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Interpreting Fourier spectra Stripes of the ha

Stripes of the hair




Laplacian image pyramids

level k(= | plxulq

level 0 (= oniginal image)

Used also in graphics for texturing (mipmapping)



Laplacian image pyramids

Gaussian. Blurand sample, and then
La placian. Interpolate and estimate

Gi =1
G; = EXPAND(G,,1) + L. Reconstruction
L; = G; — EXPAND(G,41) Residual
Li = Gy —EXPAND(Gy) | G4 =Ly + EXPAND(Gs)
Lo = Go — EXPAND(G3) | Gg =Ls + EXPAND(Gy)
Ly = Gy — EXPAND(G) | Gy = Ly + EXPAND(G)
Li=Gy G1 =L; + EXPAND(Gg) =1

Precursors of wavelets



Laplacian image pyramids

Blurring is efficient for sampling as it removes high-frequency
components. (sample at fewer positions.)

Gaussian kernel and resampling at a quarte r of the image size.
Blurring and resampling is computed using a s ingle discrete kernel.

Central limit theorem:
(mean of random variables approach Gaussian distribution)

*Infinitely differentiable functions
[Fourier of Gaussians are Gaussians

*Human brain has neuronal regions doing Gaussian filtering



Laplacian image pyramids
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FIGURE 4.46 Gaussian and Laplacian image pyramuds: the original image I can be

Ly

reconstructed without any error from the smallest image of the Gaussian pyramid
(Gs) and the Laplacian image pyramid £ = {L;};.






Laplacian image pyramids: Application to blending

Multiband blending.
Blending two overlapping images using their pyramids

* Compute Laplacian pyramids L(I1) and L (12) of 11 and 12.
* Generate a hybrid Laplacian pyramid L by creating for
each image of the pyramid a 50%/50% mix of images,
obtained by selecting the leftmost half of

L(11) with the rightmost half of L (12).

* Reconstruct blended images from the Laplacian pyramid L.



Laplacian image pyramids: Application to blending
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Laplacian image pyramids: Application to blending




Laplacian image pyramids: Application to blending
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Using a region mask

Nowadays, we better use Poisson image editing and
gradient/image reconstruction



Expectation-Maximization (EM)

Generative statistical models
X3 H-m, ~ v"'\'"r (X; Hopp s Em)
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http://www.neurosci.aist.go.jp/~akaho/MixtureEM.html



Indicator variables z
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Generating samples from Gaussian Mixture Models (GMMs)

1: forz=1to N do

m «— Index of one of the M models randomly selected

according to the prior probability vector 7

3:  Randomly generate x; according to the distribution N (x;; i,,,, )
4: end for

I

t = 384, current sol = 796.5325, global sol = 795.7721, d =2
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Maximize the likelihood £(6) = p(X; )
(incomplete) | |
- VM
0 = Jl_x*u‘-m' E'F??' TTm _}1

Maximize the likelihood
(complete likelihood) (X, Z: 6)

joint distribution of X and Z = {Zz};



Expectation-Maximization algorithm: Iteration

EM iteration:

e Expectation step :

Y j f (yt‘#jr 2 j)
k .
S i f (e, X4)

we; = ploe = jly:) =

e Maximization step :
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Initialize with k-means (or k-means++)
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