou Zhang and Li wei He. Whiteboard scanning
and image enhancement. Digital Signal Processing,
17(2):414–432, 2007.

[11] Huiyu Zhou, Xun Wang, and Gerald Schaefer. Mean
shift and its application in image segmentation. In
Halina Kwasnicka and Lakhmi Jain, editors, Inno-
vations in Intelligent Image Analysis, volume 339 of
Studies in Computational Intelligence, pages 291–312.
Springer Berlin / Heidelberg, 2011.

A Primitive on convex quads

Perspective dragging requires to detect whether a
point falls inside a convex quad Q = (p1, p2, p3, p4),
or not. Let the quad Q be ordered in the clock-
wise order. To determine whether a query point p
(pixel) is inside Q or not, we check that the follow-
ing four triples of points are all ordered clockwise
or not:(p1, p2, p), (p2, p3, p), (p3, p4, p), (p4, p1, p). We
check that that a triple of points (p1, p2, p3) are ori-
ented clockwise by computing the sign of a 2 × 2 de-
terminant:

det =

∣∣∣∣
[

x1 − x3 x2 − x3

y1 − y3 y2 − y3

]∣∣∣∣ (1)

The triple is oriented clockwise if and only if det > 0.
The area of a convex quad (p1, p2, p3, p4) is required

when sorting detected quads for building the hierarchi-
cal quad tree. This area is calculated by summing up
the area of the two triangles (p1, p2, p3) and (p3, p4, p1)
of its partition. The area of a triangle (p1, p2, p3) can
be calculated as one half of the absolute value of the
determinant of the 2× 2 matrix of Eq. 1.
When building the hierarchical tree, we need to test

whether a convex quad q is fully inside another convex

quad q′. This amounts to test whether the 4 vertices
of q is inside q′ using the former predicate.

B Homography via normalized DLT

We recall the most common technique for estimat-
ing a homography from a set of pairs of point corre-
spondences using the Direct Linear Transform (DLT)
algorithm [4]. We assume that we are given at least
n ≥ 4 pairs of point correspondences pi ↔ p′i, and
that the points are in non-degenerate position. That
is, there are no three collinear points. We write the
n correspondence constraints pi ↔ p′i using the 3 × 3
homography matrix:

H =

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

]

with the homogeneous vectors p̃i =

[
x̃i

ỹi
wi

]
and p̃′i =[

x̃′i
ỹ′i
w′i

]
: p̃′i = Hp̃i. Using the inhomogeneous coor-

dinates (with w′i = h31xi + h32yi + h33wi), we get

the following constraints: x′i =
h11xi+h12yi+h13wi

h31xi+h32yi+h33wi

, y′i =
h21xi+h22yi+h23wi

h31xi+h32yi+h33wi

. Setting wi = 1, and rearranging

those equations, we end up with:

x′i(h31xi + h32yi + h33) = h11xi + h12yi + h13,

y′i(h31xi + h32yi + h33) = h21xi + h22yi + h23.

Those equations are linear in the homography coeffi-
cients hi, and can be written compactly by vectorizing
the coefficients as Aih = 0, with Ai =:

[−xi −yi −1 0 0 0 xix
′

i x′iyi x′i
0 0 0 −xi −yi −1 xiy

′

i yiy
′

i y′i

]

and h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]
� =

[h1 h2 h3 h4 h5 h6 h7 h8 h9]�.
By stacking the n two row constraints Ai, we obtain

a matrix A of size 2n × 9. Solving the homogeneous
least square equation Ax = 0 amounts to find the null
space vector of A. Thus we perform the singular value

decomposition (SVD) [4]: A = UDV T =
∑9

i=1 λiuiv
T
i ,

and choose the right eigenvector of V corresponding to
the smallest eigenvalue. Since eigenvalues are usually
sorted in decreasing order in the diagonal matrix D,
that means that we choose the last column vector v9
of V . When λ9 = 0, the system is exactly determined.
When λ9 > 0, the system is over-determined and λ9

is an indicator of the goodness of fit of the solution
h = v9. Finally, we rearrange h = v9 into a 3 × 3
matrix H . In practice, this estimation procedure is
highly unstable numerically. Therefore the points need
to be first normalized to that their centroid defines
the origin, and the diameter is set to

√
2. This is the

normalized DLT procedure [4].

32

