INF555

Fundamentals of 3D Lecture 4: Debriefing: ICP (kD-trees) Homography Graphics pipeline

Frank Nielsen 5 octobre 2011 nielsen@lix.polytechnique.fr

2011Frank Nielsen

ICP: Iterative Closest Point Algorithm at a glance

Start from a not too far initial transformation

Do iterations until the mismatch error goes below a threshold:

- Match the point of the target to the source
- Compute the best transformation from point correspondence

In practice, this is a **very fast** registration method...

A Method for Registration of 3-D Shapes.Paul J *Besl*, Neil D Mckay. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 2. (February 1992)

ICP is a generic method Example for curve registrations:

Curves before registration

ICP: Finding the best rigid transformation

Given point correspondences, find the best rigid transformation.

$$X = \{x_1, \dots, x_n\}$$

Observation/Target

$$P = \{p_1, ..., p_n\}$$

Source/Model

Find (R,t) that minimizes the squared euclidean error:

$$E(R,t) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||x_i - Rp_i - t||^2$$

Align the center of mass of sets:

$$X = \{x_1, ..., x_n\}$$

$$P = \{p_1, ..., p_n\}$$

$$X' = \{x_i - \mu_x\} = \{x'_i\}$$

$$P' = \{p_i - \mu_p\} = \{p'_i\}$$

Finding the rotation matrix:

$$W = \sum_{i=1}^{N_p} x'_i p'^T_i$$
 Cross-covariance matrix:

Compute the singular value decomposition

$$W = U \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \end{bmatrix} V^{T} \qquad \sigma_{1} \ge \sigma_{2} \ge \sigma_{3}$$

Optimal transformation:

$$R = UV^T | \\ t = \mu_x - R\mu_p |$$

Recover the translation once optimal rotation is found

ICP: Monotonicity and convergence

The average squared Euclidean distance decreases **monotonously** (\rightarrow **convergence**)

In fact (stronger result): Each correspondence pair distance decreases

Different point clouds.

Drawback: When does the local minimum is global?

Difficult to handle symmetry

(use texture, etc. to disambiguate)

Best 3D transformation (with quaternions)

With respect to least squares...

SVD take into account reflections...

$$\vec{q}_R = [q_0 q_1 q_2 q_3]^t$$
 $\vec{q}_T = [q_4 q_5 q_6]^t$ $\vec{q} = [\vec{q}_R | \vec{q}_T]^t$

$$\boldsymbol{R} = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 + q_2^2 - q_1^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 + q_3^2 - q_1^2 - q_2^2 \end{bmatrix}$$

Minimize:

$$f(\vec{q}\,) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||\vec{x}_i - \mathbf{R}(\vec{q}_R)\vec{p}_i - \vec{q}_T||^2$$

Best 3D transformation (with quaternions)

$$\vec{\mu}_p = \frac{1}{N_p} \sum_{i=1}^{N_p} \vec{p}_i \text{ and } \vec{\mu}_x = \frac{1}{N_x} \sum_{i=1}^{N_x} \vec{x}_i$$

Cross-covariance matrix:

$$\Sigma_{px} = \frac{1}{N_p} \sum_{i=1}^{N_p} \left[(\vec{p}_i - \vec{\mu}_p) (\vec{x}_i - \vec{\mu}_x)^t \right] = \frac{1}{N_p} \sum_{i=1}^{N_p} \left[\vec{p}_i \vec{x}_i^t \right] - \vec{\mu}_p \vec{\mu}_x^t.$$

$$A_{ij} = (\sum_{px} - \sum_{px}^{T})_{ij}$$
Anti-symmetric matrix
$$\Delta = [A_{23} \quad A_{31} \quad A_{12}]^{T}$$

$$Q(\Sigma_{px}) = \begin{bmatrix} \operatorname{tr}(\Sigma_{px}) & \Delta^T \\ \Delta & \Sigma_{px} + \Sigma_{px}^T - \operatorname{tr}(\Sigma_{px})I_3 \end{bmatrix}$$

Best 3D transformation (with quaternions)

$$Q(\Sigma_{px}) = \begin{bmatrix} \operatorname{tr}(\Sigma_{px}) & \Delta^T \\ \Delta & \Sigma_{px} + \Sigma_{px}^T - \operatorname{tr}(\Sigma_{px})I_3 \end{bmatrix}$$

Take the unit eigenvector corresponding to the maximal eigenvalue:

$$\vec{q_R} = [q_0 \quad q_1 \quad q_2 \quad q_3]^t$$

Get the remaining translation (easy) as:

$$\vec{q}_T = \vec{\mu}_x - \boldsymbol{R}(\vec{q}_R)\vec{\mu}_p.$$

Time complexity of ICP

Linear (fixed dimension) to find least square transformation At each iteration, perform n nearest neighbor queries

Naive implementation: O(I*n*n) => slow for large n

http://meshlab.sourceforge.net/

kD-trees for fast NN queries

```
function kdtree (list of points pointList, int depth)
    if pointList is empty
        return nil:
    else.
        // Select axis based on depth so that axis cycles through all valid values
       var int axis := depth mod k;
        // Sort point list and choose median as pivot element
        select median from pointList;
        // Create node and construct subtrees
       var tree node node;
        node.location := median:
        node.leftChild := kdtree(points in pointList before median, depth+1);
        node.rightChild := kdtree(points in pointList after median, depth+1);
        return node:
                                                         10
```

2

6

10

Nearest neighbor (NN) queries in small dimensions...

http://en.wikipedia.org/wiki/Kd-tree

 $\mathrm{KDTREE}(\mathcal{P}, l)$ \triangleleft Build a 2D kD-tree \triangleright 1 $\triangleleft l$ denote the level. Initially, $l = 0 \triangleright$ 2. 3. if $|\mathcal{P}| = 1$ then return $LEAF(\mathcal{P})$ 4. else if Even(l)5. 6. then \triangleleft Compute the median x-abscissa (vertical split) \triangleright 7. $x_l = \text{MEDIANX}(\mathcal{P})$ $\mathcal{P}_{\text{left}} = \{ \mathbf{p} \in \mathcal{P} \mid x(\mathbf{p}) < x_l \}$ 8. 9. $\mathcal{P}_{\text{right}} = \{ \mathbf{p} \in \mathcal{P} \mid x(\mathbf{p}) > x_l \}$ return $\text{TREE}(x_l, \text{KDTREE}(\mathcal{P}_{\text{left}}, l+1), \text{KDTREE}(\mathcal{P}_{\text{right}}, l+1));$ 10. 11. else \triangleleft Compute the median y-abscissa (horizontal split) \triangleright 12. $y_l = \text{MEDIANY}(\mathcal{P})$ $\mathcal{P}_{\text{bottom}} = \{ \mathbf{p} \in \mathcal{P} \mid y(\mathbf{p}) \le y_l \}$ 13. 14. $\mathcal{P}_{\text{top}} = \{ \mathbf{p} \in \mathcal{P} \mid y(\mathbf{p}) > y_l \}$ return $\text{TREE}(y_l, \text{KDTREE}(\mathcal{P}_{\text{bottom}}, l+1), \text{KDTREE}(\mathcal{P}_{\text{top}}, l+1));$ 15.

Build time: O(dn log n) with O(dn) memory

Query complexity: From O(dlog n) to O(dn) $\odot 2011$ Frank Nielsen

kD-trees for fast NN queries

Kd-Trees are extremely useful data-structures (many applications)

But also: Approximate nearest neighbors http://www.cs.umd.edu/~mount/ANN/

k-d Tree data structure Point Applet -[0, 0] Zoom In/Out Mode [512, 0] Save Clear Load Grid + Data Structures Operations Insert Ŧ Undo Operation Color Legend Help Click to insert a new point. . • -Zoom window Speed Progress 4 Stop Start Pause Run Mode: continuous . Compiled on Oct 28, 2007 -•

۲

-

http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

Homography (also called collineation)

$$\mathbf{r}_{i} = \begin{bmatrix} x_{i}' \\ y_{i}' \\ w_{i}' \end{bmatrix} = \mathbf{H}_{i} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ w_{i} \end{bmatrix}$$
$$\mathbf{I}_{i} = \begin{bmatrix} \frac{x_{i}}{w_{i}} & \frac{y_{i}}{w_{i}} \end{bmatrix}^{T} \qquad \mathbf{r}_{i} = \begin{bmatrix} \frac{x_{i}'}{w_{i}'} & \frac{y_{i}'}{w_{i}'} \end{bmatrix}^{T}$$

Assuming h33 is not zero, set it to 1 and get:

$$x_i' = \frac{h_{11}x_i + h_{12}y_i + h_{13}}{h_{31}x_i + h_{32}y_i + 1},$$

$$y_i' = \frac{h_{21}x_i + h_{22}y_i + h_{23}}{h_{31}x_i + h_{32}y_i + 1}.$$

$$x'_{i} = \frac{h_{11}x_{i} + h_{12}y_{i} + h_{13}}{h_{31}x_{i} + h_{32}y_{i} + 1},$$

$$y_i' = \frac{h_{21}x_i + h_{22}y_i + h_{23}}{h_{31}x_i + h_{32}y_i + 1}$$

$$x'_{i} = h_{11}x_{i} + h_{12}y_{i} + h_{13} - x'_{i}(h_{31}x_{i} + h_{32}y_{i}),$$

$$y'_{i} = h_{21}x_{i} + h_{22}y_{i} + h_{23} - y'_{i}(h_{31}x_{i} + h_{32}y_{i}).$$

From 4 pairs of point correspondences:

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x'_1 & -y_1x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y'_1 & -y_1y'_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x'_2 & -y_2x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y'_2 & -y_2y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x'_3 & -y_3x'_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y'_3 & -y_3y'_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x'_4 & -y_4x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y'_4 & -y_4y'_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ x'_3 \\ y'_3 \\ x'_4 \\ y'_4 \end{bmatrix}$$

$$\underbrace{\mathbf{A}}_{8\times8}\times\underbrace{\mathbf{h}}_{8\times1}=\underbrace{\mathbf{b}}_{8\times1}.$$

$$Ah = b \Longrightarrow h = A^{-1}b.$$

From n pairs of point correspondences:

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x'_1 & -y_1x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y'_1 & -y_1y'_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x'_2 & -y_2x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y'_2 & -y_2y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x'_3 & -y_3x'_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y'_3 & -y_3y'_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x'_4 & -y_4x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y'_4 & -y_4y'_4 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x_nx'_n & -y_nx'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -x_ny'_n & -y_ny'_n \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ x'_3 \\ y'_3 \\ x'_4 \\ y'_4 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix},$$

$$\underbrace{\mathbf{A}}_{2n\times 8} \times \underbrace{\mathbf{h}}_{8\times 1} = \underbrace{\mathbf{b}}_{2n\times 1}$$

 $\mathbf{h} = \mathbf{A}^+ \mathbf{b}$

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

Matching planar surfaces...

Matching perspective pictures acquired from the same nodal point

Homography (Collineation): Projective geometry

FIGURE 3.33 Point/line mappings under a homography **H**. Lines map by the transpose of the inverse of the homography mapping points: \mathbf{H}^{-T} .

Play with duality point/line in projective space It is more stable to select four pairs of lines instead of four points

Graphics pipeline

Graphics pipeline: Scene graph

Graphics pipeline: Projection

Projections are **irreversible** transformations Orthographic projection

$$\mathbf{P}_{O} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e_{1}}^{T} \\ \mathbf{e_{2}}^{T} \\ \mathbf{0}^{T} \\ \mathbf{e_{4}}^{T} \end{bmatrix}$$

Perspective projection: Pinhole camera

Graphics pipeline: Perspective projection

$$\mathbf{P}_P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix}$$

$$\mathbf{P}_{P}\mathbf{p} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{f} \end{bmatrix} \xrightarrow{\text{perspective division}} \begin{bmatrix} \frac{xf}{z} \\ \frac{yf}{z} \\ f \end{bmatrix}$$

© 2011Frank Nielsen

Graphics pipeline: Perspective projection

Graphics pipeline: Perspective truncated pyramid Perspective frustrum

Graphics pipeline: Several viewports

Graphics pipeline (matrix concatenation):

Orthographic projection.

 $\mathbf{p} \longleftarrow \mathbf{M}_V \mathbf{C}_O \mathbf{V} \mathbf{M}_W \mathbf{s}.$

Perspective projection.

 $\mathbf{p} \longleftarrow \mathbf{M}_V \mathbf{C}_P \mathbf{V} \mathbf{M}_W \mathbf{s}.$

Mv: positionning transformation
V: viewing transformation
C: clipping transformation
Mv: viewing transformation

OpenGL in Java: Processing


```
public void display(GLAutoDrawable gLDrawable) {
    final GL gl = gLDrawable.getGL();
    gl.glClear(GL.GL COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT);
    gl.glLoadIdentity();
    gl.glTranslatef(-1.5f, 0.0f, -6.0f);
    gl.glBegin(GL.GL TRIANGLES); // Drawing Using Triangles
    gl.glVertex3f(0.0f, 1.0f, 0.0f); // Top
    gl.glVertex3f(-1.0f, -1.0f, 0.0f); // Bottom Left
    gl.glVertex3f(1.0f, -1.0f, 0.0f); // Bottom Right
    gl.glEnd();
                 // Finished Drawing The Triangle
    gl.glTranslatef(3.0f, 0.0f, 0.0f);
    gl.glBegin(GL.GL QUADS); // Draw A Quad
    gl.glVertex3f(-1.0f, 1.0f, 0.0f); // Top Left
    gl.glVertex3f(1.0f, 1.0f, 0.0f); // Top Rigl
                                                                        gl.glVertex3f(1.0f, -1.0f, 0.0f); // Bottom
    gl.glVertex3f(-1.0f, -1.0f, 0.0f); // Bottom
    gl.glEnd();
                           // Done Drawing
    gl.glFlush();
 }
```


Processing: 3D color shapes

GLU (Utility) GLUT (Utility Toolkit, including user interfaces.)

http://www.cs.umd.edu/~meesh/kmconroy/JOGLTutorial/ © 2011Frank Nielsen