
MPRI 2-12-2 Partiel

Morain, Barbaud, Smith

27/11/2018

Time allowed: two hours. Answers may be given in French and/or English. Notes and references on
paper are permitted. The six questions are independent, and may be attempted in any order.

Question A: Elementary arithmetic

1. Let u and v two rational non integral numbers so that their product N is integral. Show how to
find the factorization of N as a product of two integers.

2. Suppose that N = p2 +q2 = r 2 + s2 with p, q , r , s positive integers and (r, s) ̸∈ {(p, q), (q, p)}. Show
that we can write N as a product of two non trivial rational numbers. Hint: write p = r+x, q = s−y
and reorganize the equalities.

3. Numerical application: factor N = 221 = 100+121 = 196+25 using the preceding question (and
not by hand!).

Question B: Elementary discrete logarithms

Let G = (Z/pZ)∗ for an odd prime p, of generator g . Let a ∈ G . We are interested in the discrete log-
arithm of a in base g , say x = x0 +2x1 + ·· ·+2k xk with xi ∈ {0,1} and xk = 1. We define the functions
Li (a) := xi .

For simplicity, we assume that p ≡ 3 mod 4.

1. Show how one can determine x0 in polynomial time in log p (in other words we can compute
L0(a) in polynomial time for all a).

2. Show that L0(a) ̸= L0(p −a) for all a.

3. Suppose we have an oracle that gives us L1(b) for any b ∈G . Give an algorithm that computes the
whole value of x in polynomial time in log p.

Question C: Coppersmith, Odlyzko, Schroeppel

Let p be a (large) prime number. We want to compute discrete logarithms in (Z/pZ)∗ (generated by a
given g ).

Put H = ⌊pp⌋+ 1, J = H 2 − p. Consider small integers c1 and c2, say ci < L(p)α where L(p) is the
classical function exp((log p)1/2(loglog p)1/2) and α> 0.

1. Estimate the size of (H + c1)(H + c2) mod p.

2. Sketch an index calculus method based on this setting.

3. Show that this method can use a sieve to speed up the computations.
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Question D: Square roots in Fp

1. Let H be a cyclic group of order 2s . Give an algorithm to compute the discrete logarithm of a given
element x ∈ H in polynomial time in s.

2. Let p be a prime, let G = F∗p and let g be a generator of G . Write p−1 = 2s t for integers s and t with
t odd.

(a) Let u be the inverse of 2 modulo t . Give a formula for u.

(b) Let a be a square in G . Show that au/
p

a belongs to the subgroup H := {x t | x ∈ F∗p }, gener-

ated by h := g t .

(c) Describe an algorithm which, given p, g and a, computes
p

a in polynomial time in log2 p.

Question E: Montgomery curves

Let p be a prime > 3. For each A ̸= ±2 in Fp , we have an elliptic curve in Montgomery form defined by

EA : y2 = x(x2 + Ax +1) over Fp .

In projective coordinates (X : Y : Z ) where x = X /Z and y = Y /Z , the defining equation of EA becomes

EA : Y 2Z = X (X 2 + AX Z +Z 2) .

We let O = (0 : 1 : 0) be the “point at infinity”. There at least one other obvious point in E (Fp ), namely
T = (0 : 0 : 1).

1. What happens if we allow A =±2?

2. Write down all of the points in E [2](Fp2 ). (Recall that E [2] is the 2-torsion subgroup of E .)

3. The j -invariant of EA is

j (EA) = 256
(A2 −3)3

A2 −4
,

so EA is isomorphic to EA′ (and there is a change of coordinates taking EA into EA′ ) if and only if
A′ =±A.

(a) What is the isomorphism EA → E−A?

(b) When is E−A the quadratic twist of EA?

4. The 4-th division polynomial of E is

Ψ4(x, y) = 4 ·2y · (x6 +2Ax5 +5x4 −5x2 −2Ax −1
)

= 4 ·2y · (x +1) · (x −1) · (x4 +2Ax3 +6x2 +2Ax +1) .

Show that #EA(Fp ) is always divisible by 4, for any A ∈ Fp .

Question F: The Montgomery ladder

Let p, A, EA , O, and T be defined as above. Suppose P = (XP : YP : ZP ) and Q = (XQ : YQ : ZQ ) are in
EA(Fp ) \ {O,T } with Q ̸= ±P . We write

P ⊕Q = (X⊕ : Y⊕ : Z⊕) and P ⊖Q = (X⊖ : Y⊖ : Z⊖) ,

and for every k > 0 we write
(X[k]P : Y[k]P : Z[k]P ) = [k]P .
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If Q ̸= ±P then the pseudo-addition operation xADD :
(
(XP , ZP ), (XQ , ZQ ), (X⊖, Z⊖)

) 7→ (X⊕, Z⊕) is de-
fined for P,Q ∉ {O,T } by the pair of simultaneous equations{

X⊕ = Z⊖
[
(XP −ZP )(XQ +ZQ )+ (XP +ZP )(XQ −ZQ )

]2

Z⊕ = X⊖
[
(XP −ZP )(XQ +ZQ )− (XP +ZP )(XQ −ZQ )

]2 (1)

The pseudo-doubling operation xDBL : (XP , ZP ) 7→ (X[2]P , Z[2]P ) is defined for P ∉ {O,T } by the pair of
simultaneous equations {

X[2]P = (XP +ZP )2(XP −ZP )2

Z[2]P = (4XP ZP )
[
(XP −ZP )2 +C · (4XP ZP )

] (2)

where C is the constant (A+2)/4. When calculating, it is useful to remember that 4XP ZP = (XP +ZP )2−
(XP − ZP )2. To compute the map (m, (XP , ZP )) 7→ (X[m]P , Z[m]P ) for m > 2, we use the Montgomery
ladder (Algorithm 1).

Algorithm 1: LADDER: The Montgomery ladder

Input: m =∑k−1
i=0 mi 2i with mk−1 = 1 and (XP , ZP ) in F2

p for some P = (XP : YP : ZP ) in
E (Fp ) \ {O,T }

Output: (X[m]P , Z[m]P ) ∈ F2
q .

1 (x0,x1) ← ((XP , ZP ),xDBL((XP , ZP ))) ;
2 for i = k −2 down to 0 do
3 if mi = 0 then
4 (x0,x1) ← (xDBL(x0),xADD(x0,x1, (XP , ZP )))
5 else
6 (x0,x1) ← (xADD(x0,x1, (XP , ZP )),xDBL(x1))

7 return x0

1. What happens if we let P =O or P = T in Algorithm 1 and Equations (1) and (2)?

2. Suppose we have a constant-time conditional swap: that is, a function CSWAP(b,S,T ), where b ∈
{0,1} and S,T ∈ Fp , which returns (S,T ) if b = 0 and (T,S) if b = 1. Show how to use this function to
make the Montgomery ladder uniform and constant-time with respect to its scalar argument m
(for scalars of fixed bit-length k). In particular, there should be no branching (“if statements”) on
bits of m.

3. Let µ(k), σ(k), and α(k) denote the cost (in some unit of time) of computing a multiplication,
squaring, and addition (or subtraction) in a k-bit prime finite field Fp (i.e., k = log2 p).

(a) Derive the cost of a single iteration of the loop in the Montgomery ladder.

(b) What is the cost of a single LADDER call using a log2 p-bit scalar?

(c) Given any x in Fp , we can compute x−1 as xp−2. When is it worth replacing the input (XP :
ZP ) with (XP /ZP : 1) in LADDER?

4. Algorithm 1 requires mk−1 = 1. How can Algorithm 1 be modified to remove this requirement?
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