MPRI – cours 2.12.2 F. Morain, B. Smith Final exam, 2014/03/10

The following exercises are independent and can be treated in any order.

Exercise 1 Arithmetic

Let N be an odd composite number, $a \in (\mathbb{Z}/N\mathbb{Z})^*$. Suppose we can find the order of a modulo N, say r. In which case(s) can one factor N given r?

Exercise 2 Decomposing an integer into primes

Decomposing an integer means finding primes p_i 's such that

$$N = \prod_{i=1}^{k} p_i^{\alpha_i}$$

with $p_i \neq p_j$ and $\alpha_i > 0$. Give an algorithm that accomplishes this task using the different methods seen during the course. Make sure it works on the following numbers : 128, 15, 101, 143, 75.

Exercise 3 2-torsion points

Let p be an odd prime > 3.

3.1 How many points of order 2 can an elliptic curve E/\mathbb{F}_p have? Relate each case to the equation of $E: Y^2 = X^3 + AX + B$.

3.2 Same question for the Jacobian of a hyperelliptic curve $Y^2 = f(X)$ of genus g over \mathbb{F}_p .

Exercise 4 Playing with the L(1/4) complexity

At the beginning of 2013, Joux proposed a new algorithm for the discrete logarithm problem in finite fields of small characteristic with a complexity in $L_N(1/4)$, where N is the cardinality of the finite field. In the following, we do not study this algorithm, but we play with this unusual complexity.

4.1 Assume that a black-box outputs uniformly distributed random integers between 0 and N. Let c > 0 be constant. After $L_N(1/4, c)$ integers have been output, what is the expected smoothness of the smoothest integer among those? Answer.

4.2 Taking the Number Field Sieve algorithm (NFS) as a tool for testing the smoothness of an integer, what is the expected cost of finding this smoothest integer? Answer.

4.3 Assume that there is an algorithm that can find all factors less than B of an integer bounded by N in time $(\log N)^{O(1)}L_N(1/2, 1)$. What is the expected cost of finding the smoothest integer using this tool instead of NFS? **Answer.**

4.4 Same questions with polynomials over \mathbb{F}_q : among $L_N(1/4, c)$ polynomials of degree at most $\log_q(N)$, how smooth is expected to be the smoothest polynomial and what is the expected cost of finding it?

Answer.

Exercise 5 Elliptic Curves 1

Consider the elliptic curve

$$\mathcal{E}: y^2 = x^3 + x - 2$$
 over \mathbb{F}_p ,

where $p \notin \{2,7\}$ is a prime.

- 1. Why have we excluded p = 2 and p = 7?
- 2. What is the order of the automorphism group of \mathcal{E} ?
- 3. Give upper and lower bounds on the order of $\mathcal{E}(\mathbb{F}_p)$.
- 4. What is the best strategy for determining $N = \# \mathcal{E}(\mathbb{F}_p)$ if $\log_2 p \sim 384$?
- 5. Suppose we know $N = \#\mathcal{E}(\mathbb{F}_p)$. What is the exact value of $\#\mathcal{E}(\mathbb{F}_{p^2})$? What about $\#\mathcal{E}(\mathbb{F}_{p^n})$ for n > 2?
- 6. Give upper bounds on the largest prime factors of $\#\mathcal{E}(\mathbb{F}_p)$ and $\#\mathcal{E}(\mathbb{F}_{p^2})$.
- 7. What is the asymptotic complexity for solving an instance of the DLP in $\mathcal{E}(\mathbb{F}_p)$ as $p \to \infty$?
- 8. What is the asymptotic complexity for solving an instance of the DLP in $\mathcal{E}(\mathbb{F}_{p^2})$ as $p \to \infty$?
- 9. Consider the curve

$$\mathcal{E}': y^2 = x^3 + x + 2$$

defined over the same \mathbb{F}_p as \mathcal{E} . How are the values of $\#\mathcal{E}(\mathbb{F}_p)$ and $\#\mathcal{E}'(\mathbb{F}_p)$ related? Answer.

Exercise 6 Elliptic Curves 2

Consider the elliptic curve

$$\mathcal{E}: y^2 = x^3 + 1$$
 over \mathbb{F}_p , where $p := 2^{255} - 3015$

(ie, p is a 254-bit prime). We have

$$#\mathcal{E}(\mathbb{F}_p) = p + 1 = 2 \cdot 9 \cdot r ,$$

where r is a 251-bit prime. Let ζ be the automorphism of \mathcal{E} defined by

$$\zeta: (x,y) \longmapsto (\rho_3 x, y) ,$$

where ρ_3 is a primitive cube root of unity in \mathbb{F}_p .

- 1. What is the smallest e such that ζ is defined over \mathbb{F}_{p^e} ?
- 2. What is the characteristic polynomial of ζ ?
- 3. Let $\pi: (x, y) \mapsto (x^p, y^p)$ be the Frobenius endomorphism of \mathcal{E} . Show that $\pi \zeta \neq \zeta \pi$.

- 4. Is \mathcal{E} pairing-friendly? Explain why or why not.
- 5. Let \mathcal{G} be the order-*r* subgroup of \mathcal{E} . What impact does the Menezes–Okamoto–Vanstone reduction have on the difficulty of discrete logarithms in \mathcal{G} ?
- 6. Is \mathcal{E} a good choice of curve for use in the Boneh–Lynn–Schacham short signature scheme? Explain why or why not.

Answer.