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Abstract. We generalize the O( dn
ε2

)-time (1 + ε)-approximation algo-
rithm for the smallest enclosing Euclidean ball [2, 10] to point sets in
hyperbolic geometry of arbitrary dimension. We guarantee a O

(
1/ε2

)
convergence time by using a closed-form formula to compute the geodesic
α-midpoint between any two points. Those results allow us to apply the
hyperbolic k-center clustering for statistical location-scale families or for
multivariate spherical normal distributions by using their Fisher infor-
mation matrix as the underlying Riemannian hyperbolic metric.

1 Introduction and prior work

Given a metric space (X, dX(., .)), fitting the smallest enclosing ball of a point
set P = {p1, . . . , pN} consists in finding the circumcenter c ∈ X minimizing
maxp∈P dX(c, p). In practice, this non-differentiable problem is computationally
intractable as the dimension increases, and has thus to be approximated. A
simple algorithm was proposed in [2] for euclidean spaces and generalized in [7]
to dually flat manifolds.

In this article, we consider the case of the hyperbolic Poincaré conformal ball
model Bd which is a model of d-dimensional geometry [8]. Even if balls in this
hyperbolic model can be interpreted as euclidean balls with shifted centers [9], we
cannot transpose directly results obtained in the euclidean case to the hyperbolic
one because the euclidean enclosing balls may intersect the boundary ball ∂Bd
(and are thus not proper hyperbolic balls, see Fig.1).

An exact solution for the hyperbolic Poincaré ball was proposed in [6] as a
LP-type problem, but such an approach cannot be used in practice in high dimen-
sions. A generic Riemannian approximation algorithm was studied by Arnaudon
and Nielsen [1] but no explicit bounds were reported in hyperbolic geometry
besides convergence, and moreover the heuristic assumed to be able to precisely
cut geodesics and that step was approximated in [1].

We propose an intrinsic solution based on a closed-form formula making
explicit the computation of geodesic α-midpoints (generalization of barycenter
between two points) in hyperbolic geometry. We derive a (1 + ε)-approximation
algorithm for computing and enclosing ball in hyperbolic geometry in arbitrary



dimension in O(dnε2 ). This is all the more interesting from a machine learning
perspective when dealing with data whose underlying geometry is hyperbolic. As
an example, we illustrate our results on location-scale families or of multivariate
spherical normal distributions. In the reminder, we assume the reader familiar
with the basis of differential and Riemannian geometry, and recommend the
textbook [8], otherwise.

The paper is organized as follows: Section 2 presents the exact computation
of the α-midpoint between any arbitrary pair of points. Section 3 describes and
analyzes the approximation algorithms for (i) fixed-radius covering balls and
(ii) minimum enclosing balls. Section 4 presents the experimental results and
discusses on k-center clustering applications.

Fig. 1. Difference between euclidean MEB (in blue) and hyperbolic MEB (in red) for
the set of blue points in hyperbolic Poincaré disk (in black). The red cross is the
hyperbolic center of the red circle while the pink one is its euclidean center.

2 Geodesic α-midpoints in the hyperbolic Poincaré ball
model

Let 〈·, ·〉 and ‖x‖ =
√
〈x, x〉 denote the usual scalar product and norm on the

euclidean space Rd. The Poincaré conformal ball model of dimension d is defined
as the d-dimensional open unit ball Bd = {x ∈ Rd : ‖x‖ < 1} together with the
hyperbolic metric distance ρ (., .) given by:

ρ (p, q) = arcosh

(
1 +

2‖p− q‖2

(1− ‖p‖2) (1− ‖q‖2)

)
, ∀p, q ∈ Bd.

This distance induces on Bd a Riemannian structure.



Definition 1. Let p, q ∈ Bd and γp,q the unique geodesic joining p to q in the
hyperbolic Poincaré model. For α ∈ [0, 1], we define the α-midpoint, p#αq, be-
tween p and q as the point mα ∈ γp,q ([0, 1]) ⊂ Bd on the geodesic γp,q such
that

ρ (p,mα) = αρ (p, q) .

Lemma 1. For all α ∈ [0, 1], we can compute the α-midpoint p#αq between two
points p, q in the d-dimensional hyperbolic Poincaré ball model in constant time.

Proof. We first consider the case where one of the point, say p, is equal to the
origin (0, . . . , 0) of the unit ball. In this case, the only geodesic running through
p and q is the straight euclidean line. As the distance ρ on the hyperbolic ball
is invariant under rotation around the origin, we can assume without loss of
generality that q = (xq, 0, 0, . . . , 0), xq ≥ 0. In this case, we have:

ρ (p, q) = arcosh

(
1 +

2‖q‖2

1− ‖q‖2

)
= log

(
1 + ‖q‖
1− ‖q‖

)
= log

(
1 + xq
1− xq

)
, (1)

using arcosh (x) = log
(
x+
√
x2 − 1

)
. The α-midpoint p#αq has coordinates

(xα, 0, . . . , 0), xα ≥ 0, which satisfies ρ (p, p#αq) = αρ (p, q). By (1), this is

equivalent to solving, after exponentiating, 1+xα
1−xα =

(
1+xq
1−xq

)α
. It follows that:

xα =
cα,q − 1

cα,q + 1
, where cα,q := eαρ(p,q)

(
=

(
1 + xq
1− xq

)α)
. (2)

For p = (0, . . . , 0) and q 6= p arbitrary, we have p#αq = ‖xα‖
‖q‖ q, taking (2) as

a definition for xα with cα,q = eαρ(p,q).
Now, for arbitrary p and q, we first perform a hyperbolic translation T−p of

vector −p to both p and q in order to resort to the preceding case, then compute
the α-midpoint and translate it using the inverse hyperbolic translation Tp. The
translation of x ∈ Bd by a vector p ∈ Bd of the hyperbolic Poincaré conformal
ball model is given by (see [8], page 124 formula (4.5.5)):

Tp (x) =

(
1− ‖p‖2

)
x+

(
‖x‖2 + 2〈x, p〉+ 1

)
p

‖p‖2‖x‖2 + 2〈x, p〉+ 1
, (3)

Since hyperbolic translations preserve the hyperbolic distance, using Def.1, we
have indeed

Tp (T−p (p) #αT−p (q)) = p#αq.

Note that those computations can be made exactly without numerical loss
since they involve only rationals and square root operations, see [3].

3 Approximation algorithms: Enclosing Balls and
Minimum Enclosing Balls

In the following, we will denote by P = {p1, . . . , pN} a set of N points of the
hyperbolic Poincaré ball model. For q ∈ Bd, we write ρ (q, P ) := maxp∈P ρ (q, p) .



Definition 2. Let r > 0. A point c ∈ Bd is called the center of a hyperbolic
enclosing ball of P of radius r (abbreviated EHB(P, r)) if

ρ (c, P ) ≤ r. (4)

If c is the center of a EHB of minimal radius among all hyperbolic enclosing
balls of P , then c is called the center of a minimum hyperbolic enclosing ball of
P (abbreviated MEHB(P )).

As the MEHBis unique [1], let R∗ denote its radius and c∗ its center. In practice,
computing the MEHB(P ) is intractable in high dimensions, we will focus on
approximation algorithms by modifying (4).

Definition 3. The point c ∈ Bd is the center of an (1 + ε)-approximation of
EHB(P, r) if ρ (c, P ) ≤ (1 + ε) r and the center of an (1 + ε)-approximation of
MEHB(P ) if ρ (c, P ) ≤ (1 + ε)R∗.

3.1 A (1 + ε)-approximation of an enclosing ball of fixed radius

We generalize the EHB(P, r) approximation introduced in [10], Alg.2 Sect.3.1,
to point clouds in the hyperbolic Poincaré ball model. Given P , r > R∗ and ε,
this algorithm returns the center of a (1 + ε)-approximation of EHB(P, r).

Algorithm 1 (1 + ε)-approximation of EHB(P, r)

1: c0 := p1
2: t := 0
3: while ∃p ∈ P such that p /∈ B (ct, (1 + ε) r) do
4: let p ∈ P be such a point
5: α := ρ(ct,p)−r

ρ(ct,p)

6: ct+1 := ct#αp
7: t := t+1
8: end while
9: return ct

As in [1] or [7], we took into consideration the fact that this geometry is not
euclidean. The update move (step 5 and 6) consists in taking a point ct+1 on the
geodesic from ct to p such that the ball B (ct+1, r) “touches” p (i.e. such that
ρ (ct+1, p) = r).

Proposition 1. Algorithm 1 returns the center of an (1 + ε)-approximation of
EHB(P, r) in O

(
1/ε2

)
iterations (exactly less than 4/ε2 iterations).

Proof. Let ρt := ρ (ct, c
∗). Figure 2 illustrates the update of ct, straight lines

represent geodesic between points. From step 5 and 6, we have ρ (ct+1, pt) = r
which implies ρ (ct+1, ct) > εr. Since B (c∗, R∗) is a MEHB, ρ (c∗, pt) ≤ R∗.
Denote the angle ∠c∗ct+1ct by θ and the distance ρ (c∗, pt) by r′. The hyperbolic



law of cosines gives: cos (θ) sh (ρt+1) sh (r) = ch (ρt+1) ch (r) − ch (r′), so that
cos (θ) ≥ 0 since ch (r′) ≤ ch (r) and ch (ρt+1) ≥ 1.

Let θ′ be the angle ∠ctct+1c
∗, it follows that cos (θ′) ≤ 0. Let h be the

distance distance between ct and ct+1, the hyperbolic law of cosines gives 0 ≤
cos (θ′) sh (h) sh (ρt+1) = ch (h) ch (ρt+1)−ch (ρt) . Thus ch (ρt) ≥ ch (h) ch (ρt+1).
After T iterations, we have the following inequality:

ch (ρ1) ≥ ch (ρ1)

ch (ρT )
≥ ch (h)

T ≥ ch (εr)
T
, (5)

which proves that the algorithm converges since ch (εr) > 1. We can rewrite (5)
as:

T ≤ log (ch (ρ1))

log (ch (εr))
≤ log (ch (2r))

log (ch (εr))
≤ 4

ε2
(6)

using the fact that ρ1 ≤ 2r and that f := r 7→ log(ch(2r))
log(ch(εr)) is a decreasing function

from [0,+∞[ to ]0,+∞[ with limr=0+ f (r) = 4/ε2.

ct+1

ct

c∗

pt

h < εr

ρt+1

ρt

r′ ≤ rr

θ

θ′

Fig. 2. Update of ct

We now show how far from the real center c∗ of the MEHB is the center
of an (1 + ε)-approximation of EHB(P, r). We need the following lemma which
generalizes Lemma 2 from [5]. For this, denote by 〈., .〉p the scalar product given
by the Riemannian metric on the tangent space TpBd in p ∈ Bd and by expp :

TpBd → Bd the exponential map.

Lemma 2. For every tangent vector v ∈ Tc∗Bd, there exists p ∈ P ∩ Hv such
that ρ (c∗, p) = R∗ where we denoted by

Hv =
{

expc∗ (u) ∈ Bd, u ∈ Tc∗Bd, 〈v, u〉c∗ ≥ 0
}

(7)



the points in Bd obtained by following geodesics whose tangent vector at point c∗

lie in the half-space defined by v.

Proof. Assume it exists v ∈ Tc∗Bd such that for all p ∈ P ∩ Hv, ρ (c∗, p) < R∗.
We will show that “moving” c∗ in the direction −v results in a new center c
whose distance to P is strictly less than R∗, contradicting the fact that c∗ is the
center of MEHB(P ).

For each point q ∈ P not in Hv we have

d

dt
ρ (expc∗ (−tv) , q)

∣∣∣∣
t=0

=

〈
− exp−1c∗ (q)

ρ (c∗, q)
,−v

〉
c∗
< 0 (8)

by (7). So we can find t > 0 small enough to obtain ρ (expc∗ (−tv) , p) < R∗ for
all p ∈ P since there is only a finite number of points in P .

Proposition 2. Let c be the center of an (1 + ε)-approximation of EHB(P, r).
We have the following inequality :

ρ (c, c∗) ≤ arcosh

(
ch ((1 + ε) r)

ch (R∗)

)
(9)

where c∗ and R∗ are respectively the center and radius of the MEHB(P ).

Proof. We can assume that c 6= c∗, otherwise (9) is true. Let d := ρ (c, d∗).
Consider the geodesic γ : [0, d] → M from c c∗. By applying the preceding
lemma with v := γ̇ (d), we obtain a point p ∈ P ∩ Hv such that ρ (c∗, p) = R∗.
By definition, the angle θ := ∠cc∗p is obtuse.

We name h the distance ρ (c, p) and apply the hyperbolic law of cosines to
obtain 0 ≥ cos (θ) sh (d) sh (R∗) = ch (d) ch (R∗)− ch (h). Since c is the center of
an (1 + ε)-approximation de EHB(P, r), h ≤ (1 + ε) r. we deduce ch ((1 + ε) r) ≥
ch (h) ≥ ch (d) ch (R∗) from which we derive (9).

3.2 A (1 + ε+ ε2/4)-approximation of MEHB(P )

We can use the previous results to derive an algorithm computing the MEHB(P )
in hyperbolic geometry of arbitrary dimension. The proposed algorithm (Alg.2)
consists in a dichotomic search of the radius of the MEHB(P ). Indeed, we can
discard a radius smaller than R∗ using (6) and use inequality (9) in order to
obtain a tighter bound.

Proposition 3. Algorithm 2 returns the center of an (1+ε+ ε2

4 )-approximation
of MEHB(P ) in O

(
1
ε2 log

(
1
ε

))
iterations.

Proof. In Alg.2, as ρ (p1, P ) > R∗, the first call to Alg.1 returns an (1 + ε/2)-
approximation of EHB(ρ (p1, P ) , P ). The fact that c is the center of an (1+ ε/2)
approximation of EHB(P, rmax) becomes a loop invariant. We also ensure that
at each loop

rmin ≤ R∗ ≤ rmax, (10)



Algorithm 2 (1 + ε)-approximation of EHB(P )

1: c := p1
2: rmax := ρ (c, P ); rmin = rmax

2
; tmax := +∞

3: r := rmax;
4: repeat
5: ctemp := Alg1

(
P, r, ε

2

)
, interrupt if t > tmax in Alg1

6: if call of Alg1 has been interrupted then
7: rmin := r
8: else
9: rmax := r ; c := ctemp

10: end if
11: dr := rmax−rmin

2
; r := rmin + dr ; tmax := log(ch(1+ε/2)r)−log(ch(rmin))

log(ch(rε/2))

12: until 2dr < rmin
ε
2

13: return c

so that the maximum number T of iterations of Alg1 (P, r, ε/2) can be bounded
by

T ≤ log (ch (ρ (c1, c
∗)))

log (ch (εr/2))
≤ log (ch (1 + ε/2) r)− log (ch (rmin))

log (ch (rε/2))
(11)

using (9) and the left side of (6) and (10). At the end of the repeat-until loop, we
know that rmax ≤ R∗+dr and that c is the center of an (1+ ε/2) approximation
of EHB(P, rmax). So

ρ (c, P ) ≤
(

1 +
ε

2

)
rmax ≤

(
1 +

ε

2

)(
R∗ + rmin

ε

2

)
≤
(

1 + ε+
ε2

4

)
R∗. (12)

This approximation is obtained in precisely O
(
N
ε2 log

(
1
ε

))
since after T iterations

of the main loop, dr ≈ R∗

2T
.

4 Experimental results

4.1 Performance

To evaluate the performance of Alg. 2, we computed MEHB centers for a point
cloud of N = 200 points for different values of the dimension d and the precision
parameter ε. For each test, the point cloud was sampled uniformly (euclidean
sampling) in the unit ball of dimension d. In order to check the relevance of
our theoretical bounds, we plotted in Fig. 3 the average number of α-midpoints
calculations and the mean execution time as a function of ε for different values
of d. We evaluated convergence comparing the returned values of c to a value c∗

computed with high precision. The algorithms have been implemented in Java
using the arbitrary-precision arithmetic library Apfloat.



Fig. 3. Number of α-midpoint calculations (left) as a function of ε and execution time
(right) as a function of ε, both in logarithmic scale for different values of d. We observe
that the number of iterations does not depend on d, and that the running time is
approximately O( dn

ε2
) (vertical translation in logarithmic scale).

4.2 One-class clustering in some subfamilies of multivariate
distributions

One-class clustering consists, given a set P of points, to sum up the informa-
tion contained in P while minimizing a measure of distortion. In our case, we
associate to a point set P a point c minimizing ρ (c, P ), i.e. the center of the
MEHB(P ). This is particularly relevant when applied to parameterizations of
subfamilies of multivariate normal distributions. Indeed, a sufficiently smooth
family of probability distributions can be seen as a statistical manifold (a Rie-
mannian manifold whose metric is given by the Fisher information matrix, see
[4]). As proved in [4],

– the familyN
(
µ, σ2Id

)
of d-variate normal distributions with scalar covariance

matrix (Id is the d× d identity matrix)

– the family N
(
µ,diag

(
σ2
1 , . . . , σ

2
n

))
of n-variate normal distributions with di-

agonal covariance matrix

– the family N(µ0, Σ) of d-variate normal distributions with fixed mean µ0

and arbitrary positive definite covariance matrix Σ

all induce a hyperbolic metric on their respective parameter spaces. We can
thus apply Alg.2 to those subfamilies in order to perform one-class clustering
using their natural Fisher information metric. An example showing how differ-
ent from the euclidean case the results are is given in Fig.4. We used the usual
Möbius transformation between the Poincaré upper half-plane and the hyper-
bolic Poincaré conformal ball model, see [6].

As a byproduct, we can derive a solution to the k-center problem for those
specific subfamilies of multivariate normal distributions in 2O(k log k log(1/ε)/ε2)dn.



Fig. 4. (Best viewed in color). Graphical representation of the center of the MEHB,
in the (µ, σ) superior half-plane (left), by showing corresponding probability density
functions (right). In red (point E) is represented the center of MEHB(A,B,C). In pink
(point D) is the 1/2-midpoint between A and B. The geodesic joining A to B is also
displayed
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