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ABSTRACT

The computation of orders of elements of the group, of units of
the set of residues modulo n is shown to be equivalent to factoring
n in the following sense. The computation of orders is polynomially
reducible to factorization. Factorization is randomly polynomially
reducible to computation of orders.

1. Introduction

The group of units of the set of residues modulo an integer n, Z,. plays an
important rele in number theory and its applications to computer science, par-
ticularly in recent developments in cryptography. This note deals with the
problem of computing the order of an element of this group, i.e. finding the
smallest positive integer k such that

ek = 1 mod n.

We will denote the order of a by ord(z). If the factorization problem 1s solved
then it is easy to compute ord(a) so computing ord(a) is only as hard as factori-
Zation.

Or: the other hrnd, we would I'ke to be able to show that factorization is
only as hard as computing orders. Towards this end, we present a probabilistig
rcduction of the factorization of n to the computation of orders in the group Z,

The reduction is in two parts. The first part is a probabilistic method of
computing a number m using order computation. The second part is a proba-
bilistic version of an algorithm of Miller which uses m to factor n.

2. HNotation and Some Number Theory

“Let (e.f ) denote the greatest common divisor of e and f. If d divides n we
will write d [n. The group Z, consists of those e {1<a <n12 such that (. n) = 1. I

n=p,! .- - pe* then the size of Z, is p(n) = fI(p(p:‘) = I(p,-—l)p:"—l. The func-

i=1 i=1

tion AN'(n) = lem (p,~1, ... ,pe—1). [;)a—]is the Jacobi symbol of @ mod p.

Using elementary number theory we can prove the following
Lemma. f n=pj} - - pl*and d [¢(n) then the number of elements of order ¢ is
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where the sum is over k-tuples (d,,- - - d) such that d|p(p*) and
d=len(dyda, ..., dy). : Qs {Q” (22/ el
3. Divisors of ord(a) . Q«‘CCJL ‘{Qc')/d L A= /Cm(oﬁ
Since ord(a) divides ¢(n) we can find factors of ¢(n) by picking a random I

ae[2n—1]. If (@,n)#1 then we have found a factor of n which in turn gives us
information about factors of ¢(n). If (a.m)=1 we can compute ord(a) to find a
factor of ¢(n). The probability of finding a particular factor is the subject of the

next theorem. nm

Theorem 1. Suppose nzpj' - -p,:" ., and g™ is the largest power of the ptime g
which divides p,~1. Then the number of elements of Z, of order divisible by g™,

which we will denote by #(g™), is
")

#(g™) = Lq:l-sﬁ('f'») Lo ""’E/gg) >/#(/§’
ng I <

Proof. From the Lemma we get the following expression for ff(g™) .

#™) = Yelf) - o)

where the sum is over k-tuples (f,. ... Sr) such that f; | ¢{(p*) and
g™ [lem(f1. ... fe).
We can obtain a lower bound on #(g™) by considering only the contributions to
this surn where f, = dg™p* where d|p,~1 and O<k=<e,-1. We can rewrite our
expression for # (g™) as

@4—1
1@™ = % wag™)| Vel Y o) elry)
a 2ozt 70 L,-M.u,.'*)

m ¢.—1-k ~1
= ﬂg,rl@x—l)px‘ T{y(;of‘) = HTY'(n)
1=

q

ql’."l

A similar theorem holds for prime divisors of n. .
-{-}:e’%?em 2. Il the faclorization of n is as given above and ¢,>1 then
<5 14

s 8- ‘—1
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Preof. Similar to Theorem 2.

4. Compulation of a multiple of A'(n) = If"’\ (?l"“ P2~ l’ B ﬁ(—I>

¥e first demonstrale a rmelhod of finding a multiple, m, of X'(n). Ve do
this simnply by picking a random a and computing m=ord(a). Ye can place the
following lower bound on the probabilily that this m is satisfactory. 1f g*|p;—1

then by Theorem 1 the probability that g¥lord(a) is greater than 9—;—1— Thus

Prob(N'(n)|m)= T] (2=Ly )
79{)\'(71) q o R\‘
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A lower bound can be placed on this probability. Given £>0 there exists N{(s)
such that
Prob(N(n)|m) = (1-) XRE2 for ainy > N ().
loglog

{7 is Euler’s constant.) See [Ap], pg 298. By choosing at most O{loglsg n) ran-
dom numbers the probability that we will have a multiple of X'(7) is greater than
one-half. Thus we have a probabilistic reduction of the computation of a multi-
ple of A'(n) to computation of orders over Zn.

5. Facloring n with a multiple of \'(n)

Next we present a probabilistic version of an algorithm due to Miller which,
if a multiple of A'(n) is known, will find a non-trivial factor of n wilh probabulity
greater than one-half. Miller's algorithm is deterministic and will run in polyno-
mial time if the Extended Riemann Hypothesis is true. We can remove this
dependency on the ERH by introducing a random search rather than a detor-
ministic search. Define {#(n) = max{K : ZKInI. Suppose m. is a multiple of
A(n).

Algorithin A Pick a random a from the range [1 ... n]. Do the following until a
factor is found.
(a) 1f(a.m)#1 then a factor is found.
(b) For each 1sisf(m).
If (@™ tnod n) — 1,n)#1 then a factor is found.
(c) No factor has been found. Stop.
Theorem 3. Algorithm A will produce a factor with probability areater than one-
hall.} _

This theorem has the immediate corollary that factorization 1s random!y
polynomially reducible to the problems of computing mulliples of ;&(T’).Z\_(IL). or
N'(n). Since the computation of a multiple of A'(n) 1s randomly polynomialty
reducible to computing orders over Z, we can conclude that factorizatinn is
randomly polynomially reducible to compuling orders.

Prool. Miller [M] gave conditions on @ thal will let Algorithm A find a factor.
They are summ.arized in th - following
Lemrna (Miller). Suppose n is composite. Then either (1) or (2) holds for n.

{1) There exists a p |n such that for any a such that ; = —1 then either a or

-

(@X™Y2n0d n) — 1 hasa nontrivialndivisor with 7.
(2) Suppose p|n and q|n. If l;?q-]:—l then either a or (e*(™¥2 mad n)-1 has

a nontrivial divisor with n.
The following holds for all n.
(3) plaXNm)im and & = Folm/ N(n)]+1 then a¥ ™V 2=qms2h 15y .

A
M Zon sy

l
If (1) holds for n then ;’ = —1 for exactly one-half the ¢ lssslhansiwlepr—
(a.p)=1. X pla then (a,n)=p. Thus for more than haif the a<n Algorithm A will

1l am grateful to P. Flajolet at IRIA in France for pointing out this rendomized version of
Miller's algorithm to K. Lieberherr here at Princeton who in turn passed 1t on o re. iae
proof I give here is my own.
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find a factor of n., S, USy

a]

If (2) holds for n we must determine the size of S = fa :(a,n)=1and [;7—)=1
’ {

for all p [njula|(a,n)=1 and [;4}: —lforallp|n). IfagS then a choice of this
e will cause Algorithm A find afactorofn. Sisa Rroper subgroup Z.;. Since S

is & proper subgroup its order must divide p(n) meaning [S[<Bein). Thus at
least half of the a <n will produce a factor of n by Algorithm A.
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