Bag-of-components: an online algorithm for batch
learning of mixture models

Olivier Schwander!2 and Frank Nielsen?

! Laboratoire des Signaux et Systémes (L2S, UMR CNRS 8506),
CentraleSupélec-CNRS-Université Paris-Sud, France
2 Viper Group, Computer Vision and Multimedia Laboratory,
University of Geneva, Switzerland
3 Laboratoire d’Informatique (LIX, UMR 7161),
Ecole Polytechnique, France

Abstract. Practical estimation of mixture models may be problematic
when a large number of observations are involved: for such cases, on-
line versions of Expectation-Maximization may be preferred, avoiding
the need to store all the observations before running the algorithms.
We introduce a new online method well-suited when both the number
of observations is large and lots of mixture models need to be learned
from different sets of points. Inspired by dictionary methods, our algo-
rithm begins with a training step which is used to build a dictionary of
components. The next step, which can be done online, amounts to pop-
ulating the weights of the components given each arriving observation.
The usage of the dictionary of components shows all its interest when
lots of mixtures need to be learned using the same dictionary in order to
maximize the return on investment of the training step. We evaluate the
proposed method on an artificial dataset built from random Gaussian
mixture models.

1 Introduction and motivation

The problem of estimating the probability density function of an unknown prob-
ability law is old and well-studied and among all the techniques used mixture
models are particularly widespread in practical applications. A lot of work is
thus devoted to the improvement of the speed of the algorithms for mixture
parameters estimation, which is of particular interest in real-time applications
such as object tracking in videos [T0/49].

The most common axes of research for mixture models can be divided into
three main categories. First, the goal may be to reduce the computational burden
of the algorithm itself: for example k-MLE [7] and cEM [3] are fast variants of
EM where the slow step of soft assignment is replaced by a fast step of hard
assignment. Second, a work on the input data may be done: in [5], coresets are
used to reduce the number of points needed to build the model. Third, online
algorithms can be designed to deal more easily with large datasets [I0/2], avoiding
the need to store all the content of the dataset.

We take here a slightly different point of view: we address both the massive
data problem and the online constraint in the case where a large number of dif-
ferent mixtures from quite similar sets of points are needed. As such, our new
algorithm is divided into two steps: a first training step (which can be slow but
it does not really matter since it will be done only once) is used to build a dictio-
nary of components (where atoms are the parameters of the distributions), and
a second step uses a nearest-neighbor search to associate each incoming observa-
tion to the most probable component, thus incrementally populating the vectors
of weights of the mixture. This learning step is obviously online, since the pro-
cessing can be done observation by observation, and is faster than Expectation-
Maximization (EM), since the nearest-neighbor search is rather simple compared
to a full-blown EM.

We believe that the separation between a training step and learning step for
mixture model can be very useful in numerous applications. For example, in a
video analysis application (on a MPEG compressed stream), the dictionary can
be built on a key-frame and inter-frames can be modeled using the dictionary of
the corresponding key-frame: the dictionary learned on a key-frame will be well
suited for the following images but a new one will be needed if a too different
scene appears.

Our contributions are the following: first we define the co-mixture concept
and present an Expectation-Maximization based algorithm, called co-EM, to
estimate the parameters; then we introduce an online algorithm, called Bag of
Components, which relies on a co-mixture to learn a dictionary of components
and uses a nearest-neighbor search to estimate a new mixture from observations
arriving one by one.

This article is organized as follows: the first part describes the co-mixtures
and the algorithm co-EM; the second part introduces the Bag of Components
and the online algorithm; the next part discusses some improvements over the
basic algorithm; and the last part shows some experimental results.

2 Co-Mixture models

We formally define a co-mixture of exponential families as a set of S mixture
models sharing the same parameters for theirs components:

mi(wiwf) L wld) = S wVpe(a;6:)
2 2 K (2
mg(x;w§) ...wg{)) =>, wg)pp(a:; 6;) (1)

o)
ms(z;0l% W) = T K 0 pr(x;6)

where pp is the exponential family with log-normalizer F' and 6, ...60x are the
parameters of the components and are shared between all the individual mixtures
of the co-mixture; the S vectors wgs) .. .w&?) are the vectors of weights (thus

positive and normalized to 1).

In the previous expressions, all the mixtures have the same number of com-
ponents but since the weight associated to a component may be zero, it is not a
limitation.

In order to build such a set of mixtures from a dataset made of S sets of
point X = {a:(ll), . ,xﬁff} (where n; is the number of observations in the set
of points X), we design an EM-based iterative algorithm, called co-EM. For
clarity, we write a generic version working for any exponential family: it is a
variant of Bregman Soft Clustering [I] for which the maximization is simply an
arithmetic mean in the expectation parameters space (which is in bijection with
the usual parameters). It can be described by three main steps:

— Expectation step,
— Maximization step (set of points by set of points),
— Maximization step (aggregation).

Ezxpectation step We compute S responsibility matrices p(*), ... p(5): the coef-
ficient p() (4, j) measures the likelihood for the observation xz(-l) from the set of
points X® to come from the j-th component of the mixture m; given the cur-
rent estimate of the parameters 7y, ..., n; and of the weights for the /-th mixture

wy), . (l) . In short, we have:

W gy - G m)
T m e,)

(2)

Mazimization step (set of points by set of points) In the first part of the max-
imization step S partial estimates (ngl), .. 7772))7 el (ngs)7 . ,77,(65)) are made,
one for each individual mixture of the comixture.

The new estimates (n%l), .. ,nﬁ)) for the I-th set of points are computed using

the observations for X and the I-th responsibility matrix:

(l
p l])
E Z p(l) u .7 t(xi) (3)

And the weights of each individual mixtures are updated with:
1 <&
=—> p(i, j) (4)
i3

Mazimization step (aggregation) All these partial estimates are then aggregated
into the new estimate of the parameters 7y, ..., nk.
For the component j, the new estimate of 7; is computed with a Bregman

barycenter of all the 7]5”, e ,77](5)

Co \

S
Z (5)

This aggregation step gives the same weight to all the set of points, no matter
the number of components inside, allowing to remove the influence of various set
of points sizes.

Original

EM

Co-EM

Fig. 1. Segmentation with regular EM and co-EM using a 5D RGBxy description of
the images.

The algorithm co-EM converges to the average of the log-likelihoods on all
the individual mixtures of the co-mixture and can be used independently of the
Bag of Components: Figure [I] shows an image segmentation application.

3 Bag of Components

This online algorithm is inspired by dictionary methods. As such, the training
step amounts to building a dictionary of components (the atoms of the dictio-
nary) and the learning step amounts to computing the activation of each atom
given the observations.

The dictionary can be directly extracted from the output of co-EM (or from
the output of any algorithm building a co-mixture). Given a co-mixture, the

dictionary is the set of parameters:
D=1{6,...,0} (6)

Due to the need to build a co-mixture, the training step is potentially ex-
pensive but this cost is counterbalanced by two points. First it is made only
once and the results are reused during the learning step. Second, there is no
overload if the set used to build the co-mixtures is a subset of the interesting
sets of points: in this case, since it is not more costly to build a co-mixture of
size S with co-EM than to learn S mixtures with EM, the global cost of the
training and learning steps is still smaller than the cost of doing an EM on all
the dataset.

The learning step can be done online: we do not need to work on the entire
input points but we can rather update the model parameters each time we see
a new observation. This step amounts to a hard-assignement step: given a new
observation, we search the most probable component among the atoms of the
dictionary (using a naive linear search):

i = argmax pr(z;, 0) (7)

We then increment the value in the bin 7 of the histogram which counts how many
observations have been associated to each atom. At the end of the processing,
it is straightforward to go from the histogram to a real vector of weights by
dividing by the total number of observations.

4 Improvements

The previous maximization problem can be rewritten as a nearest-neighbor
search using the bijection between exponential families and Bregman diver-
gences [I]:

i = arg min Bp- ((2:)]1(6)) (8)

where F™* is the Legendre dual of the log-normalizer F' of the exponential family
and 7n(0) is the transformation of the natural parameter 6 into the space of
expectation parameters.

As such, it is possible to improve the linear time search described previously
by using appropriate nearest-neighbor techniques and data structures such as
Bregman ball tree [8] and to go below the linear time search.

Another possible variant is to enforce the sparsity of the weights: after the
computation of the vector of weights, we are likely to have some components with
a very low weight and thus carrying nearly no information. We assume we can
remove these components by thresholding and renormalizing the weights. An-
other choice may be to clusterize the mixture using the k-medoids [0] algorithm
to concentrate weights on most important components.

5 Experiments

We evaluate the Bag of Components algorithm on artificially generated mixture
models. In order to generate mixture models sufficiently similar to use with a
dictionary-based method , we first generate a dictionary of multivariate Gaussian
distributions (the covariance matrices are generated from a LDL? decomposi-
tion, where L is a triangular unit matrix and D a diagonal matrix with positive
coefficients). We then generate mixtures by randomly drawing the weights, im-
posing that only a small fraction of the components has a non-zero weight (to
enforce some diversity between the random mixtures).

In all the following experiments, the random mixtures are generated from
a dictionary of size 30 with only 30% of non-zero weights. co-EM builds a 30
components co-mixture from 10 sets of 1000 points. The components of this
co-mixture are used as a dictionary for Bag of Components.

The goal of the first experiment is to visually check the quality of a 1D mix-
ture built with Bag of Components (from 1000 observations). Figure compares
the original mixture (first curve) with the output of EM (second curve, with
10 components) and the output of Bag of Components (third curve). On the
third curve, some components have clearly a low weight compared to the most
prominent Gaussians so in the fourth curve weights are thresholded under 0.06 in
order to keep only 5 components: in this particular case, most of the information
seem to be preserved.

A second experiment in Figure [3| compares the execution time (left) and the
quality (right) of the output of Bag of Components and of an EM (10 com-
ponents) with respect to the number of points in the input set (from 1000 to
10000 points, in dimension 5). Given a dictionary built with co-EM during a pre-
processing offline step, we build a mixture with the Bag of Components method
from a new input set of points (not present in the dataset used for the dictionary
learning step) and compare the output mixture to the result of a classical EM.

The quality of the mixtures from the two algorithms is compared using the
relative log-likelihood W so a negative value means Bag of Components
produces worse mixtures than EM: on the explored range, the two algorithms
produce mixtures of similar quality, with roughly between -4% and -2% of relative
difference.

The left part of Figure [3| measures the execution time of Bag of Components
(without the dictionary building step, since this step is made offline): not supris-
ingly, it is perfectly linear with a speed-up between 1.2 and 4 compared to EM
(which has a very irregular execution time).

The speed-up from EM to Bag of Components is real but not so high. Indeed,
even if the learning step of Bag of Components is made in O(nK) (where n is
the number of observations and K the number of atoms of the dictionary) and
the EM is made in O(nki) (where k is the number of components and i the
number of iterations), the number of atoms K is higher than the number of
components k (three times in the experiments). The execution time of Bag of
Components is thus of the same order of magnitude than all the iterations of
EM, giving an execution time which can be nearly the same when EM converges

— Truth (13)

-10 -5 0 5 10

2

~10 5 0 5 10

Fig. 2. From top to bottom: original mixture, Expectation-Maximization, raw Bag of
Components, Bag of Components with weights thresholded. Between parentheses is
the number of components with non-zero weights.

in few iterations. We may increase the speed of Bag of Components by using
a Bregman Ball Tree which would allow a sub-linear nearest-neighbor search.
Moreover, independently of the time, Bag of Components has the big advantage
of being an online algorithm (so in the curves on Figure 3} each point for Bag of
Components is not a new mixture built from scratch, but only an improvement
of the previous one).

6 Conclusion

We described the notion of co-mixtures along with the algorithm co-EM. It is
used as a basis to design a new algorithm for mixture model learning, called

50 T —2.5
— BoC —2.6
—2.7
—2.8
—-2.9
-3.0
3.1
_39 i

_33 — Rel. LL |

— l

0 . 4
1000 5000 10000 1000 5000 10000

Fig. 3. Computation time for EM and BoC (left) and relative log-likelihood (in percent,
right) with respect to the number of observations during the learning step (from 1000
to 10000, in dimension 5).

Bag of Components: this new algorithm works online and allows to build a
mixture faster than Expectation-Maximization. It is well suited when a lot of
mixtures from related or similar sets of points are needed: in such a case, it is
worth building a dictionary on a subset of the sets of points and apply Bag of
Components on the remaining sets of points. It is also interesting when only
a few sets of points are available at a time: the available sets can be used to
learn the dictionary of components and new mixtures can be built on new sets
of points at soon as they become available.

There is room for lots of improvements both on the speed, by using effi-
cient nearest-neighbor or approximate nearest-neighbor techniques, and for the
sparsity of the weights, by evaluating the need and the interest of removing low
weight components. Furthermore, we leave for future work to validate co-EM
and Bag of Components on a real application instead of artificial mixtures.

References

1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. The Journal of Machine Learning Research 6, 1705-1749 (2005)

2. Cappé, O., Moulines, E.: Online em algorithm for latent data models. Journal of
the Royal Statistical Society (2008)

3. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two
stochastic versions. Comput. Stat. Data Anal. 14(3), 315-332 (Oct 1992), http:
//dx.doi.org/10.1016/0167-9473(92)90042-E

4. Chen, G., Yu, Z., Wen, Q., Yu, Y.: Improved gaussian mixture model for mov-
ing object detection. In: Deng, H., Miao, D., Lei, J., Wang, F. (eds.) Artificial
Intelligence and Computational Intelligence, Lecture Notes in Computer Science,
vol. 7002, pp. 179-186. Springer Berlin Heidelberg (2011), http://dx.doi.org/
10.1007/978-3-642-23881-9_23

http://dx.doi.org/10.1016/0167-9473(92)90042-E
http://dx.doi.org/10.1016/0167-9473(92)90042-E
http://dx.doi.org/10.1007/978-3-642-23881-9_23
http://dx.doi.org/10.1007/978-3-642-23881-9_23

10.

Feldman, D., Faulkner, M., Krause, A.: Scalable training of mixture models via
coresets. In: Advances in Neural Information Processing Systems. pp. 2142-2150

(2011)
Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. North-Holland
(1987)
Nielsen, F.: k-MLE: A fast algorithm for learning statistical mixture models. CoRR
(2012)

Nielsen, F., Piro, P., Barlaud, M.: Tailored bregman ball trees for effective near-
est neighbors. In: Proceedings of the 25th European Workshop on Computational
Geometry (EuroCG). pp. 29-32 (2009)

Sicre, R., Nicolas, H.: Improved gaussian mixture model for the task of object
tracking. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch,
W. (eds.) Computer Analysis of Images and Patterns, Lecture Notes in Computer
Science, vol. 6855, pp. 389-396. Springer Berlin Heidelberg (2011), http://dx.
doi.org/10.1007/978-3-642-23678-5_46

Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on. vol. 2. IEEE (1999)

http://dx.doi.org/10.1007/978-3-642-23678-5_46
http://dx.doi.org/10.1007/978-3-642-23678-5_46

	Bag-of-components: an online algorithm for batch learning of mixture models

