INF555

Fundamentals of 3D Lecture 9: Laplacian Image pyramids Expectation-Maximization

+ Overview of computational photography Frank Nielsen nielsen@lix.polytechnique.fr

Interpreting Fourier spectra

Stripes of the hat

Stripes of the hair

Fourier log power spectrum

Used also in graphics for texturing (mipmapping)

Gaussian. Blur and sample, and then Laplacian. Interpolate and estimate

$\mathbf{G}_1 = \mathbf{I}$	
$\mathbf{G}_i = \mathrm{EXPAND}(\mathbf{G}_{i+1}) + \mathbf{L}_i.$	Reconstruction
$\mathbf{L}_i = \mathbf{G}_i - \mathrm{EXPAND}(\mathbf{G}_{i+1})$	Residual
$\mathbf{L}_1 = \mathbf{G}_1 - \mathrm{EXPAND}(\mathbf{G}_2)$	$\mathbf{G}_4 = \mathbf{L}_4 + \mathrm{EXPAND}(\mathbf{G}_5)$
$\mathbf{L}_2 = \mathbf{G}_2 - \mathrm{EXPAND}(\mathbf{G}_3)$	$\mathbf{G}_3 = \mathbf{L}_3 + \mathrm{EXPAND}(\mathbf{G}_4)$
$\mathbf{L}_3 = \mathbf{G}_3 - \mathrm{EXPAND}(\mathbf{G}_4)$	$\mathbf{G}_2 = \mathbf{L}_2 + \mathrm{EXPAND}(\mathbf{G}_3)$
$\mathbf{L}_4 = \mathbf{G}_4$	$\mathbf{G}_1 = \mathbf{L}_1 + \mathrm{EXPAND}(\mathbf{G}_2) = \mathbf{I}$

Precursors of wavelets

Blurring is efficient for sampling as it removes high-frequency components. (sample at fewer positions.)

Gaussian kernel and resampling at a q uarter of the image size. Blurring and resampling is computed using a single discrete kernel.

- •Central limit theorem: (mean of random variables approach Gaussian distribution)
- Infinitely differentiable functions
- •Fourier of Gaussians are Gaussians
- •Human brain has neuronal regions doing Gaussian filtering

FIGURE 4.46 Gaussian and Laplacian image pyramids: the original image I can be reconstructed without any error from the smallest image of the Gaussian pyramid (\mathbf{G}_5) and the Laplacian image pyramid $\mathcal{L} = {\mathbf{L}_i}_i$.

Multiband blending.

Blending two overlapping images using their pyramids

- Compute Laplacian pyramids L(I1) and L(I2) of I1 and I2.
- Generate a hybrid Laplacian pyramid Lr by creating for each image of the pyramid a 50%/50% mix of images, obtained by selecting the leftmost half of L (I1) with the rightmost half of L (I2).
- Reconstruct blended images from the Laplacian pyramid Lr.

Left pyramid

blend

Right pyramid

Using a region mask

Nowadays, we better use **Poisson image editing** and gradient/image reconstruction

Expectation-Maximization (EM)

Generative statistical models

$$\mathbf{x}; \boldsymbol{ heta}_m \sim \mathcal{N}\left(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m
ight)$$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-d/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

$$f(Y = y|\theta) = \sum_{j=1}^{k} \alpha_j \frac{1}{\sqrt{(2\pi)^d |\Sigma_j|}} \exp\{-\frac{1}{2}(y - \mu_j)^T \Sigma_j^{-1}(y - \mu_j)\}$$

http://www.neurosci.aist.go.jp/~akaho/MixtureEM.html

Indicator variables z

Multinomially distributed π_m

$$p(\mathbf{x}_{i}|z_{im} = 1; \theta) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_{m}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu}_{m})^{T} \boldsymbol{\Sigma}_{m}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{m})\right\}$$

Generating samples from Gaussian Mixture Models (GMMs)

- 1: for i = 1 to N do
- 2: $m \leftarrow \text{index of one of the } M \text{ models randomly selected}$ according to the prior probability vector π
- 3: Randomly generate \mathbf{x}_i according to the distribution $\mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ 4: end for

 $\begin{array}{ll} \text{Maximize the likelihood} & \mathcal{L}(\boldsymbol{\theta}) = p(\mathbf{X}; \boldsymbol{\theta}) \\ \text{(incomplete)} & \boldsymbol{\theta} \ = \ \{\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m, \pi_m\}_1^M \end{array}$

Maximize the likelihood (complete likelihood)

$$p(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta})$$

joint distribution of \mathbf{X} and $\mathbf{Z} = \{\mathbf{z}_i\}_1^N$

Expectation-Maximization algorithm: Iteration

EM iteration:

• Expectation step :

$$w_{tj} = p(x_t = j | y_t) = \frac{\alpha_j f(y_t | \mu_j, \Sigma_j)}{\sum_{i=1}^k \alpha_i f(y_t | \mu_i, \Sigma_i)}$$

• Maximization step :

$$\hat{\alpha}_{j} \leftarrow \frac{1}{n} \sum_{t=1}^{n} w_{tj}$$

$$\hat{\mu}_{j} \leftarrow \frac{\sum_{t=1}^{n} w_{tj} y_{t}}{\sum_{t=1}^{n} w_{tj}}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{\sum_{t=1}^{n} w_{tj} (y_{t} - \hat{\mu}_{j}) (y_{t} - \hat{\mu}_{j})^{T}}{\sum_{t=1}^{n} w_{tj}}$$

Initialize with k-means (or k-means++)

