MPRI 2-12-2 Partiel

Morain, Barbaud, Smith

27/11/2018

Time allowed: two hours. Answers may be given in French and/or English. Notes and references on paper are permitted. The six questions are independent, and may be attempted in any order.

Question A: Elementary arithmetic

- 1. Let *u* and *v* two *rational* non integral numbers so that their product *N* is integral. Show how to find the factorization of *N* as a product of two *integers*.
- 2. Suppose that $N = p^2 + q^2 = r^2 + s^2$ with p, q, r, s positive integers and $(r, s) \notin \{(p, q), (q, p)\}$. Show that we can write N as a product of two non trivial rational numbers. *Hint*: write p = r + x, q = s y and reorganize the equalities.
- 3. Numerical application: factor N = 221 = 100 + 121 = 196 + 25 using the preceding question (and not by hand!).

Question B: Elementary discrete logarithms

Let $G = (\mathbb{Z}/p\mathbb{Z})^*$ for an odd prime p, of generator g. Let $a \in G$. We are interested in the discrete logarithm of a in base g, say $x = x_0 + 2x_1 + \cdots + 2^k x_k$ with $x_i \in \{0, 1\}$ and $x_k = 1$. We define the functions $L_i(a) := x_i$.

For simplicity, we assume that $p \equiv 3 \mod 4$.

- 1. Show how one can determine x_0 in polynomial time in $\log p$ (in other words we can compute $L_0(a)$ in polynomial time for all a).
- 2. Show that $L_0(a) \neq L_0(p-a)$ for all *a*.
- 3. Suppose we have an oracle that gives us $L_1(b)$ for any $b \in G$. Give an algorithm that computes the whole value of *x* in polynomial time in log *p*.

Question C: Coppersmith, Odlyzko, Schroeppel

Let *p* be a (large) prime number. We want to compute discrete logarithms in $(\mathbb{Z}/p\mathbb{Z})^*$ (generated by a given *g*).

Put $H = \lfloor \sqrt{p} \rfloor + 1$, $J = H^2 - p$. Consider small integers c_1 and c_2 , say $c_i < L(p)^{\alpha}$ where L(p) is the classical function $\exp((\log p)^{1/2} (\log \log p)^{1/2})$ and $\alpha > 0$.

- 1. Estimate the size of $(H + c_1)(H + c_2) \mod p$.
- 2. Sketch an index calculus method based on this setting.
- 3. Show that this method can use a sieve to speed up the computations.

Question D: Square roots in \mathbb{F}_p

- 1. Let *H* be a cyclic group of order 2^s . Give an algorithm to compute the discrete logarithm of a given element $x \in H$ in polynomial time in *s*.
- 2. Let *p* be a prime, let $G = \mathbb{F}_p^*$ and let *g* be a generator of *G*. Write $p 1 = 2^s t$ for integers *s* and *t* with *t* odd.
 - (a) Let *u* be the inverse of 2 modulo *t*. Give a formula for *u*.
 - (b) Let *a* be a square in *G*. Show that a^u/\sqrt{a} belongs to the subgroup $H := \{x^t \mid x \in \mathbb{F}_p^*\}$, generated by $h := g^t$.
 - (c) Describe an algorithm which, given *p*, *g* and *a*, computes \sqrt{a} in polynomial time in $\log_2 p$.

Question E: Montgomery curves

Let *p* be a prime > 3. For each $A \neq \pm 2$ in \mathbb{F}_p , we have an elliptic curve in Montgomery form defined by

$$\mathscr{E}_A: y^2 = x(x^2 + Ax + 1)$$
 over \mathbb{F}_p .

In projective coordinates (X : Y : Z) where x = X/Z and y = Y/Z, the defining equation of \mathcal{E}_A becomes

$$\mathscr{E}_A: Y^2 Z = X(X^2 + AXZ + Z^2).$$

We let O = (0:1:0) be the "point at infinity". There at least one other obvious point in $\mathscr{E}(\mathbb{F}_p)$, namely T = (0:0:1).

- 1. What happens if we allow $A = \pm 2$?
- 2. Write down all of the points in $\mathscr{E}[2](\mathbb{F}_{p^2})$. (Recall that $\mathscr{E}[2]$ is the 2-torsion subgroup of \mathscr{E} .)
- 3. The *j*-invariant of \mathscr{E}_A is

$$j(\mathscr{E}_A) = 256 \frac{(A^2 - 3)^3}{A^2 - 4},$$

so \mathscr{E}_A is isomorphic to $\mathscr{E}_{A'}$ (and there is a change of coordinates taking \mathscr{E}_A into $\mathscr{E}_{A'}$) if and only if $A' = \pm A$.

- (a) What is the isomorphism $\mathscr{E}_A \to \mathscr{E}_{-A}$?
- (b) When is \mathscr{E}_{-A} the quadratic twist of \mathscr{E}_{A} ?
- 4. The 4-th division polynomial of \mathscr{E} is

$$\Psi_4(x, y) = 4 \cdot 2y \cdot \left(x^6 + 2Ax^5 + 5x^4 - 5x^2 - 2Ax - 1\right)$$

= 4 \cdot 2y \cdot (x+1) \cdot (x-1) \cdot (x^4 + 2Ax^3 + 6x^2 + 2Ax + 1).

Show that $#\mathscr{E}_A(\mathbb{F}_p)$ is *always* divisible by 4, for any $A \in \mathbb{F}_p$.

Question F: The Montgomery ladder

Let p, A, \mathscr{E}_A , O, and T be defined as above. Suppose $P = (X_P : Y_P : Z_P)$ and $Q = (X_Q : Y_Q : Z_Q)$ are in $\mathscr{E}_A(\mathbb{F}_p) \setminus \{O, T\}$ with $Q \neq \pm P$. We write

$$P \oplus Q = (X_{\oplus} : Y_{\oplus} : Z_{\oplus})$$
 and $P \ominus Q = (X_{\ominus} : Y_{\ominus} : Z_{\ominus}),$

and for every k > 0 we write

$$(X_{[k]P}: Y_{[k]P}: Z_{[k]P}) = [k]P.$$

If $Q \neq \pm P$ then the pseudo-addition operation xADD: $((X_P, Z_P), (X_Q, Z_Q), (X_{\ominus}, Z_{\ominus})) \mapsto (X_{\oplus}, Z_{\oplus})$ is defined for $P, Q \notin \{O, T\}$ by the pair of simultaneous equations

$$\begin{cases} X_{\oplus} = Z_{\ominus} \left[(X_P - Z_P) (X_Q + Z_Q) + (X_P + Z_P) (X_Q - Z_Q) \right]^2 \\ Z_{\oplus} = X_{\ominus} \left[(X_P - Z_P) (X_Q + Z_Q) - (X_P + Z_P) (X_Q - Z_Q) \right]^2 \end{cases}$$
(1)

The pseudo-doubling operation xDBL: $(X_P, Z_P) \mapsto (X_{[2]P}, Z_{[2]P})$ is defined for $P \notin \{O, T\}$ by the pair of simultaneous equations

$$\begin{cases} X_{[2]P} = (X_P + Z_P)^2 (X_P - Z_P)^2 \\ Z_{[2]P} = (4X_P Z_P) \left[(X_P - Z_P)^2 + C \cdot (4X_P Z_P) \right] \end{cases}$$
(2)

where *C* is the constant (A+2)/4. When calculating, it is useful to remember that $4X_PZ_P = (X_P + Z_P)^2 - (X_P - Z_P)^2$. To compute the map $(m, (X_P, Z_P)) \mapsto (X_{[m]P}, Z_{[m]P})$ for m > 2, we use the Montgomery ladder (Algorithm 1).

Algorithm 1: LADDER: The Montgomery ladder

Input: $m = \sum_{i=0}^{k-1} m_i 2^i$ with $m_{k-1} = 1$ and (X_P, Z_P) in \mathbb{F}_p^2 for some $P = (X_P : Y_P : Z_P)$ in $\mathscr{E}(\mathbb{F}_p) \setminus \{O, T\}$ Output: $(X_{[m]P}, Z_{[m]P}) \in \mathbb{F}_q^2$. 1 $(x_0, x_1) \leftarrow ((X_P, Z_P), xDBL((X_P, Z_P)))$; 2 for i = k - 2 down to 0 do 3 | if $m_i = 0$ then 4 | $(x_0, x_1) \leftarrow (xDBL(x_0), xADD(x_0, x_1, (X_P, Z_P)))$ 5 | else 6 | $(x_0, x_1) \leftarrow (xADD(x_0, x_1, (X_P, Z_P)), xDBL(x_1))$ 7 return x_0

- 1. What happens if we let P = O or P = T in Algorithm 1 and Equations (1) and (2)?
- 2. Suppose we have a constant-time conditional swap: that is, a function CSWAP(b, S, T), where $b \in \{0, 1\}$ and $S, T \in \mathbb{F}_p$, which returns (S, T) if b = 0 and (T, S) if b = 1. Show how to use this function to make the Montgomery ladder uniform and constant-time with respect to its scalar argument m (for scalars of fixed bit-length k). In particular, there should be no branching ("if statements") on bits of m.
- 3. Let $\mu(k)$, $\sigma(k)$, and $\alpha(k)$ denote the cost (in some unit of time) of computing a multiplication, squaring, and addition (or subtraction) in a *k*-bit prime finite field \mathbb{F}_p (i.e., $k = \log_2 p$).
 - (a) Derive the cost of a single iteration of the loop in the Montgomery ladder.
 - (b) What is the cost of a single LADDER call using a $\log_2 p$ -bit scalar?
 - (c) Given any x in \mathbb{F}_p , we can compute x^{-1} as x^{p-2} . When is it worth replacing the input $(X_P : Z_P)$ with $(X_P/Z_P : 1)$ in LADDER?
- 4. Algorithm 1 requires $m_{k-1} = 1$. How can Algorithm 1 be modified to remove this requirement?