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I. The discrete logarithm in a group.

II. A typical generic group: an elliptic curve over a finite field.
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I. The discrete logarithm in a group

Def. (DLP) Given G = 〈g〉 of order n and a ∈ G, find x ∈ [0..n[ s.t.
a = gx.

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ,+), since a = xg mod N is solvable in
polynomial time.

Relatively easy groups: finite fields, curves of very large genus,
class groups of number fields.

Probably difficult groups: elliptic curves.
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Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
• enumeration: O(n);

• Shanks: deterministic time and space O(
√

n);

• Pollard: probabilistic time O(
√

n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.
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A) The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.

n =
∏

i

pαi
i

Solving gx = a is equivalent to knowing x mod n, i.e. x mod pαi
i for all i

(chinese remainder theorem).

Idea: let pα || n and m = n/pα. Then b = am is in the cyclic group of
ordre pα generated by gm. We can find the log of b in this group,
which yields x mod pα.

Cost: O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 4/19



B) Shanks

x = cu + d, 0 ≤ d < u, 0 ≤ c < n/u

gx = a ⇔ a(g−u)c = gd.

• Step 1 (baby steps) : compute B = {gd, 0 ≤ d < u};
• Step 2 (giant steps) :

◮ compute f = g−u
= 1/gu;

◮ for c = 0..n/u, if af c
∈ B, then stop.

• End: af c = gd hence x = cu + d.

Analysis:
• Co = u + n/u group operations;
• Cm = n/u membership tests.

If membership test = O(1), then dominant term is Co, minimal for
u =

√
n ⇒ (deterministic) time and space O(

√
n).

Implementation:
• use hashing to test membership in B;
• all kinds of trade-offs possible if low memory available.
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C) Pollard’s ρ

Prop . Let f : E → E, #E = m; Xn+1 = f (Xn) with X0 ∈ E. The
functional digraph of X is:
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•
X0

•
X1

•
X2

•
Xµ−1

•
Xµ

•
Xµ+1

•
•

Xµ+λ−1

Ex1. If Em = G is a finite group with m elements, and a ∈ G of ordre
N, f (x) = ax and x0 = a, (xn) is purely periodic, i.e., µ = 0, and λ = N.

Ex2. Soit Em = Z/11Z, f : x 7→ x2 + 1 mod 11:
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Epact

Thm. (Flajolet, Odlyzko, 1990) When m → ∞

λ ∼ µ ∼
√

πm
8

≈ 0.627
√

m.

Prop. There exists a unique e > 0 (epact) s.t. µ ≤ e < λ + µ and
X2e = Xe. It is the smallest non-zero multiple of λ that is ≥ µ: if µ = 0,
e = λ and if µ > 0, e = ⌈µ

λ⌉λ.

Thm. e ∼
√

π5m
288 ≈ 1.03

√
m.

Floyd’s algorithm:

X <- X0; Y <- X0; e <- 0;
repeat

X <- f(X); Y <- f(f(Y)); e <- e+1;
until X = Y;
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Application to the discrete log (à la Teske)

Compute the DL of h = gx:

• Choose y0 = gα0 hβ0 for α0, β0 ∈R [0..n[;

• Use a function F s.t. given y = gαhβ , one can compute
efficiently F(y) = gα′

hβ′

;

• Compute the sequence yk+1 = F(yk) and the exponents
yk = gαk hβk until yi = yj.

When yi = yj, one gets

αi + βix ≡ αj + βjx mod n

or
x ≡ (αj − αi)(βi − βj)

−1 mod n

(with very high probability gcd(βi − βj, n) = 1).
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Two versions

Storing a few points:
• Compute r random points Mk = gγk hδk for 1 ≤ k ≤ r;

• use H : G → {1, . . . , r};

• define F(Y) = Y · MH(Y).

Experimentally, r = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(

√
n) method (see Teske).

Storing a lot of points:
(van Oorschot and Wiener)
Say a distinguished has some special form; we can store all of them
to speed up the process.
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D) Shoup’s theorem (à la Stinson)

Encoding function: injective map σ : Z/nZ → S where S is a set of
binary strings s.t. #S ≥ n.

Ex. G = (Z/qZ)∗ = 〈g〉, n = q − 1, σ : a 7→ ga mod q, S can be {0, 1}ℓ

where q < 2ℓ.

Rem. A generic algorithm should work for any σ.

Oracle O: given σ(i) and σ(j), computes σ(ci ± dj mod n) for any
given known integers c and d. This is the only operation permitted.

Game: given σ1 = σ(1) and σ2 = σ(a) for random a, GenLog
succeeds if it outputs a.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.
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Stinson (2/4)

GenLog produces (σ1, σ2, . . . , σm) using O where

σi = σ(ci + adi mod n),

with (c1, d1) = (1, 0) and (c2, d2) = (0, 1), (ci, di) ∈ Z/nZ × Z/nZ.

Key remark: since σ is injective, σi = σj iff ci + adi ≡ cj + adj, hence a.

Two cases: non-adaptive (choose ci, di before starting) or adaptive.

Thm. Let β = Proba(GenLog succeeds). For β > δ > 0, one must
have m = Ω(n1/2).
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Stinson (3/4)

The non-adaptive case: GenLog chooses

C = {(ci, di), 1 ≤ i ≤ m} ⊂ Z/nZ × Z/nZ

and then computes all σi’s.
Put

Good(C) = {(ci − cj)/(di − dj)},#Good(C) = G ≤ m(m − 1)/2.

If a ∈ Good(C), GenLog returns a, otherwise some a at random.
α is the event a ∈ Good(C),

Proba(β) = Proba(β‖α)Proba(α) + Proba(β‖α)Proba(α)

= 1 × G
n

+
1

n − G × n − G
n

=
G + 1

n
≤ m(m − 1)/2 + 1

n
.

⇒ if proba > δ > 0, then m must be Ω(n1/2).
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Stinson (4/4)

The adaptive case: For 1 ≤ i ≤ m, Ci = {σj, 1 ≤ j ≤}. Then a can be
computed at time i if a ∈ Good(Ci). If a 6∈ Good(Ci), then
a ∈ Z/nZ − Good(Ci) with proba 1/(n − #Good(Ci)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s ρ or Shanks, then you have to
work harder. . .
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E) Variants of the DL problem

Decisional DH problem: given (g, ga, gb, gc), do we have
c = ab mod n?

Computational DH problem: given (g, ga, gb), compute gab.

DL problem: given (g, ga), find a.

Prop. DL ⇒ CDH ⇒ DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf).

More problems: ℓ-SDH (given g, gα, . . . , gαℓ

, compute gαℓ+1
.

Rem. Generalized problems on pairings.
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II. A typical generic group: an elliptic curve over a
finite field

K field of characteristic 6= 2, 3. Elements of K3 − {(0, 0, 0)} are
equivalent iff

(x1, y1, z1) ∼ (x′1, y′1, z′1) ⇐⇒ ∃ λ 6= 0, x1 = λx′1, y1 = λy′1, z1 = λz′1.

Projective space: P2(K) = equivalence classes of ∼.

Elliptic curve defined for points in P2(K):

Y2Z = X3 + aXZ2 + bZ3 (1)

with 4a3 + 27b2 6= 0 (discriminant of E).

Def. E(K) = {(x : y : z) satisfying (1)}.

Prop. E(K) = {(0 : 1 : 0)} ∪ {(x : y : 1) satisfying (1)} = point at
infinity ∪ affine part.
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The group law

M1

•

M2•

S•

M3
•

x

y

M3 = M1 ⊕ M2

λ =

{
(y1 − y2)/(x1 − x2)
(3x2

1 + a)/(2y1)
x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

[k]M = M ⊕ · · · ⊕ M
︸ ︷︷ ︸

k times

Rem. Standard equation and group law formulas for any field. Can
be improved in many ways, see later.
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Cardinality (1/2)

Thm. (Hasse) #E(Fp) = p + 1 − t, |t| ≤ 2
√

p.

Pb: no general formula for #E except in some special cases.

Thm. (Deuring) given |t|, there exists E s.t. #E = p + 1 − t.

Pb: no efficient way for finding E except in some special cases
(complex multiplication).

Thm. (Structure) E(Fp) ≃ E1 × E2 of respective ordres m1 and m2 s.t.
m2 | p − 1 and m2 | m1.
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Cardinality (2/2): do it yourself

Invent a method in time:
• O(p):

• O(p1/2):

• O(p1/4):

Algorithms:
• g = 1, p large: Schoof (1985). Õ((log p)5), completely practical

after improvements by Elkies, Atkin, and implementations by
M., Lercier, etc. New recent record Enge+M. for
p = 102499 + 7131 (400 days of AMD 64 Processor 3400+ (2.4GHz)).

• p = 2: p-adic methods (Satoh, Fouquet/Gaudry/Harley).
Completely solved.
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ECDLP

DLP in general resistant on an elliptic curve except

• supersingular curves (t = 0), due to the MOV reduction;

• anomalous curves (t = 1).

ECC112b: taken from
http://lacal.epfl.ch/page81774.html,
Bos/Kaihara/Kleinjung/Lenstra/Montgomery (EPFL/Alcatel-Lucent
Bell Laboratories/MSR) p = (2128 − 3)/(11 ∗ 6949), curve secp112r1

• 3.5 months on 200 PS3; 8.5 × 1016 ec additions (≈ 14 full 56-bit
DES key searches); started on January 13, 2009, and finished
on July 8, 2009.

• half a billion distinguished points using 0.6 Terabyte of disk
space.
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