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Abstract—Image segmentation is a fundamental task of image
processing that consists in partitioning the image by grouping
pixels into homogeneous regions. We propose a novel segmenta-
tion algorithm that consists in combining many runs of a simple
and fast randomized segmentation algorithm. Our algorithm also
yields a soft-edge closed contour detector. We describe the theo-
retical probabilistic framework and report on our implementation
that experimentally corroborates that performance increases with
the number of runs.

I. INTRODUCTION AND PRIOR WORK

Segmenting is the fundamental task of finding homoge-
neous regions (called segments) in images. Humans segment
images using both a bottom-top and top-bottom cognitive pro-
cess linked with recognition and scene understanding among
others. In computer vision, segmentation is often tackled as a
low-level clustering task (e.g., region merging [1], [2], [3],
mode seeking by mean shift [4], Gaussian blobworlds [5],
spectral clustering [6], [7]). Those primitive low-level com-
puter vision engineering segmentation techniques bring tools
for more complex tasks (e.g., super-pixels in image analy-
sis [8], [9], object recognition [10], or image annotation [11],
etc.). To fairly evaluate and compare segmentation algorithms,
several data-sets with human annotated segmentations (defin-
ing “ground-truth”) have been assembled. See for example
the Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500 for short, see [12]). Figure 1 displays the results
of segmenting an image by several people. Observe that each
person yields a different segmentation result for this “open”
task. In [13], the authors state that “There does not appear to
be a consensus about which of these [segmentation] algorithms
is best.” In fact, even constraining segmentation as a pure
axiomatically well-defined clustering problem does not bring a
final unique solution. Indeed, Kleinberg [14] proved that under
three simple clustering intuitive properties there does not exist
such a clustering function to optimize.

In this work, we propose a simple probabilistic segmen-
tation algorithm that generates each time a different segmen-
tation output for the same input image. We then aggregate
those segmented results using the flavor of ensemble segmen-
tation [15], [16]. Ideally, we would like to have a population
of segmentation results, and characterize the segmentation
using probability segments. Our algorithm, termed Consensus
Region Merging (CRM), relies on a straightforward random
extension of the Statistical Region Merging (SRM) [2], [3],
that we name RRM (for Random Region Merging). Every
time, we call RRM on the source image, RRM returns a
different segmentation. By running RRM multiple times, we
thus get a population of segmentations (multiple segmentation

Fig. 1. Several “ground-truth” segmentations of an intensity image by
different users (from BSDS500 [12]). Each user defines its own segmentation
(with potentially a different number of segments; here 6, 11, 13, 9 and 14
segments).

is also considered in [17] by varying the number of segments).
We then aggregate all those sample segmentations using a
deterministic CRM using a simple voting scheme to get an
area segmentation. As a byproduct, our technique interestingly
yields also a high-quality contour detector as shown in exper-
iments. Note that Arbeláez et al. [12] presented a generic way
to transform the output of any contour detector (not necessarily
closed-contour) into a hierarchical region tree [13]. We give
preliminary theoretical arguments that favor a reduction of the
variance of CRM compared to SRM [2], [3].

The outline of the paper is as follows: Section II recalls
the statistical region merging segmentation algorithm using
a weighted graph framework. It is followed by Section III
describing the random segmentation extension. Section IV
describes the voting-scheme consensus segmentation, CRM,
based on multiple runs of RRMs. Section V reports on
preliminary theoretical results. Finally, section VI concludes
and hints at future work.

II. GRAPH REGION MERGING

We recall the Statistical Region Merging (SRM) algo-
rithm [2], [3] using the broader setting of weighted graphs.



SRM starts by considering each pixel v as its own region (a
singleton {v}), and eventually merge following a predefined
order of the regions relying on a statistical merging predicate
To describe SRM using the framework of graphs, we first
convert an image I into a weighted graph G = (V,E,w) using
the 4-connectivity of pixels. The nodes v ∈ V correspond to
pixels, and edges e = (a, b) ∈ E iff ‖a− b‖1 = 1 where ‖ · ‖1
denote the L1 norm (C4 South/North/East/West neighboring
pixels). This yields 2(w−1)(h−1)+w+h−2 unoriented edges
for an image of size w×h. The weight w(e) = |Ia− Ib| of an
edge e = (a, b) is set to the difference of the intensity channel,
where Iv denotes the intensity at pixel v. Region merging is
efficiently implemented using Tarjan’s disjoint-set [18] data-
structures1, which requires in practice constant amortized time
per merge or find operation. Algorithm 1 summarizes the graph
segmentation algorithm, GRM.

Algorithm 1 Graph Region Merging (GRM)
// Input: Weighted graph G = (V,E,w)
Create disjoint set data-structure on vertex set V
Sort edges in increasing order of their weights in queue Q
// Greedy region merging segmentation
while Q 6= ∅ do
e = (a, b)← Q.head()
// Use disjoint set data-structure to find region [18]
Ra ← FindRegion(a)
Rb ← FindRegion(b)
if (Ra 6= Ra) and MergePredicate(Ra, Rb) then

// Merge the two regions (average intensity)
Merge(Ra, Rb)

end if
end while

In [2], [3], the merging predicate is derived from statistical
concentration inequalities. For a region Rx, let Ix denote the
average channel value, and nx the number of pixels contained
inside that region. For our purpose, we shall use the following
simpler predicate:

MergePredicate(Ra, Rb) ={
true if |Ia − Ib| < 255

2 logmax(na,nb)
,

false otherwise.
(1)

For color RGB images (or hyper-spectral images), we
merge regions if and only if the predicate is true for each
channel, independently of the others. As the pseudo-code
of Algorithm 1 emphasizes, the greedy GRM segmentation
algorithm relies on two principles:

1) A fixed predefined order on the weighted edges, and
2) a (deterministic) merging predicate.

By changing either the inspection of adjacent region pairs
(linked with edges), or the predicate, we thus get a different
segmentation result. The following section randomizes GRM
by:

1) Shuffling randomly the order using a permutation,
and

1Disjoint-set forest with union by rank compression [19].

2) designing a random (non-deterministic) merging
predicate.

Although the GRM algorithm makes greedy decisions to
decide whether to merge or not regions, one can show that
GRM segmentations satisfy global properties. For example,
Nielsen and Nock [20], [2], [3] proved that with high prob-
ability that the algorithm yields an over-segmentation when
using a statistical predicate. Similarly, Felzenswalb and Hut-
tenlocher [1] proved that GRM is not too fine nor too coarse
for their predicate.

III. RANDOM REGION MERGING

In order to get a “population of segmentations,” we add
random behavior in GRM. First, we apply an arbitrary ran-
dom permutation on the edge pairs (we purely discard the
former w(e) values). Second, we consider the following non-
deterministic random predicate:

RandomPredicate(Ra, Rb) ={
true if |Ia − Ib| < 255U

logmax(na,nb)
,

false otherwise.
, (2)

where U denotes a uniform random variate in [0, 1). Note that
E[U ] = 1

2 , and that on average the merging predicate becomes
the deterministic predicate of Eq. 1. Algorithm 2 describes
the algorithm, and Figure 2 displays several runs on a given
color image that shows a segmentation population.2 The idea
of choosing a random predicate has been inspired by random
dithering techniques of grey images (see [21], page 265).

Algorithm 2 Random Region Merging (RRM)
// Input: Graph G = (V,E)
Let queue Q be a random permutation of E
// Greedy region merging segmentation
while Q 6= ∅ do

e = (a, b)← Q.head()
// Use disjoint set data-structure
Ra ← FindRegion(a)
Rb ← FindRegion(b)

if (Ra 6= Ra) and RandomPredicate(Ra, Rb) then
// Merge the two regions
Merge(Ra, Rb)

end if
end while

We now turn to the consensus process that combines
arbitrarily many segmentation results into one segmentation
by using a simple voting scheme.

IV. CONSENSUS REGION MERGING

Consensus Region Merging (CRM) outputs (1) a seg-
mentation and (2) a soft contour map. The CRM algorithm
consists in computing l independent random segmentations
using RRM, and then combine the sample outcome into one
overall segmentation. The key idea consists in adding one vote

2Loosely speaking, note that by iteratively computing a random segmenta-
tion of a still image, we obtain a never-ending “video” segmentation.



Fig. 2. A population of segmentations: Several random segmentation variates
(l = 12) using non-deterministic RRM.

to an edge e whenever its merging predicate was evaluated
to true. We then set w(e) to the number of votes, and run
GRM to export a hard3 segmentation. In addition, we also
compute a soft contour detector as follows: Each edge adds
to the weights of its two extremity pixels the number of times
it was selected for merging. (Thus each inner4 pixel receives
four values from its two incident edges.) Indeed, whenever
an edge was voted, it means the pixels belong to the same
region for the precise segmentation, and therefore are not on
a picture “edge.” We take l minus the same region value, and
divide by l to get the probability map of being a contour. Note
that since GRM provides closed regions (and therefore closed
contours), the soft contour consensus region is guaranteed to
have closed contours. Figure 3 displays the contour detector
results for l = 1000. We can run Arbeláez et al. [12] generic
algorithm to transform the output of a contour detector into a
hierarchical segmentation region tree.

Algorithm 3 Consensus Region Merging CRM)
// Input: Graph G = (V,E) and l number of segmentations
for i = 1 to l do

Perform a random region merging segmentation RRM(G)
Each time an edge e is merged, add 1 to ne

end for
// Export hard consensus segmentation
Build a weighted graph G = (V,E,w) with we = ne ×
|Ia − Ib|, the number of times edge e was merged
// Output 1: A segmentation
Call graph region merging on G.
// Output 2: A soft contour map
Let sv = 0 ∀v ∈ V // Strength of belonging to a contour
for e = (a, b) ∈ E do
sa ← sa + we

sb ← sb + we

end for
// Rescale for exporting contour map
for v ∈ V do
Iv = 255 sv

l
end for

In theory, the larger l, the better it produces a contour
detector as it is less prone to sensitivity of the pair inspection

3Pixels belong to one and only one regions. Thus the segmentation is a
partition of the image with closed contours.

4Pixel do not belonging to the image boundary.

source soft contour map

Fig. 3. Soft contour edge detector with guaranteed closed contours (l = 1000
segmentations).

Fig. 4. Quality of soft contour detector according to the number l ∈
(10, 50, 100, 1000) (from top to bottom, and left to right) of random seg-
mentations. Observe the visible difference between the results for l = 10 and
l = 100.

order. Figure 4 shows the impact of l for one input image. We
observe empirically that a few dozen runs are enough to get a
good contour detector in practice.

Notice that SRM/GRM is a hard segmentation algorithm
that provides closed contours. By using several runs of
RRM, we can export a high-quality soft contour map, as
depicted in Figure 4. Figure 6 displays the results obtained
on BSDS500 [12]. See http://anonymous It takes less than a
minute for performing a CRM on a VGA color image size with
l = 500 runs using a Intel R© Pentium R© i7-2640M at 2.8GHz
(4GB RAM).

The next section hints at a theoretical analysis of CRM.



V. PRELIMINARY THEORETICAL RESULTS
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Fig. 5. Testing the merging of squared subregions R and R′ of two regions
R1 and R2 (see text).

The intuition of consensus region merging is similar to that
of bagging in supervised learning [24]. In supervised learning,
the error of a classifier can be decomposed into three terms:
(1) a noise term, which describes fluctuations of true labels
compared to their theoretical value, (2) a bias term, which
models the average error of the classifier, and (3) a variance
term, which models the fluctuations of the classifiers when the
data at hand changes. With bagging, bootstrapping a dataset
to induce classifiers, and finally averaging the output of the
classifiers, is known to reduce the variance of the misclassifi-
cation. There is certainly an analogy between the bias-variance
trade-off in classification, and that in segmentation as carried
out in the model of CRM. The objective of this section is
to give a preliminary step towards understanding the way the
bias-variance trade-off holds in this model, and to what extent
CRM may reduce its variance.

Figure 5 presents the toy case study. We have two adjacent
regions, R1 and R2, each having r2 pixels. We assume that
we have a single channel. Let ∆ denote the smallest observed
difference in absolute value between any two subregions of
R1 and R2, so that for the two regions R and R′ displayed in
Figure 5, we have |IR − IR′ | ≥ ∆. We simplify the merging
predicate as merging R and R′ if and only if:

|IR − IR′ | ≤ Kg

ln max{m,m′}
. (3)

for some constant K > 1 and g = 256 the number of grey
levels. It comes that when:

max{m,m′} ≥ exp

(
Kg

∆

)
, (4)

the merging is not carried out. If we let
√
u denote the right-

hand side of (4), then the maximal number of mergings that
can be accepted between squared subregions of R1 and R2 is
of order Θ((r3− (r−u)3)2), out of Θ(r6). The proportion of
mergings that can be accepted is thus:

p = Θ
((

1− (1− (u/r))3
)2)

. (5)

Plugging this in (4), we see that for a maximal proportion p
of possible mergings to hold, it is sufficient that

∆ ≥ Θ

(
g

ln(r(1− (1−√p)
1
3 ))

)
. (6)

Since (1 −√p)
1
3 ≤ 1 − kp for some constant k > 0, we get

the following Lemma on the problem statement illustrated in
Figure 5.

Lemma 1: The proportion of mergings that can be ac-
cepted between R1 and R2 is no more than p if ∆ >
Kg/ ln(rp) for some constant K.

On the other hand, reversing the inequality in (4) to count the
cases where merging is accepted, one sees that the minimal
proportions of merging between R1 and R2 that can be
accepted is Ω((r−u)/r6) = Ω((1/r5)(1− (u/r))). The same
reasoning as for Lemma 1 brings the following Lemma.

Lemma 2: The proportion of mergings that can be ac-
cepted between R1 and R2 is at least p if ∆ < K ′g/ ln(r(1−
pr5)) for some constant K ′.

Hence, repeating the randomized order in region merging,
as it is carried out in CRM for its segmentation output,
reduces the chance to merge first some parts of two distinct
regions whose channel differences are not important (worst-
case scenario of Lemma 2), while for regions with significant
channel differences, it does not degrade on average the quality
of merging compared to the situation where the order of
SRM would be used (Lemma 1). This hints on the fact that
averaging the randomized results, as carried out in CRM, may
significantly reduce on average the risk of bad orders bringing
bad segmentations, and thus, up to some extent, the variance of
the differences with the ideal segmentation in SRM’s model.

VI. CONCLUSION AND PERSPECTIVES

We described a soft contour detector and segmentation
algorithm that relies on designing a random region merging
algorithm (RRM) with a simple voting consensus scheme on
several of its runs (CRM). Our algorithm is quasi-linear5 in
the image size and the number l of iterations. This work is a
very first step in creating a truly probabilistic region segmenta-
tion model characterizing probabilistically segmented regions.
Indeed, a good segmentation algorithm should be robust to
small levels of perturbations [22]. CRM can be viewed as such
as a robust SRM [2]. (In particular, CRM avoids flickering
artifacts when segmenting video frame by frame.) Ongoing
work investigates the persistence [23] of various segmentation
algorithms using region-based metrics [13].

We end up with the following open problem by taking
analogy with the field of Statistics: Can we design a generative
probabilistic image model and report a randomized segmenta-
tion algorithm on random image variates that is asymptotically
consistent (e.g., segmentation converging to the true optimal
segmentation as the number of runs increase) ? In computer
vision, time has often been taken as the limiting resource to
optimize. Can we design segmentation algorithms that always
improve with time?

The JavaTM code (about 1000 lines) with extensive results
on the Berkeley data set BSDS500 [12] is available on-line at
http://anonymous for reproducible research.
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