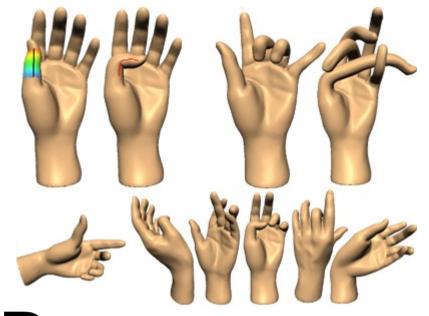
INF555

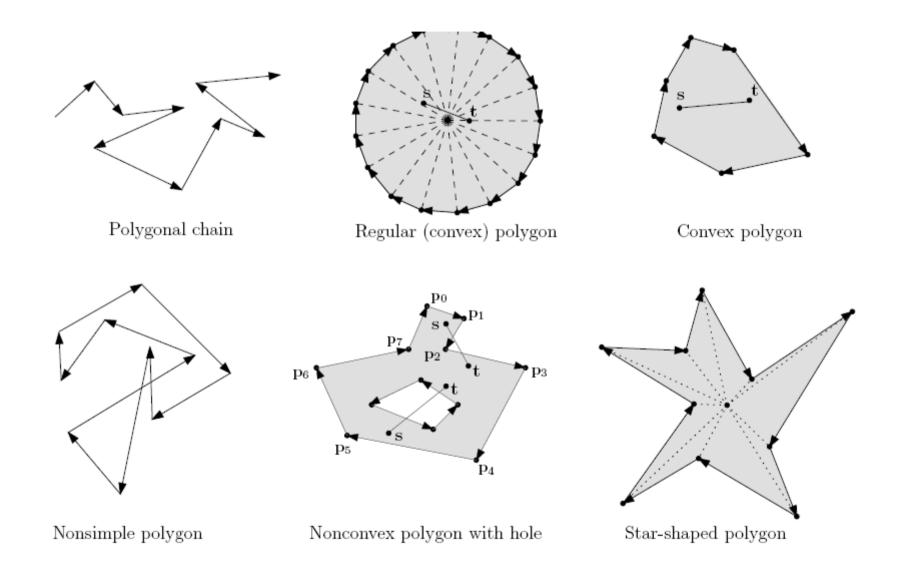


Fundamentals of 3D Lecture 8: Introduction to meshes Les maillages

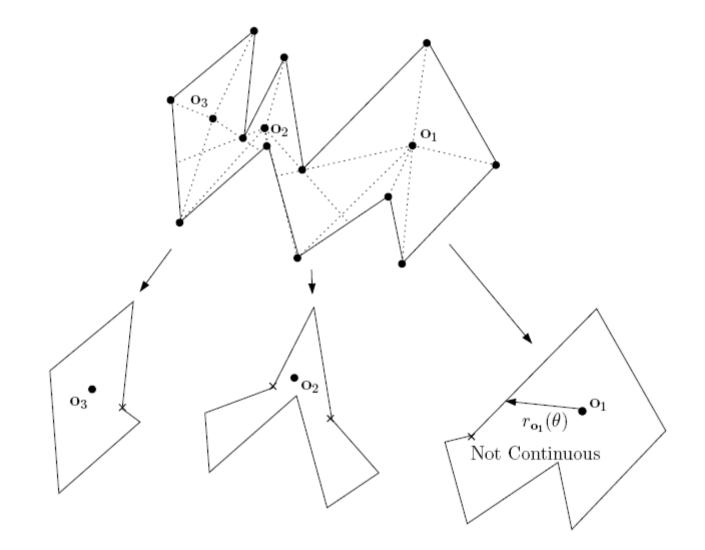
Frank Nielsen nielsen@lix.polytechnique.fr

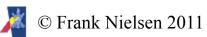
23 Novembre 2011

Polygons

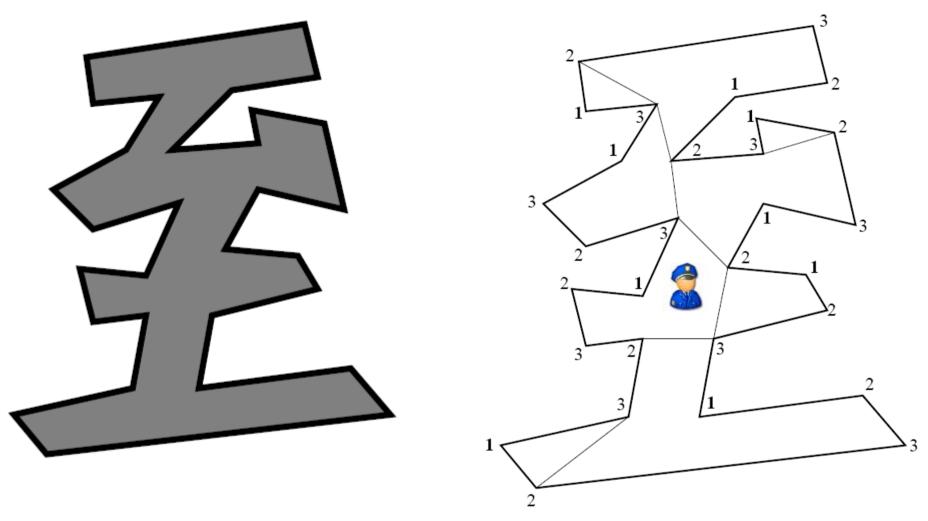


Polygons: Star-shaped decomposition



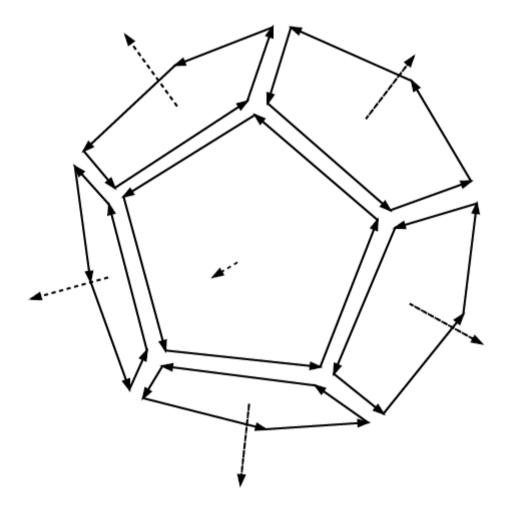


Polygons: Star-shaped decomposition



Art gallery, illumination problems, robots'race, etc. Place guards...

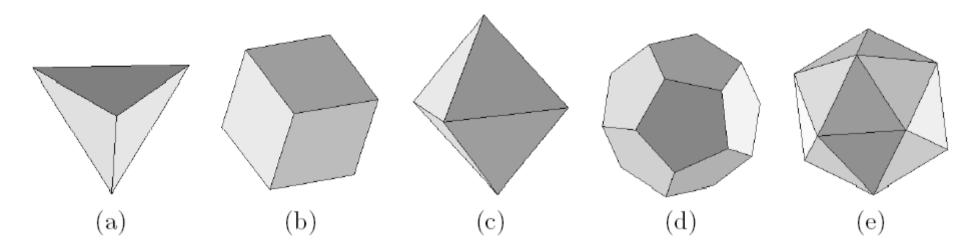
3D : Orienting the fact edges for *outer normals*



Polyhedron, convex polyhedra

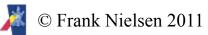


Platonic solids: 5 convex polyhedra

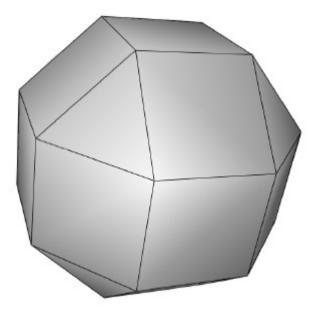


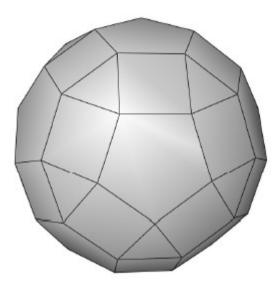
Platonic solid	Schläfli symbol	# Vertices	# Faces	# Edges
Tetrahedron (a)	(3,3)	4	4	6
Hexahedron (b)	(4,3)	8	6	12
Octahedron (c)	(3,4)	6	8	12
Dodecahedron (d)	(5,3)	20	12	30
Icosahedron (e)	(3, 5)	12	20	30

Identical faces (group of symmetry)



Uniform polyhedra





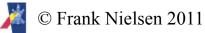
rhombicuboctahedr on

rhombicosidodecahedron

faces=regular polygons (not necessarily the same),
isometry mapping of its vertices (=symmetry)

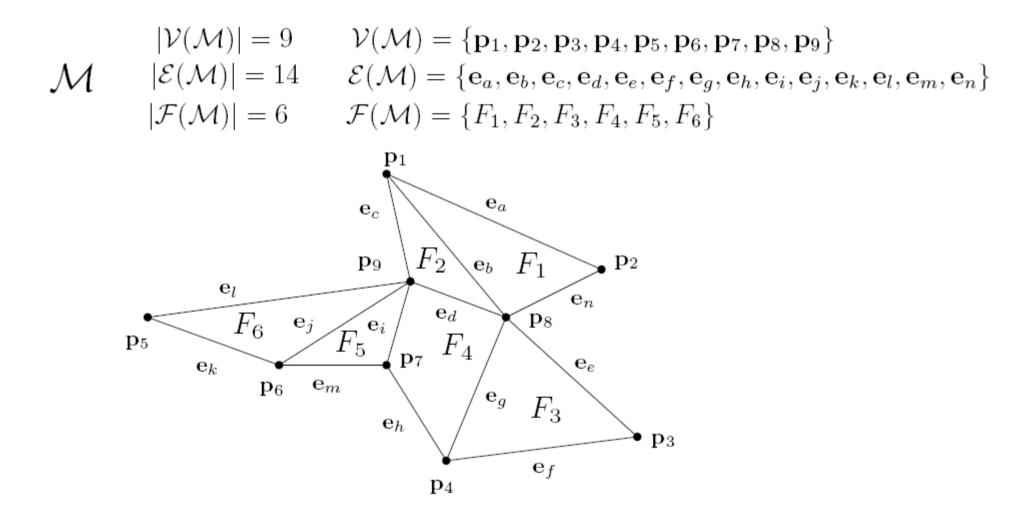
75 uniform finite polyhedra/ if you like origami

Science Museum, London

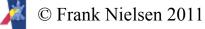


Meshes: Notations

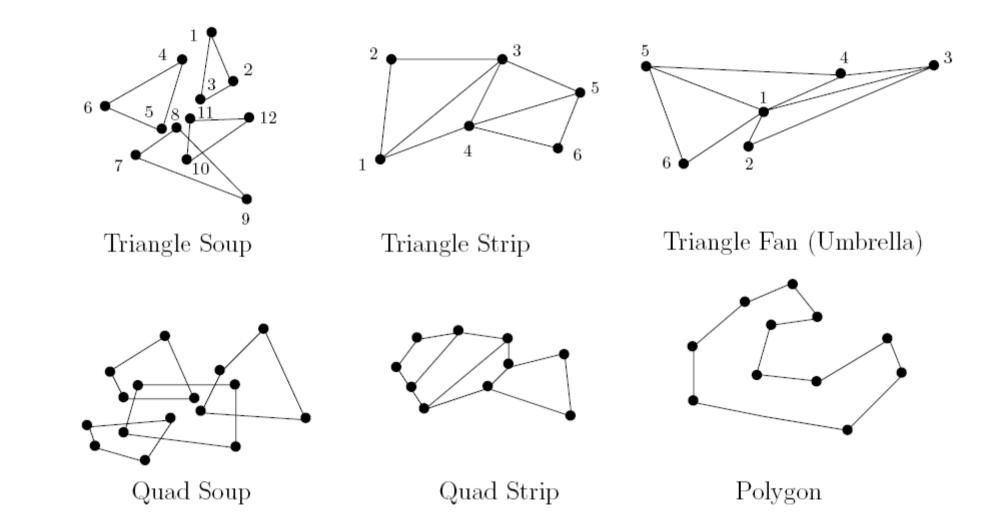
• faces

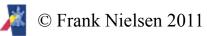


 $E(\mathbf{p}_8) = \{ \mathbf{e}_b, \mathbf{e}_d, \mathbf{e}_g, \mathbf{e}_e, \mathbf{e}_n \} \qquad N(\mathbf{p}_8) = \{ \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_9 \}$

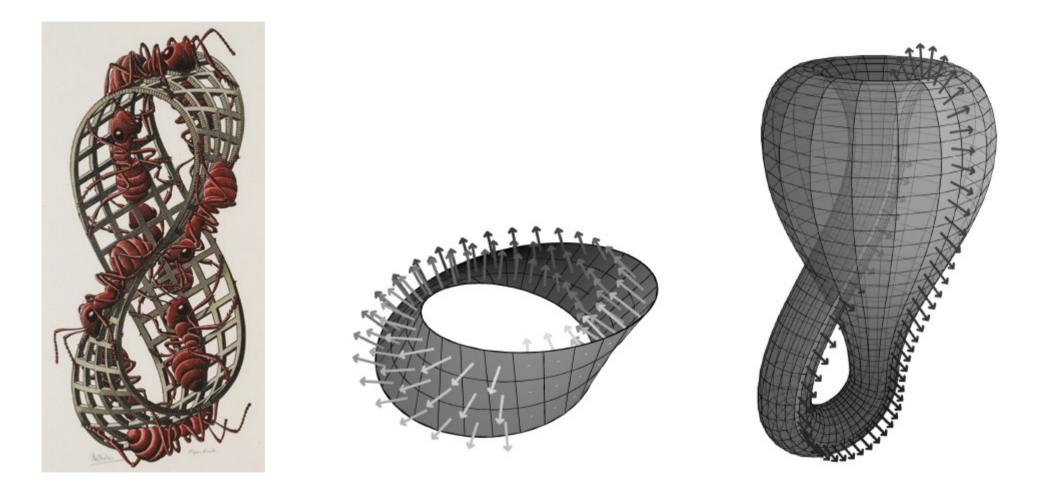


Meshes: Connectivity (= structuring)





Meshes: Non-orientable surfaces

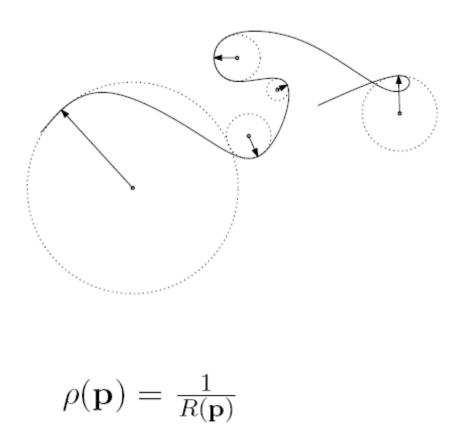


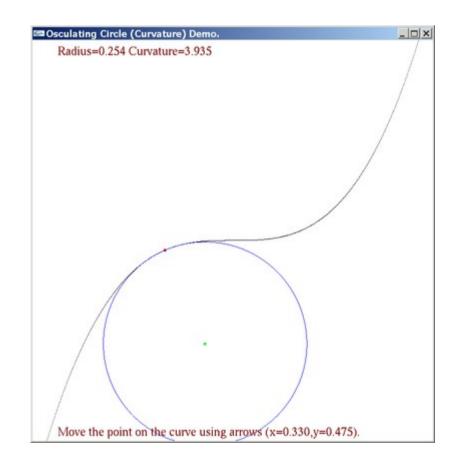
Möbius band

Klein bottle

Textured meshes: Realistic computer graphics

Osculating circles and curvature



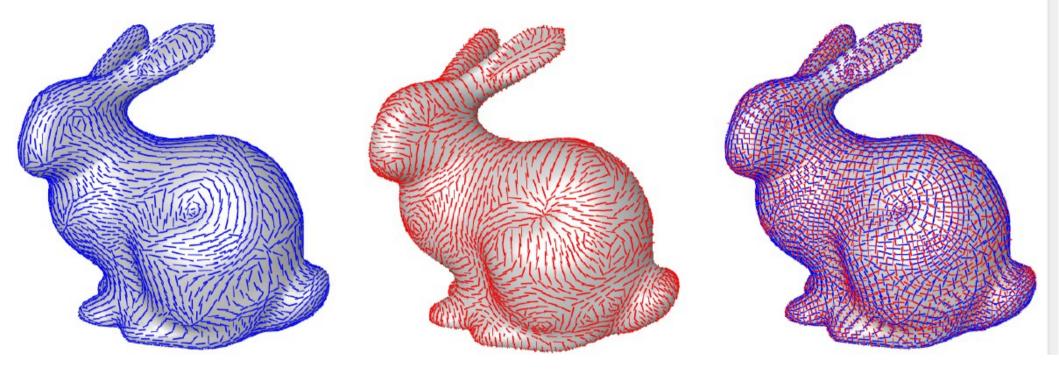


Curvature is the inverse of the radius of the osculating circle.

© Frank Nielsen 2011

Mesh: Sectional curvatures and principal directions

Directions are perpendicular to each other

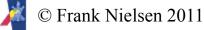


Minimum curvature

Maximum curvature

sectional curvatures.

Intersection of a surface *S* with a plane containing point **p** and its normal: 2D curve that can be analyzed using the osculating circles.



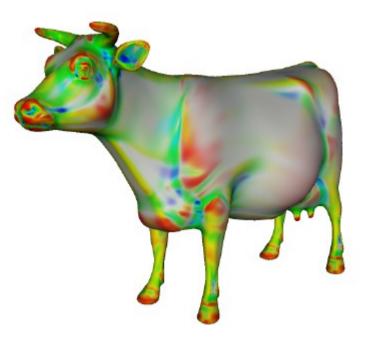
Mesh: Gaussian and mean curvatures

Gaussian curvature:

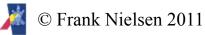
 $\rho_G = \rho_{\max} \times \rho_{\min}$

Mean curvature:

 $\frac{\rho_{\max} + \rho_{\min}}{2}$



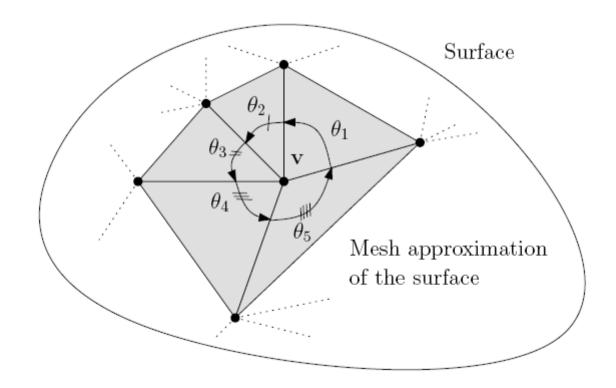
 \rightarrow In Riemannian geometry, many ways to define curvatures (and torsions)

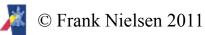


Mesh: Integral Gaussian curvature/angle excess (Deviation from flatness)

$$\int \int_{A \in T(\mathbf{v})} \rho_G(A) dA \simeq -\theta(\mathbf{v}).$$

$$\rho(\mathbf{v}) = 2\pi - \sum_{i=1}^{|T(\mathbf{v})|} \theta_i.$$

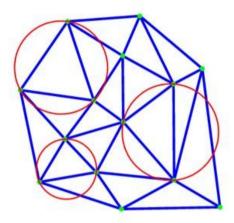




Mesh: Ingredients of topology

Euler's formula is a topological invariant:

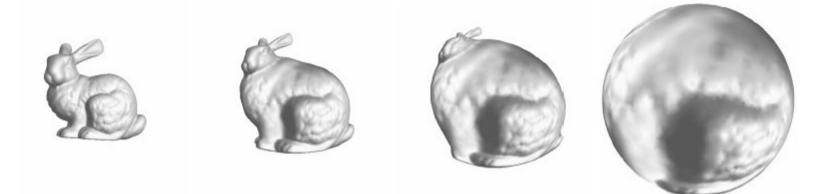
#Vertices - #Edges + #Faces = 2.



Closed triangulated manifold:

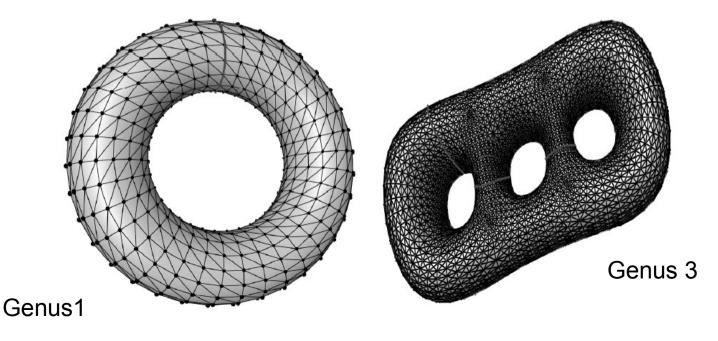
$$\begin{split} \# \mathrm{Vertices} &\leq \frac{2}{3} \# \mathrm{Edges}, \quad \mathrm{and} \quad \# \mathrm{Vertices} \leq 2 \# \mathrm{Faces} - 4. \\ \# \mathrm{Edges} &\leq 3 \# \mathrm{Vertices} - 6, \quad \mathrm{and} \quad \# \mathrm{Edges} \leq 3 \# \mathrm{Faces} - 6. \\ \# \mathrm{Faces} &\leq \frac{2}{3} \# \mathrm{Edges}, \quad \mathrm{and} \quad \# \mathrm{Faces} \leq 2 \# \mathrm{Vertices} - 4. \\ @ \mathrm{Frank \, Nielsen \, 2011} \end{split}$$

Mesh topology: Genus, polyhedra with holes (topology=global property)

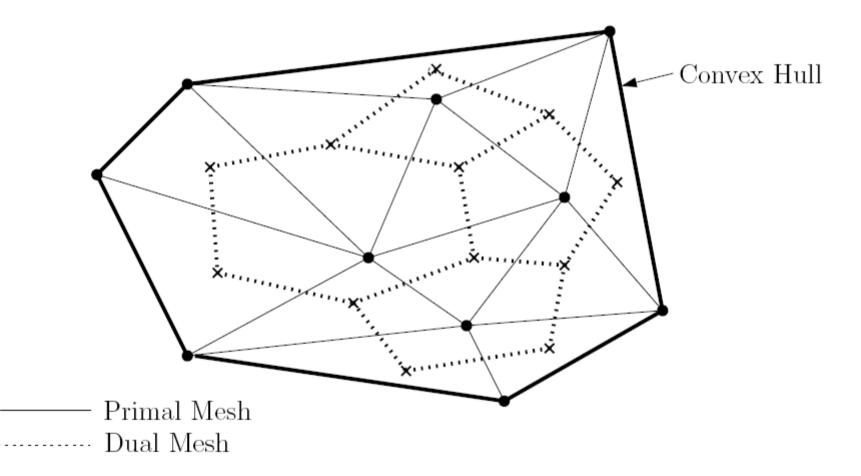


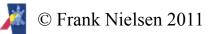
Genus 0

#Vertices - #Edges + #Faces = 2 - 2 #Genus

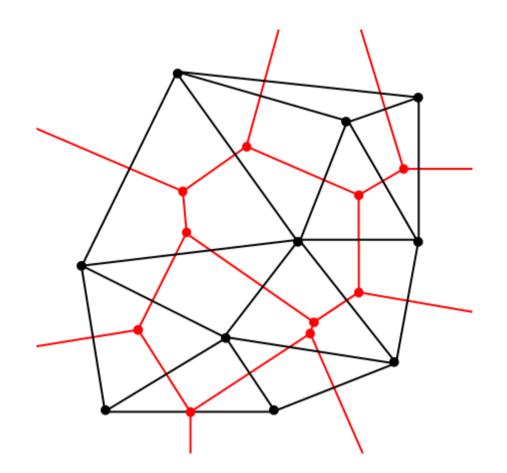


Mesh: Primal/Dual graph representations

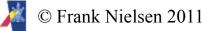




Mesh: Primal/Dual graph representations

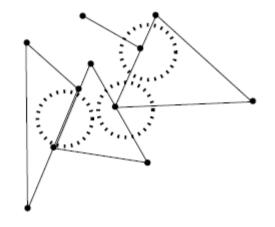


Primal Voronoi/Dual Delaunay triangulation

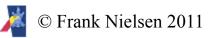


Simplicial complexes: Building blocks (LEGO-type)

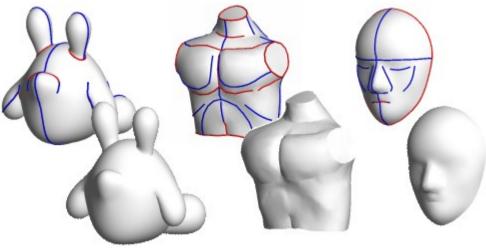


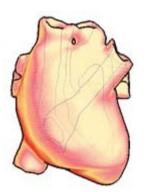


(b) Nonsimplicial complex



Sketching meshes: Pen computing Meshes for the masses. \rightarrow Difficult to design

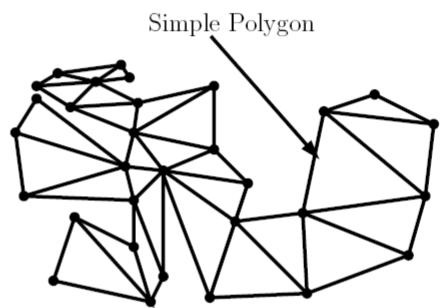


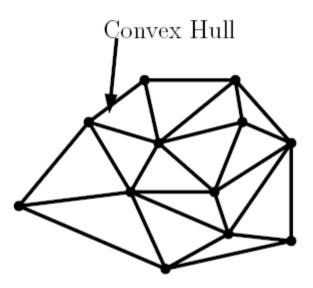


http://www.sonycsl.co.jp/person/nielsen/PT/vteddy/vteddy-desc.html © Frank Nielsen 2011

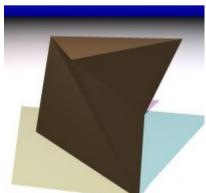
Triangulation meshes:

Always possible in 2D (but difficult)

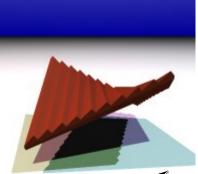




NOT Always possible in 3D!!! (require additional Steiner points)



Untetrahedralizable Objects



SCHONHARDT'S POLYHEDRON CHAZELLE'S POLYHEDRON © Frank Nielsen 2011

Meshes: Procedural modeling/ city(buildings)

L-system (Lindenmayer) process

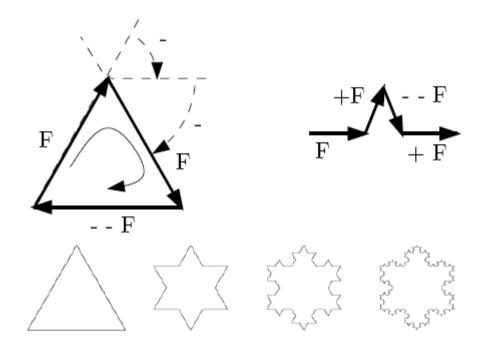
 $\begin{array}{c} \mathrm{START} \longrightarrow A \\ A \longrightarrow B \\ B \longrightarrow AB \end{array}$

Fibonacci's sequences

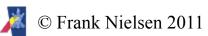
Step	String	String Length
0	А	1
1	В	1
2	AB	2
3	BAB	3
4	ABBAB	5
5	BABABBAB	8
6	ABBABBABABBAB	13
7	BABABBABABBABBABBABBAB	21

Grammar, language, parsing, etc.

L-system (Lindenmayer) process / LOGO



 $\begin{array}{l} \mathrm{START} \longrightarrow F - -F - -F \\ F \longrightarrow F + F - -F + F \end{array}$

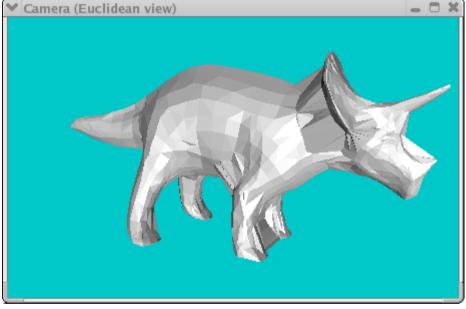


Data-structures for meshes: Indexed face list

(This is the PPM equivalent for 3D objects)

Object Oriented Graphics Library (OOGL) / OFF format

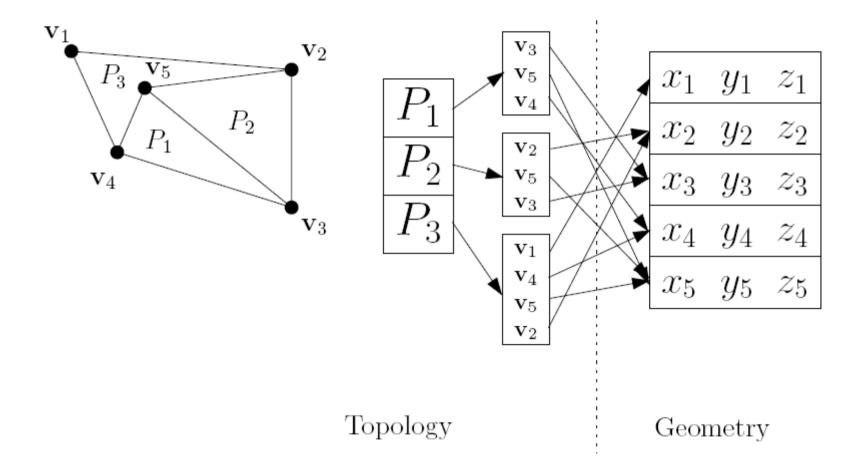
```
1 OFF
2 \# Geomview OOGL format cube.off
3 # #Vertices #Faces #Edge
4 8 6 0
5 # Vertex table
6 - 0.500000 - 0.500000 0.500000
7 0.500000 - 0.500000 0.500000
8 - 0.500000 \ 0.500000 \ 0.500000
9 0.500000 0.500000 0.500000
10 - 0.500000 0.500000 - 0.500000
11 \ 0.500000 \ 0.500000 \ -0.500000
12 - 0.500000 - 0.500000 - 0.500000
13 \ 0.500000 \ -0.500000 \ -0.500000
14 \# Face index table (first vertex index: 0)
15 4 0 1 3 2
16\ 4\ 2\ 3\ 5\ 4
17 4 4 5 7 6
18 4 6 7 1 0
                                        Geomview.org viewer
1941753
20 4 6 0 2 4
```



×

Data-structures for meshes: Indexed face list

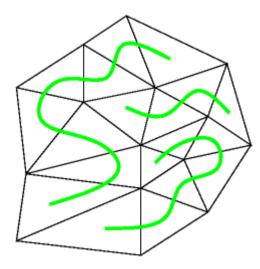
Vertex Table



 \rightarrow If we change vertex coordinates, all faces updated simultaneously !

Optimizing bandwidth: Triangle/quad strips

Compress mesh vertices → Compress <u>mesh connectivity</u>



Bunny with 150 strips

$GREEDYSTRIPMESH(\mathcal{M})$

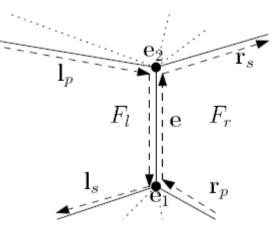
- 1. \triangleleft Overview of the greedy stripping method \triangleright
- 2. while there remains triangles in \mathcal{M}
- 3. do Pick a triangle T of \mathcal{M} that has minimum number of adjacent triangles
 - For each edge \mathbf{e} of T, build the strip passing through T and \mathbf{e}
- 5. Choose the longuest strip and remove its triangles from \mathcal{M}

S FIANK INCISCU 2011

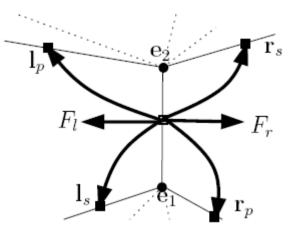
4.

Many data-structures for meshes....

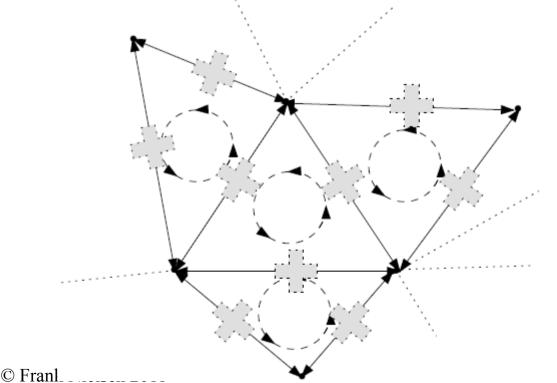
Winged edges Half edges Quad edges

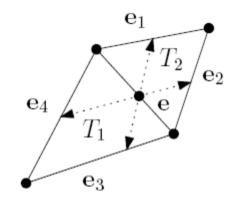


A Winged Edge



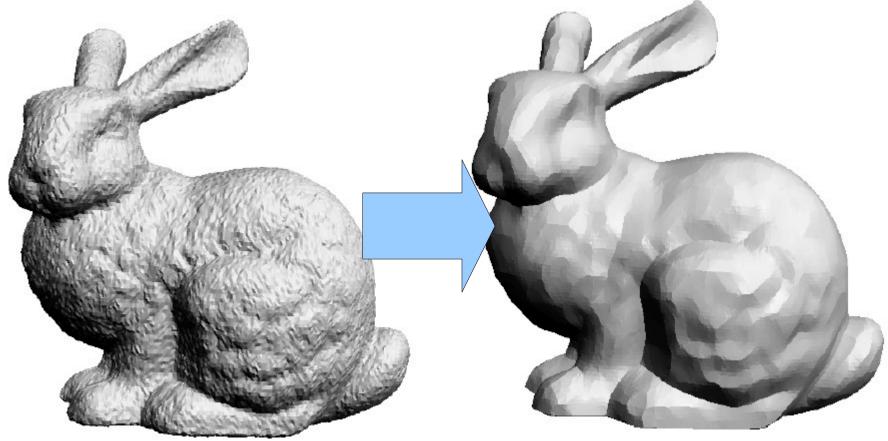
Pointer References



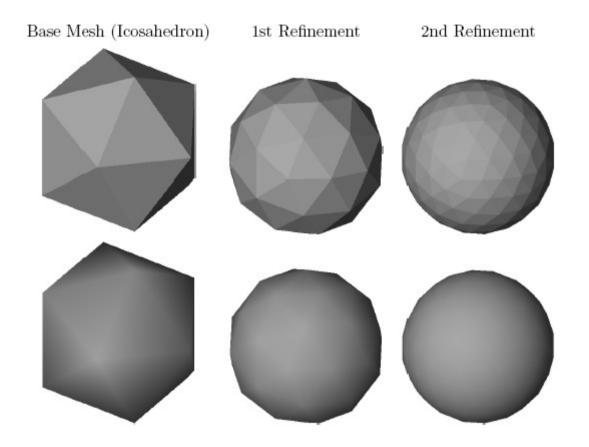


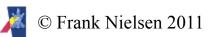
(Discrete) Laplacian smoothing on meshes

$$\mathbf{v} \leftarrow \mathbf{v} + \frac{\lambda}{|N(\mathbf{v})|} \sum_{i=1}^{|N(\mathbf{v})|} (N(\mathbf{v}, i) - \mathbf{v})$$

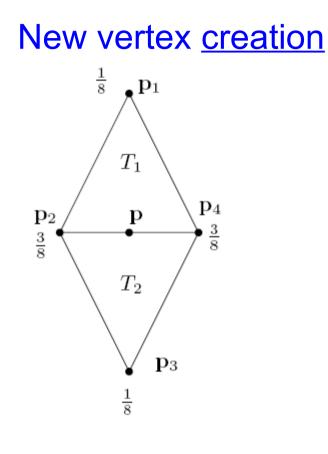


Surface subdivision: Refining → Limit surface is smooth





Surface subdivision: Dr Loop scheme

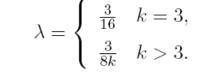


Vertex relocation λ $1-k\lambda$ p

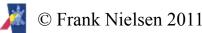
$$\mathbf{p} = (1 - k\lambda)\mathbf{p} + \lambda \sum_{i=1}^{k} N(\mathbf{p}, i)$$

$$\mathbf{p} = \frac{1}{8}\mathbf{p}_1 + \frac{3}{8}\mathbf{p}_2 + \frac{1}{8}\mathbf{p}_3 + \frac{3}{8}\mathbf{p}_4$$

 $\lambda = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$



λ



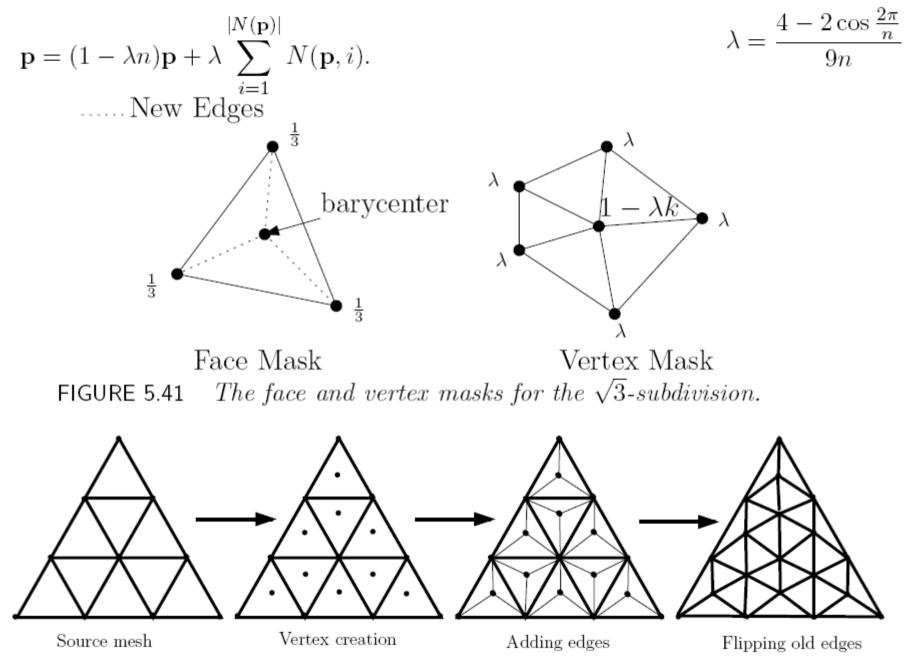
SUBDIVISION (\mathcal{M}, k)

- 1. \triangleleft General subdivision framework \triangleright
- 2. \triangleleft Depend on whether the scheme is approximating/interpolating and primal/dual \triangleright
- 3. for $e \in \mathcal{M}$
- 4. **do** \triangleleft for each edge \triangleright
- 5. Create new vertex using the vertex creation mask
- 6. \triangleleft Could be several for *n*-adic subdivision \triangleright
- 7. for $\mathbf{v} \in \mathcal{M}$
- 8. **do** Move original vertex using the vertex displacement mask
- 9. Reconnect all vertices as a triangular mesh based on \mathcal{M}

Limit position, smoothness properties

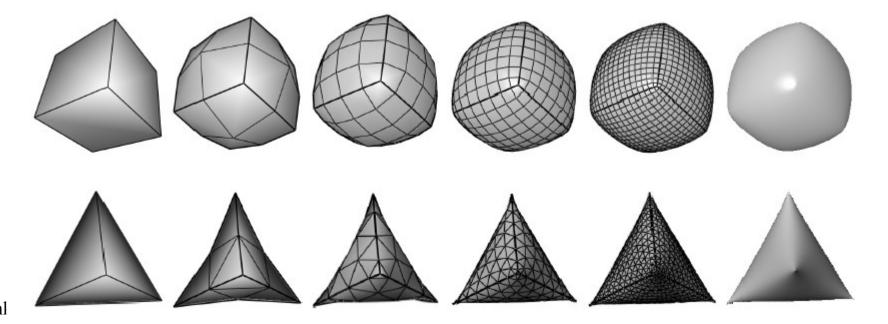
$$\lambda_{\infty} = \frac{1}{\frac{3}{8}\lambda + k}$$

Kobbelt's subdivision (+edge flipping)



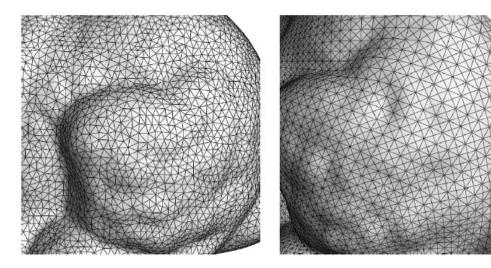
Mesh subdivision: Combinatorial explosion !

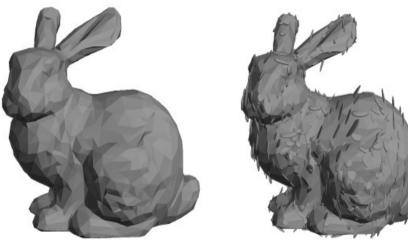
	Cube			Tetrahedron		
Level	#Vertices	#Faces	#Edges	#Vertices	#Faces	#Edges
0	8	6	12	4	4	6
1	26	24	48	10	16	24
2	98	96	192	34	64	96
3	386	384	768	130	256	384
4	1538	1536	3072	514	1024	1536
:	:	:	:	:	:	÷
8	393218	393216	786432	131074	262144	393216



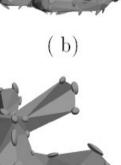
👗 © Franl

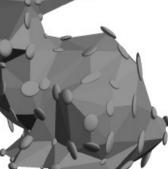
Remeshing Decimating mesh Mesh simplification



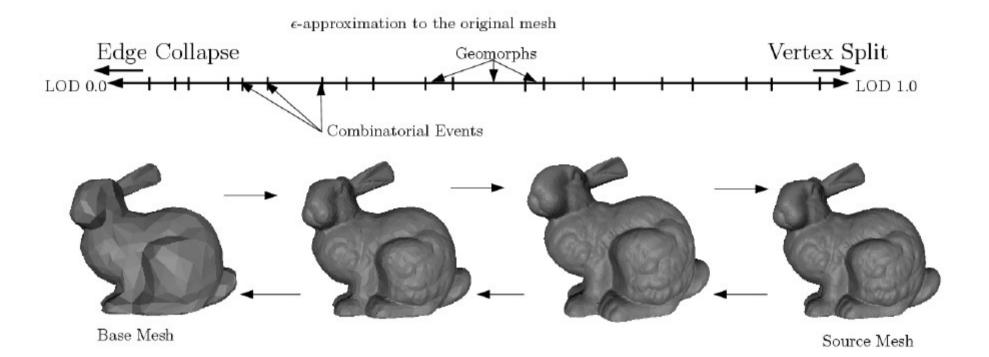


(a)

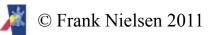




Progressive mesh representations



Level of details/streaming...



Parameterization and texture mapping

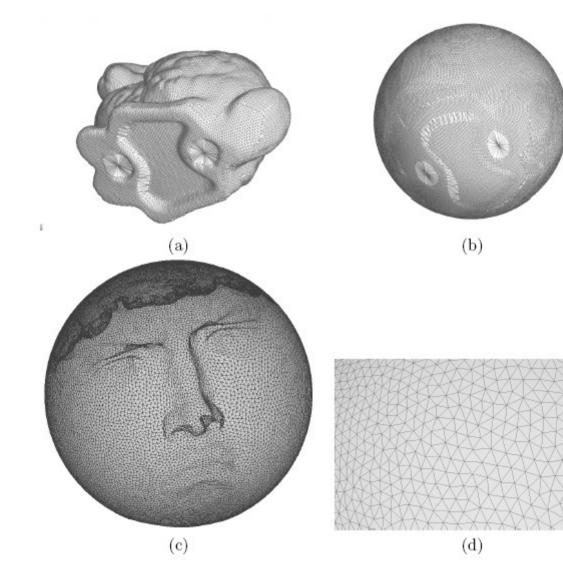
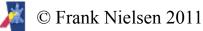
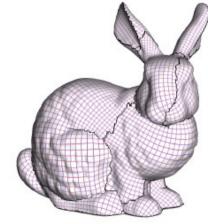


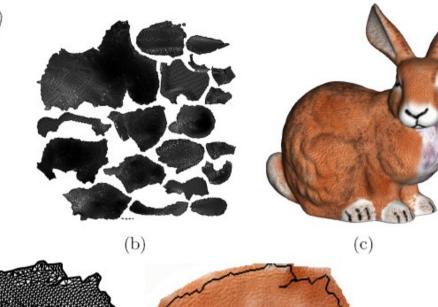
Image texture is 2D



Parameterization and texture mapping



(a)



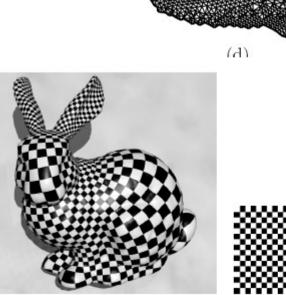
(e)

Atlas

Minimize distortion

Conformal mapping (preserve angles)

.



H- and V- representations of polytopes

Half-spaces representation

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

Vertex representation (convex hull)

$$\bar{P} = \{ x \in \mathbb{R}^n : x = \sum_i \lambda_i x_i, \sum_i \lambda_i = 1, \lambda_i \ge 0 \}$$

