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I. The discrete logarithm in a group.

II. A typical generic group: an elliptic curve over a finite field.
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|. The discrete logarithm in a group

Def. (DLP) Given G = (g) of order nand a € G, find x € [0..n[ s.t.
a=g~

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ,+), since a = xg mod N is solvable in
polynomial time.

Relatively easy groups: finite fields, curves of very large genus,
class groups of number fields.

Probably difficult groups:  elliptic curves.
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Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
e enumeration: O(n);
e Shanks: deterministic time and space O(y/n);
e Pollard: probabilistic time O(,/n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.
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A) The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.
n=][p"
i

Solving g* = ais equivalent to knowing x mod n, i.e. x mod p;* for all i
(chinese remainder theorem).

Idea: let p* || nand m= n/p®. Then b = a™is in the cyclic group of
ordre p* generated by g™. We can find the log of b in this group,
which yields x mod p®.

Cost: O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.
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B) Shanks

x=cu+d,0<d<u, 0<c<n/u

g-=a<alg V) =g’

e Step 1 (baby steps) : compute B = {g%,0 < d < u};
e Step 2 (giant steps) :

» compute f =g~ = 1/g";

» for c = 0..n/u, if af® € B, then stop.

e End: af® = g% hence x = cu + d.
Analysis:

e C, = U+ n/ugroup operations;

e Cy = n/umembership tests.

If membership test = O(1), then dominant term is C,, minimal for

u = +/n = (deterministic) time and space O(/n).
Implementation:

¢ use hashing to test membership in B;

¢ all kinds of trade-offs possible if low memory available.
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C) Pollard's p

Prop. Letf : E — E, #E = m; X1 = f(X,) with Xo € E. The
functional digraph of X is:

XM+1

Xy

Xo X1 X X1
X/lri’)\fl

Ex1. If En = Gis a finite group with m elements, and a € G of ordre

N, f(X) = axand xo = &, (Xy) is purely periodic, i.e., x = 0, and A = N.

Ex2. Soit Ep, = Z/117Z, f : X — x* + 1 mod 11:
9

0—>1—2—+5—+4—+6~—7

3—10+—38
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Epact

Thm. (Flajolet, Odlyzko, 1990) When m — oo

XNEN,/%nzo.esz?ﬁn.

Prop. There exists a unique e > 0 (epact) s.t. p <e< A+ p and
Xoe = Xe. It is the smallest non-zero multiple of A thatis > u: if 4 = 0,

e=Xandif u>0,e=[F]\
Thm. e~ /20 ~ 1.03,/m.

Floyd'’s algorithm:

X <- X0; Y <- X0; e <- O
r epeat

X<- f(X); Y<- f(f(Y)); e <- e+];
until X =Y;

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Application to the discrete log (a la Teske)

Compute the DL of h = g*:
e Choose yo = g*°h™ for ag, 8o €r [0..N[;
e Use a function F s.t. given y = g*h”, one can compute
efficiently F(y) = g h?’;
e Compute the sequence yi+1 = F(yk) and the exponents
Yk = g*hPuntil y; = y;.
Wheny; =y;, one gets

o + X = o + Fxmod n

or
X = (aj — Oéi)(ﬁi — ﬁj)_l mod n

(with very high probability ged(5 — 5, n) = 1).
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Two versions

Storing a few points:
e Compute r random points My = ngh“k fori<k<r;
euse H:G—{1,...,r};
o define F(Y) =Y - Myy).

Experimentally, r = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(/n) method (see Teske).

Storing a lot of points:

(van Oorschot and Wiener)

Say a distinguished has some special form; we can store all of them
to speed up the process.
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D) Shoup’s theorem (a la Stinson)

Encoding function: injective map o : Z/nZ — Swhere Sis a set of
binary strings s.t. #S> n.

Ex. G=(Z/qZ)* = (g),n=q— 1, 0 : ar> g® mod g, Scan be {0, 1}
where q < 2°.

Rem. A generic algorithm should work for any o.

Oracle O: given (i) and o(j), computes o(ci + dj mod n) for any
given known integers c and d. This is the only operation permitted.

Game: given o1 = o(1) and o, = o(a) for random a, GenLog
succeeds if it outputs a.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.
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Stinson (2/4)

GenLog produces (o1, 02, ...,0m) using O where
oi = o(c + ad; mod n),
with (cq,d1) = (1,0) and (¢, d2) = (0, 1), (¢, di) € Z/nZ x Z/nZ.
Key remark: since o is injective, o; = oj iff ¢; + ad; = ¢; + ad;, hence a.
Two cases: non-adaptive (choose ¢;, di before starting) or adaptive.

Thm. Let 5 = Proba(GenLog succeeds). For 3 > ¢ > 0, one must
have m = Q(n%/?).
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Stinson (3/4)

The non-adaptive case: GenlLog chooses
C=H(c,d),1<i<m} CZ/nZ xZ/nZ

and then computes all gy’s.
Put

Good(C) = {(c — ¢)/(di — d;)}, #Good(C) =G < m(m—1)/2.

If a € Good(C), GenLog returns a, otherwise some a at random.
« is the event a € Good(C),

Proba(3) = Proba(3||a)Probal«) + Proba(5||a)Proba(@)

= lxg—i—ixn_g
n n-—-¢g n

_ Q+l< m(m—1)/2+1

- n - n ’

= if proba > § > 0, then m must be Q(n%/?).
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Stinson (4/4)

The adaptive case: For1<i<m,( = {0j,1 <] <}. Thenacan be
computed at time i if a € Good(C;). If a ¢ Good(C;), then
a € Z/nZ — Good(C;) with proba 1/(n — #Good(C)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s p or Shanks, then you have to
work harder. ..
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E) Variants of the DL problem

Decisional DH problem: given (g, g%, d°, o), do we have
¢ = ab mod n?

Computational DH problem: given (g, g?, ¢°), compute g?.

DL problem: given (g, g%), find a.

Prop. DL = CDH =- DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf).
More problems: ¢-SDH (given g, g%, ..., gae, compute gaM.

Rem. Generalized problems on pairings.
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Il. A typical generic group: an elliptic curve over a
finite field

K field of characteristic # 2, 3. Elements of K3 — {(0,0,0)} are
equivalent iff

(X1, ¥1,21) ~ (X, ¥4,4) <= I X # 0,1 = AXq,y1 = \Y;, 21 = A7
Projective space: P?(K) = equivalence classes of ~.
Elliptic curve defined for points in P?(K):
Y?Z = X3 + axz? 4 bZ® 1)
with 4a® + 27b? # 0 (discriminant of E).
Def. E(K) = {(x:y: z) satisfying (1)}.

Prop. E(K) ={(0:1:0)} U {(x:y: 1) satisfying (1)} = point at
infinity U affine part.
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The group law

»

yl
Mz = M1 & My
5 v )/ (- x)
| (3¢ +a)/(21)

A | X Xz =N — X1 — Xo
7@2 I Y3 = A(X1 —X3) — Y1
Ms KM=Ma - oM
—_———

Ml 1 k times

Rem. Standard equation and group law formulas for any field. Can
be improved in many ways, see later.
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Cardinality (1/2)

Thm. (Hasse) #E(Fp) =p+1—-t, |t| < 2,/p.

Pb: no general formula for #E except in some special cases.

Thm. (Deuring) given |t|, there exists Es.t. #E=p+ 1 —t.

Pb: no efficient way for finding E except in some special cases
(complex multiplication).

Thm. (Structure) E(Fp) ~ E1 x E; of respective ordres my and my s.t.
my|p—21and m | m.
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Cardinality (2/2): do it yourself

Invent a method in time:
e O(p):

* O(p*/?):

* O(pY/%):

Algorithms:

e g =1, plarge: Schoof (1985). O((logp)®), completely practical
after improvements by Elkies, Atkin, and implementations by
M., Lercier, etc. New recent record Enge+M. for
P= 102499 + 7131 (400 days of AMD 64 Processor 3400+ (2.4GHz)).

e p = 2: p-adic methods (Satoh, Fouquet/Gaudry/Harley).
Completely solved.
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ECDLP

DLP in general resistant on an elliptic curve except

e supersingular curves (t = 0), due to the MOV reduction;
e anomalous curves (t = 1).

ECC112Db: taken from

http://lacal.epfl.ch/page81774. htm ,
Bos/Kaihara/Kleinjung/Lenstra/Montgomery (EPFL/Alcatel-Lucent
Bell Laboratories/MSR) p = (212 — 3) /(11  6949), curve secpl112rl

e 3.5 months on 200 PS3; 8.5 x 10 ec additions (= 14 full 56-bit
DES key searches); started on January 13, 2009, and finished
on July 8, 2009.

¢ half a billion distinguished points using 0.6 Terabyte of disk
space.
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