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Abstract

We describe a variant of Elkies’ improvement of the Schoof algorithm for finding the

number of rational points on an elliptic curve over a finite field. Elkies’ method reduces
the cost by doing some preliminary one-time work the results of which can subsequently
be used for all curves. We give a modification which has the advantage that it depends
on much more elementary considerations. However our modification may require more
one-time work than does his method. These algorithms reduce the work for finding the
number of points for curves defined over GF(p) to the order of log® p from order log® p.

1. Introduction.
Let F' be a field of characteristic # 2,3 and let F' its algebraic closure. For the purposes
of this paper we may regard an elliptic curve E defined over F as the set of solutions in F'

of an equation of the form
y? =z° + Az + B, (1.1)

where A and B are in F' and satisfy 44% + 2782 £ (. By convention the curve contains
in addition to all the solutions to (1), its unique point at infinity denoted O. A point
on the curve is said to be rational if its coordinates lie in F. By convention O is also
considered a rational point. The problem that this paper addresses is that of determining
the number of rational points on the curve when F is a finite field, For simplicity we
treat mainly the cases in which the finite field is a prime field of characteristic p > 3.
However, many of our results do extend easily to other finite fields. The first algorithm
requiring work polynomial in logp was given by Schoof [Sc]. It requires an amount of
work proportional to log® p using classical algorithms for polynomial algebra. Recently
Elkies [E] gave a significant improvement. His method requires some preliminary “almost
one-time work”. The sense in which this work is one-time will be described later. Its cost
has not been analyzed completely. Once this work is done, however, his method requires
an amount-of work-proportional to log® p (using classical algorithms) with the constant of
proportionality of the same magnitude as in Schoof’s algorithm.

The one-time part of Elkies' method requires considerable facility and ingenuity with
modular functions. In this paper we describe a more elementary variant of Elkies’ method
which costs about twice as much as his after the one-time work. The preliminary work for
this variant may well be more expensive than in Elkies’ method, but our method may be
useful since no ingenuity is required to use it.

The one-time work for our modification involves the calculation of some rather large
integers. It turns out that it is possible to calculate these integers modulo a set of primes
and, by estimating their size, recover them with the help of the Chinese remainder theorem.
However another possibility presents itself. When we compute the number of rational
points on a curve over GF(p), these universal integers are only used as elements of GF(p).
Thus if we only want to compute numbers of rational points on ¢urves. defined over one or
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just a few prime fields, then we have the option of doing a less expensive kind of one-time
work which is one-time for each p. For some p it turns out that this one-time work for each
p is not very much more than the rest of the work that we do on a single curve over GF(p),
so that we can nearly afford to do the one-time work every time. However, if we wish to
run our algorithm with many curves over the same field, we benefit by not repeating the
one-time part of the work for the first curve. Also if we wish to run our algprithm with
many fields we can combine the one-time portions with the Chinese Remainder Theorem
to produce the universal integers which will work for all fields thus making negligible any
future work on these parts of the algorithm.

A combination of these two types of one-time work may be best. See section 8 for a
more detailed discussion.

2. Background on elliptic curves and Schoof’s algorithm

In this section we give background material on elliptic curves and Schoof’s algorithm
that will be used below. We will only state the relevant facts. Except where noted a.
relatively elementary exposition, including proofs, of all these facts is given in [CR].

The best methods for enumerating the rational points on an elliptic curve E over a
finite field depend on the abelian group structure of E which is conventionally written
additively. This is defined as follows. First the identity element of the group is Q. For
ordinary points (z,y) one defines —(z,y) = (2,—y). For two points (z;,y;) and (z2,72)
which are not negatives we define (z1,y1) + (22,¥2) = (3,ys) where

T3 = —T; — g + A2

vs = =1 + A(z1 — z3)

and A is given by
_n—y .
A—_mlw:172 lf.‘ﬂlié-?:g,
and
3z + A

A=
2y,

iy = 2pe

In geometric terms the definition of addition says that a straight line always meets the
curve in points which add up to O if we take into account multiplicities at the points of
intersection of the line and the curve.

Given an integer m > 0 the set E[m] of points Q of E with m - Q = O are known as
m-torsion points. These points comprise a subgroup of E. It is known that this subgroup
is isomorphic to the direct sum of two cyclic groups of order m when the characteristic of
F is either 0 or prime to m.

A rational function on E is a function which can be expressed as a rational function
of the coordinates z and y. More formally the rational functions can be regarded as the
quotient field of the polynomial ring F[X,¥] modulo the ideal generated by ¥2 — X3 —
AX —B. There is a sensible definition of the order of zeroes and poles of rational functions.
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The “division polynomials” for E are the rational functions 1 defined by

P =1
¥a = 2y,
¥3 = 3z + 642? + 128z — A%,
thy = 4y(z® + 5Az* + 20Bz® — 54%2? — 4ABz — 8B? - 4%),
Yan = Yn(Pnsra¥is — Yna¥ie)/2y En >3,
Yant1 = Ynia¥y ~ 1Py Hn>2.

(2.1)

For m prime to the characteristic of F, the function v, has simple zeroes exactly at the set
of m-torsion points # 0. One may easily verify that if m is odd, then ., is a polynomial
in z, A and B, that. its degree in z is (m? — 1)/2, and that its leading coefficient is m.
Thus it has a simple zero at the z-coordinates of all the m-torsion points. If m = 2n is
even, then v, is y times a polynomial in z, A and B.

Suppose that (z,y) is a point of E and that n is a positive integer. Then n - (z,y) =
(gn(z,¥), ha(z,y)) for suitable rational functions g, and h,. These are given explicitly by

gn =73 — —¢"‘;fﬂ+1 ’
" 2
Ry = ¢n+2¢?ﬁ—1 — ¢n-2¢§+1 (2 )
i 4yl '

We shall make use later of the functions g,. It is easily verified that g, is a rational
function gn(z) of z alone. It follows that gm(ga(2)) = gma(z) for all m,n > 1.

If F has g elements, then the mapping ¢ sending (z,y) to (z?,y9) is a mapping from E
to E which fixes precisely the set of the rational points. The mapping ¢ is an automorphism
of the group structure of E.

The main theoretical tool which allows the computation of the number of rational
points on a curve is the following theorem.

Theorem 1: Let E be an elliptic curve defined over GF(g).-Denote by |£| the number of
rational points on E. Then there exists an integer ¢ such that

1. ¢ —i¢ + ¢ = 0 (in the endomorphism ring of E);

2. |Bj=1-t+g;

3. lt| £2,/3.

Also ¢ has trace t and determinant ¢ as a linear operator on the 2-dimensional GF(!)-
space E|l].

Schoof’s algorithm applies Theorem 1 to curves over GF(p) as follows. For each of a
suitable set of small primes ! we choose a point P of E with order /. Then we can find, by
a simple search, an integer #; in the interval from 0 to ! — 1 which satisfies

¢*(P)—t,-¢(P)+p-P=0.
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We may then conclude, from part 1 of Theorem 1, that ¢ = ¢; mod I. We do this for
enough small primes [ to recover |E| with the help of parts 2 and 3 of Theorem 1 and the
Chinese remainder theorem.

We carry this out as follows. We find a polynomial f(z) one of whose roots is the z-

coordinate of an I—torsmn point. Then there is an I-torsion point P = (z,y) which satisfies
f(z) = 0 and y? = 2% + Az + B. Using the two precedmg a.lgebra;c relations we can

calculate @ = ¢(P) 4+ p- P and then search for a ¢, in the range 0,...,! — 1 such that
t-¢(P)=Q.
It will suffice here to note that the work to carry out thm computation for a prime
! is dominated by the work required to compute z?° and y* mod f(z). This work is
somewhat more than 4log, p polynomial multiplications modulo f(z) which, with classical
algorithms, requires 842 log, p multiplications in F if the degree of f(z) is d. (The obvious
way of multiplying polynomials modulo a degree d polynomial requires d® field operations
for the multiplication and d? for the division. For large primes p the cost of multiplication
mod p is much higher than the cost of addition, but the number of additions is generally
about the same as the number of multiplications. We can therefore usually ignore the
costs of additions.) Note that the lower the degree of the polynomial f(z), the faster
the algorithm will be. In his original algorithm Schoof suggested the use of the division
polynomials described above which have degree (/2 —1)/2 which made the work to process
a prime [ proportional to I* log, p field operations in GF(p).

It is not hard to see that for those values ! for which ¢ —4p is a quadratic residue mod
l, the Frobenius automorphism ¢ would have an invariant 1-dimensional subspace in EJl].
The set of the non-O z-coordinates of the points in such a subspace would be invariant
under ¢, and therefore the degree (I — 1)/2 polynomial f(z), with these z-coordinates as
roots, would have coefficients in F. However no method was known for finding f(z) with
little enough work to make this idea useful. The essence of Elkies' improvement is that
he shows how to obtain these polynomials, for these I’s, for the additional cost of some
one-time work, depending only on !, but independent of the choice of elliptic curve, and
the cost, for each curve, of finding a root in F' of a polynomial of degree [ + 1.

We can outline the cost of these algorithms. In general for Schoof'’s algorithm we
need to process enough primes ! to determine the order of the group with the Chinese
Remainder Theorem. To have enough primes their product has to be comparable to ,/p
or; equivalently, the sum-of-their natural logarithms has to be comparable to 3 log, p. We-
may regard the prime number theorem as stating roughly that a random integer ! is prime
with probability 1/log, I. On the other hand, when ! is prime, it contributes log, ! to the
sum of logarithms. Thus a random integer I contributes about 1 to the sum of logarithms.
1t follows that the largest prime that we need to consider with Schoof’s algorithm should
be about 1 log, p. With the new algorithms we need to go about twice as high since only
about half the primes satisfy the quadratic residue condition. To process a prime ! with
Elkies’ method (or our variant) we need first to form a certain degree /+ 1 polynomial and
then to find its roots if any in GF(p). With the help of the one-time work, the formation
of the degree ! + 1 polynomial requires negligible time.

We can now explain the precise nature of the one-time work. Strictly speaking this
is one-time for each I. For example, in our variant, for each odd prime [, there is a
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single polynomial Uj(T, A, B) in Z[T, A, B] with the property that, when the coefficients
are reduced mod p, and the values of the coefficients A and B of the given curve are
substituted for the indeterminates A and B, then the resulting polynomial is the one that
we need to construct. However the larger the value of p, the more I’s we will have to process
so the work is not strictly one-time since it does increase to co with p. Nevertheless the U;
for the primes [ up to say /, will suffice to enumerate points on most elliptic curves with up
to about ¢! rational points. This amounts to a negligible amount of work per curve. We
shall also see that we have the option of computing U; mod p instead. With this method
the work is one-time for each combination of / and p.

The cost of finding the roots in GF(p) of the polynomial U; is about 2 log, p polynomial
multiplications modulo this U; or about 22 log, p field operations. If U; has no roots in
GF(p), we may proceed to the next prime.- If U; has roots in GF(p), then we use these
roots to construct a degree (I —1)/2 factor of the I-th division polynomial. Agein the one-
time work makes negligible the work required to construct this factor. Once we find the
factor, the work required for computing ¢ mod [ is about 2log, p polynomial multiplications
modulo this factor. Thus the work for using the factor of the division polynomial is about
half the work required to construct it or about /2 log, p field operations in F'.

Our main point here is that the primes that we process will generally be somewhat
smaller than log, p and that the work required for processing each [ is about 12 log, p field
operations.

The figure of log® p from the introduction is derived from the preceding by counting
log? p binary operations per field operation and by using the very conservative approxima-
tion that we need to process log p primes ! all about log p in size.

3. A method which works in principle.

In this section we give an argument based on the Galois theory of the division poly-
nomials to show why a method such as Elkies gives must exist.

Let F = Q(A, B) where Q is the field of rational numbers and A and B are indeter-
minates, and let E be the elliptic curve defined by

y? =z% 4 Az + B.

This is the “generic” elliptic curve. We shall see that certain formulas which we can prove
_ for this curve will hold for any elliptic curve over any field.

Let 1 be an odd prime. The division polynomial ¢/;, regarded as a polynomial in z,
A and B is irreducible over Q. We will include a proof in the Appendix. Let @ be an
l-torsion point of E and, for ¢ prime to [, let z; be the z-coordinate of the point i - Q. We
have z; = z_; and z; = z;4;. Since ¢ is irreducible, the field X = Q(A, B,z ), generated
over Q by A, B and 3, is an algebraic extension of F of degree (12 —1)/2. For each i prime
to l, we have z; = gi(z,). It follows that the z; are elements of K and roots of ¥i(z) = 0.
Thus, for each i prime to I, there is an automorphism p; of K which sends z; to z;. We
then have

(piriXz1) = gi(gj(21)) = gij(21) = pij(21)

Thus p;p; = pi; so that i — p; is a homomorphism from the multiplicative group of GF(!)
to the automorphism group of K. The kernel of this mapping is the set +1. The group
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of automorphisms generated by the p’s therefore has (I — 1)/2 elements. Let L denote the
fixed field of this group of automorphisms. This will be a subfield of K of index (I — 1)/2
and hence an extension of F of degree [+ 1.

It is easy to construct elements of the field L. We introduce the abbreviation d =
(1-1)/2. Any polynomial symmetric in z;,...,z4 with coefficients in F' will be in L, since
the z's are permuted by the p’s. We shall be particularly concerned with the power sums
pk of the z’s defined by py = d and, for £ > 1 by

pp=abtotah,

We shall show in the Appendix that p; generates L over F. It follows that all other
symmetric functions of the z;,...,24 can be expressed as rational functions of p; and 4
and B.

Now here is a plan for producing factors of the division polynomials. We first find
the monic minimum polynomial U; satisfied by p; over F. Next for each k = 2,...,d,
we express pj as a rational function of 4, B, p; and possibly also ps,...,pr-1. (We use
power sums here rather than elementary symmetric functions because the computations
are somewhat simpler. We can convert between power sums and elementary symmetric
functions with the help of Newton’s formulas (3.1) below.)

Each of these formulas which we derive over Q can be written as rational functions
with integer coefficients. Thus they make sense over any field. We will be able to show
later that the ones in which we are particularly interested are valid over any field.

In principle the finding of the polynomial U; and these rational expressions could
be done as one-time work. In fact, we will not carry this plan out in every detail. In
particular it turns out that our best methods for finding some of the rational relations are
so inefficient that we are better off with an alternate plan which we describe in section 7.
Others are so efficient that we can afford to do them every time as described in section 5.

Now suppose that F is GF(p) and that we are given a specific curve and therefore a
specific A and B in this field. When 2 — 4p is a quadratic residue mod [, we know from
Theorem 1 that the Frobenius operator will leave invariant at least one 1-dimensional
GF(l)-subspace of E[l]. Let z1,...,z4 be the z-coordinates of the non-O points in this
subgroup. Then the symmetric functions of these z’s will be in F. In particular their
sum will be & root in F' of U; = 0 regarded as a polynomial over F, We can use standard
methods to determine whether such a root exists and what the roots are when they do
exist. ‘When there are no roots in F', we proceed to the-next l.- If we find a (non-repeated)
root in F, this can only arise from an eigenspace V of E[l] for the operator ¢. Indeed,
suppose that a one-dimensional subspace V' of E[l], not invariant under the action of ¢,
happened to have a sum of z-coordinates that was in F'. Then the space ¢(V') would have
the same sum of z-coordinates so this root in F' would be repeated. Returning to the
non-repeated root arising from the eigenspace V', we now form the other power sums of
z-coordinates from this subspace using our known rational expressions. We then convert
the power sums to elementary symmetric functions sq,...,84 of z1,...,2T4 using sp = 1
and Newton'’s formula

ol ]

k
se=1) (-1 'pjsp-; k21 (3:1)
=1
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These elementary symmetric functions are the coefficients of a factor of degree d with
coefficients in F' of the division polynomial 9(z). This can be used in place of t;(z)
in Schoof’s algorithm with a considerable reduction in running time because of its lower
degree.

This explains how the method works in principle. What problems might arise? One
conceivable problem is that, once we having solved for p;, the rational expressions for the
other symmetric functions might evaluate to 0/0. In this case our method would fail. At
first glance this would appear to be an unlikely occurrence. The main problem is that the
universal polynomials U; and the universal rational relations might be prohibitively hard
to calculate or to store if they can be calculated.

Elkies has given two given two essentially separate contributions to this problem. The
easier to understand is his method for expressing p4,...,ps in terms of pi,ps,ps. Here
we will simply give an exposition of his method. The problem of finding p;, p; and p; is
more complicated. Here we describe our own method. The idea behind both methods is to
find the desired relations relations that hold for elliptic curves over the complex numbers. -
When these relations are uniquely determined, they will be the same as the ones described
above over Q(A, B).

4. Elliptic Curves over the complex numbers.

The facts about complex elliptic curves which we use in this section are standard,
appearing in a great many books. Thus we give no proofs. All the proofs are, for example,
given in the first few pages of [A].

For elliptic curves over the complex numbers the exposition is easier if we begin with
a description of the group structure and find the equation of the curve later. To define an
elliptic curve over the complex numbers we start with two complex numbers w; and w,
with wy /w; having positive imaginary part, Let w stand for a variable element of the lattice
L of points mw; + nwsz, where m and n vary over the integers. Then the quotient group
E = C/L is an elliptic curve over C. This defines the group structure. To identify this
group with the groups we have defined above we need to define the coordinate functions
z and y on the curve which satisfy the equation (1).

The standard way to do this is with the Weierstrass function p(z) defined by

()= ——+—Z—}[ e il (1)

which is invariant under translations by elements of L and so defines a function on E.
Define z(2) = p(z) and y(z) = $p'(z). Using (4.1) we can expand z(z) in powers of z

z(z) = = + z: cxz2k

k=1
with 1
c; = (2! + 1) Z W (42)
wH#0



One may then prove that
=2+ Az + B (4.3)

where
A=-5¢ and B=-Te. (4.4)

(One checks that with these 4 and B the difference of the two sides of (4.3) is doubly
periodic with no poles and maps 0 to 0. This implies that the difference function is itself
zero.) Thus these curves that arise from lattices are examples of the type we defined at
the outset. It can also be shown, conversely, that, provided 443 4 27B? # 0, there exists
a lattice which gives rise to a curve with these values of A and B.

Differentiating (4.3) with respect to z, we find that

=2 =627 +24. (4.5)

By comparing power series expansions of the two sides of (4.5) we can calculate c3, ¢y, . . .
in terms of ¢; and c;. In fact we find that, for k > 3, we have

- 4,
k- 2)(2k +3) & Z S (4.6)
We can also continue differentiating (4.3) with respect to z, finding

dBz

e 24zy
and ”

=7 =1202° + 1240 + 48, etc.
We find that all even derivatives of + with respect of z are polynomials in z
d**z

with ur(k + 1) = (2k + 1)I. If A and B are known, it is a simple matter to compute the
pr(7) for small k and ;. R )

5. Finding ps, ps,..., in terms of p1, p2,p3.

We begin with a method which works for elliptic curves over the complex numbers.
Let E be the curve associated to the lattice spanned by wy and wq. Let [ be an odd prime
and d = (I — 1)/2. Let P be the I-torsion point w; /I, and let z; = z(j - P) for j prime to
l, where z is the Weierstrass p-function described in the preceding section. Again let

Pr=zi+ - +2f

be the k-th power sum of z,,...,z4. We assume that we know p;, p; and py and show
how to compute the other p;’s.



Let E’ be the elliptic curve whose lattice is spanned by w; /! and w, and let z’' and
y' be the associated coordinate functions. This is the “isogenous” curve referred to in the
title of [E]. Then we have

-1

z'(z) =a(2)+ ) la(z+j - P)— 2(j - P)|

- j=1

since the function on the right side has periods w; /I and ws, has double poles exactly at
the points of the lattice L', and has constant term 0 in its power series in powers of z. The
corresponding y-coordinate is given by

. ldz <4
y = 53—29(24‘.7 P).

=0
Suppose that the equation of this curve is
(V) = (&) + 4z + B
We may expand z' in powers of z2:
z' = ;1;+C§zz+éz4+---

The function

-1
f(z) =a'(2) = 2(s) = 3 [e(z +j - P) = a(j - P)]
Jj=1
is analytic at z = 0. We also have from (4.7)
d2kf -1 k41 k<41
| _ = EZkanmzm—zznmmr
= =] j=0 j=0

On the other hand the derivative is (2k)! times the coefficient of 22* in the power series
expansions of f = z' — z. This leads to the identity

(2k)! (e — ex) = 2[px(0)po + + - - + (ke + )prsa] for k> 1. (5.1)

Since we know A and B, we can compute all the ¢’s and u’s in the preceding equation.
The instances k = 1 and k = 2 of (5.1) combined with (4.3) yield

A" — A =5(ps + Apo) (5.2)

and
B' — B ="(5p3 + 3Ap, + 2Bpy) (6.3)
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from which we can determine A’ and B’ since we know A, B, py, p1, pz and ps. Next we
use the formulas (4.6) again with the curve E' to compute all the ¢}. Finally if, inductively,
we already know p;,...,px we can then use (5.1) to find pi4;. Thus all subsequent pry1's
can be found.

This entire method for calculating our factor of the division polynomial from p; p;
and py makes sense over any field, and is, in fact, valid over any fleld, as the discussion
below will show. It is also quite inexpensive since all the steps require on the order of 12
field operations. Thus this part of the work could and should be done every time rather
than as one-time work.

Now we discuss the validity of this method for elliptic curves over other fields. We can
eliminate A’ and B’ from the relations that we just derived for curves over the complex
numbers and replace them by equivalent polynomial relations in py,...,px for & > 3 with
coefficients in Z[A, B] in which the only appearance of p; is the term (2k + 1)!p;. We wish
to show that these relations make sense and are valid for any field.

Thus we let E be an elliptic curve over any field and let z; be the z-coordinate of an
I-torsion point P. Also for j prime to [ let z; be the z-coordinate of j - P. Recall that

from (2.2)
o Yima(@ )i (2)
R $i(z1)?
Then the power sums p; of z3,...,z4 are given by
d k
_ _ Yi—1{z1)¥i+a(z1) 54
j3 .’:Zl [31 1"1(31)2 ¢ ( . )

If we could show that our relations derived above for pi’s of curves over C were valid
for these p;'s, then these same relations can be used to calculate p; for all k for which
(2k + 1)! # 0. Since we actually need only pi,...,ps, we will be able to calculate all the
pi’'s that we need provided that p > I. (This condition will certainly hold for all cases
of interest if we are finding the number of rational points on elliptic curves over GF(p).
However it appears to fail when we attempt to compute the number of rational points on
an elliptic curve defined over a large finite field with small characteristic.)

Using (5.4) the relations derived can be written as rational relations among the 's.
If we then multiply through by the product of the denominators, we obtain an equiva-
lent relation which states that a certaifi polynomial combination H(z,%:(z), ..., ¥es+1(z))
with coefficients in Z[A4, B] is zero for ¢ = z;, the z-coordinate of an I-torsion point.
(The condition is equivalent since the I-torsion points will not be zeroes of the denomina-
tors.) Since we know that our relation is valid for the complex numbers, we may conclude
that H(z,%1(z),...,%a+1(2)) is divisible by ¢)(z) for all complex A and B satisfying
4A4% + 27B? # 0. Since yy(z) has constant leading coefficient /, the quotient, G = H/4,,
regarded as a polynomial in z, and obtained with the standard division algorithm, will have
coefficients which are polynomisls in Z[A, B,1/l]. This implies that the identity Gy; = H
holds for all complex A and B with 44% + 27B? # 0 and consequently holds as a polyno-
mial identity in Z{A4, B, z,1/I]. Thus our identity will hold in any field of characteristic 0.
We may now also reduce mod p to obtain an identity with coefficients in GF(p) which will
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therefore hold in any field of characteristic p. Since the division polynomials also reduce
to division polynomials mod p, we can conclude that Gy, = H is valid over any field of
characteristic p # . Reversing our steps, we see that H, which makes sense over any field
of characteristic # I, will be zero at the z-coordinate of any I-torsion point. Thus our
relations will be valid over any field of characteristic # L.

6. Finding the polynomial satisfied by p;.

In this section we discuss the calculation of p;. In section 3 we showed that, over the
field Q(4, B), p, will satisfy a certain polynomial I; of degree ! + 1. Here we show how
to compute these polynomials. Then for a given curve we substitute our known values of
A and B and solve for p;. Throughout this section we assume that ! is an odd prime and
d=(l-1)/2. '

We have three methods for finding the polynomials U;. They are presented in order of
increasing complexity. However the more complex methods are also computationally more
efficient.

Method 1.

The simplest method is to express p; as a rational function in the z-coordinate z;
of some l-torsion point using the case k = 1 of (5.4). We also know that z, satisfies the
I-th division polynomial. Eliminating z; from these two expressions using the resultant
yields a polynomial satisfied by p;. However the polynomial obtained is actually U ,( =172
rather than U itself. Thus this method seems impractical although it can be carried out
by hand if ! = 3 when there is essentially nothing to do (Us = 13/3) or with MACSYMA,
say, when I/ = 5.

Method 2.

For our second method we begin with curves defined over the complex numbers where
the lattice is generated by 1 and 7, a complex number with positive imaginary part. Then
the point 1/l is an I-torsion point. We take p; to be the sum of z-coordinates from the
1-dimensional subspace of Efl] spanned by 1/I. We can express 4 and B and D1 as power
series in powers of ¢ = ¢?™i", We have

-1 n
p1 = 4in? (EL_.{.Zai(n)q ),

n=1
1 o
N R S - n .
A=son (1 +240nz;:a'3(n)q ) , (6.1)
B= —-lrs 1 - 504 ia‘s(n)q"
27 = ’

where o¢(n) denotes the sum of the kth powers of the divisors of n and 4?(n) is the sum
of the divisors of n that are prime to /. The last two formulas appear in many books. See
for example [A]. The first formula is derived in [E] using (6.3) below. We also indicate
another derivation at the end of section 6.

Before we proceed farther we need to derive some properties of the polynomials U,
that will help with their computation. First notice that in the defining equation (1.1) for
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elliptic curves all the terms have the same degree if we assign to z, y, A, B the “degrees”
2, 3, 4 and 6. We will call this the generalized degree of a term. A polynomial in these
variables will be called homogeneous if all the terms have the same generalized degree.
With this terminology one may verify that the division polynomials 1,, are homogeneous
of generalized degree n? —1. We may extend this grading by generalized degree to rational
functions by assigning to a quotient of two polynomials a generalized degree equal to the
difference of the degrees of the numerator and denominator. The rational functions gn
and h, of (2.2) are homogeneous of generalized degrees 2 and 3 respectively. Because ¥;
is homogeneous, the field K of section 3 has a natural grading which assigns the degrees
2, 4 and 6 to z;, A and B. Thus in K the gi(z;) and therefore also

n = gi(z1) + ga(21) + -+ - + ga(21)

have the degree 2. Also since g1(z1),...,g94(21) are all zeroes of 3;(z), which has iea.ding
coefficient [, Ip, is integral over Z[A, B] (satisfies a2 monic polynomial with coefficients in
Z[A, B].) Thus the monic minimum polynomial U;(T') satisfied by p; can be written

UAT) = T + 7C1(4, BYT' + -+ 77 Ci(A, B)

11+1

where C1(4,B),...,Ci(A,B) are polynomials in A and B with integer coefficients. A
simple homogeneity argument then shows that C;(4,B) is a polynomial in A and B
homogeneous of generalized degree 25. Thus U; is an integral linear combination of the
monomials T%t A*2 B'* with i;,4,43 > 0 and ¢, -+ 2i5 +3i3 = [+ 1. Let N(I) be the number
of these monomials; that is, the number of solutions in nonnegative integers ¢,, t2 and i3
to the equation %; + 245 + 3¢5 =1+ 1.

Now let us return to tc our complex curve. To find U; we need only look for a rational
linear combination of the monomials p}* A2 B* which is zero. To find these coefficients we
compute the first N(I) — 1 terms of the g-series of each of the monomials. Now we let the
coefficients in the linear combination that we are seeking be unknowns. For the correct
linear combination the coefficients of its g-series must be 0. If we add the extra condition
that the coefficient of the monomial pH'1 be 1 (which amounts to requiring that U; be
monic), then we obtain a system of N (I) linear equations in N(I) unknowns. Of course
this system will always have a solution which arises from the coefficients of U;. For all the
I we have tried the system has been non-singular so that we can use this system to find Uj.
If one of these systems were singular, we could probably still determine U; by using more
terms of the g-series which would give extra equations satisfied by the same unknowns.

We can simplify the calculation somewhat as follows. Since all the monomials have
the same generalized degree, the polynomial we are seeking is unchanged if we multiply the
expressions for p;, A and B by A%, A* and A% for any non-zero constant A. In practice we
choose our “standard scaling” A? = 3/x? so that our three basic series above are replaced

12



i(1-1 =
P = ( 5 )+1212¢7§(n)q"

n=1
o0
A=-3-720) o3(n)q" = —3F, (6.2)
n=]1
o0
B=-2+1008 ) o5(n)q" = ~2E;
n=1

which have integer coefficients, In general the standard scaling of an expression of gener-
alized degree 2k is obtained by multiplying it by (3/72)*, We will scale other series for
homogeneous functions of A and B with this same standard scaling. We shall see that this
will lead to series with integer coefficients for all the quantities of interest. We shall make
use later of the “Eisenstein series” E; and Ej defined in (6.2), which have the desirable
property that their series have constant term 1.

The coeflicients in this system of equations equation are rather large integers so that
multiple precision arithmetic is necessary to compute the solutions over the rationals. It is
easier to calculate modulo several primes of convenient size and use the Chinese remainder
theorem to compute the final answer. To use the Chinese Remainder theorem we first
need to know that the coefficients that we are finding are integers. Our discussion of the
integrality of p; above tells us that the C;(A, B) is in Z[A, B]. In fact we shall see in our
discussion of Method 3 below that if I > 5, then C}(A,B) = Cj(4,B)/V is always an
integer. We can save some precision by solving for the C'’s instead of the C’s.

Of course we need a bound on the size of the integers that we are determining in order
to be sure that we have the correct answers. We postpone this discussion to section 8.

Next we give some work estimates for solving these systems of equations modulo a
prime p. The number N(I) can be interpreted as the number of points in the Cartesian
plane with integral coordinates in the triangle with vertices (0,0), (({+1)/2,0) and (0, (I+
1)/8). Thus its value is approximately 2/12. This implies that the work required to solve
the equations for the coefficients modulo p is approximately

172\

3 (‘1_2) 5184
field operations in GF(p). The work required to generate the equations, that is, the work
required to compute the truncated power series for the needed monomials in p;, A and B is
about 3 N(l)? field operations for each polynomial multiply mod g¥()=1, The g-series can
be obtained with one polynomial multiply each by computing and saving the monomials
involving only A and B first which can serve for all the !’s we are interested in. Then
the powers of the various p;’s can be multiplied in later. Thus the work for this part is
4N(1)® ~ I°/3456. Since the polynomials that we are multiplying are of high degree, we
can use fast multiplication techniques to make this part of the work small compared to the
work for solving the equations.

Method 3.

13



We used Method 2 to calculate the Ui(T') for I < 43 and observed that there was a
fairly clear pattern to the coefficients of the high powers of T, and that, more generally,
there was a recognizable pattern for all the coefficients of T when A = —3, B = —2. These
are the values that A and B take on when ¢ = 0 in their g-series expansions. This led to
the idea of computing the entire g-series expansion of each of the coefficients which in turn
led to the method described next.

As above let | be an odd prime and d = (I - 1)/2. Each of the ! + 1 sums of z-
coordinates from each of the I + 1 possible one-dimensional GF({)-subspaces of E[l] are
roots of U;. Thus one approach to finding U; is to construct the polynomial with these
sums as roots. In general this observation is of no help since we do not know the sums
of z-coordinates. However, in the case of our curves over C, we can expand each of the
I +1 sums of z-coordinates as g-series and then form the polynomial with these g-series as
zeroes. (We shall see that, strictly speaking, the series for these sums are series in powers
of w = ¢g!/! but that symmetric functions of these series involve only powers of g.) This
will give us the g-series for the coefficients of I/; and we can then solve a system of linear
equations to express these g-series as polynomials in A and B.

We again prefer to work with power sums so that we actually express the power sums
of the zeroes of U; first as g-series and then as polynomials in A and B. When we wish to
use the results of this one-time work on a particular curve, we use our formulas to obtain
the power sums of the zeroes of U for the particular curve and then use Newton’s formulas
to convert these to elementary symmetric functions which give us the coefficients of U; for
that curve.

We now turn to the computation of the g-series for the power sums. Let E be the
complex curve associated with the lattice generated by 1 and r. Then the !+ 1 points 1/1
and (k+7)/l, k=0,...,l -1, generate the ! + 1 one-dimensional GF({)-subspaces of Efl).
We need to find the g-series for the sum of z-coordinates from each of these subspaces. In
the case of the subspace spanned by 1/! this sum has already been given in (6.1} above.
Let us calculate the other sums Sp,...,S1-; associated with (k + 7)/I, k = 0,...,1 - 1.
Here we make use of the g-series form (which is really the Fourier series expansion) of the
Weierstrass function given, for example, in [L, p. 46]:

z(z) = 4x*® —_—1-+2§-———- i 7 = —i __q"“qz | .,. (6.3)
12 &~ (1-¢") = (1-g7g)?

where g = ¢?™" and ¢, = €21, Note that the first two terms are independent of z. Sj is
given by
I-1

53 a((Gk+in)/D).

Jj=1
When z = (jk + j7)/l, we have ¢, = (*/w/ where w = 27"/l j5 a “distinguished” I-th

root of ¢ and ¢ = *™/! is a “distinguished” I-th root of unity. The factor 1/2 is present
to adjust the sum to just the first d = (I — 1)/2 terms as we did for p,. From here on we
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use the scaled S’s obtained by multiplying the ones defined above by 3/#2. It follows that

- -1 nekjnd
_( )_,_12(1—1)2(1 sy 62 Z a —qqi('kiwi)z.

n=1 j=1 n=-—00

I we replace g™ by w'™, the last term becomes

kgl
o Y
- kIpi)2
ged(,n=1 (1-¢(Hwl)

If we note that the expression #(1 — ¢)~? remains unchanged when ¢ is replaced by 1/t,
then we obtain

Sk =

Ckn
e W

n=]1

n=1

Finally we can expand the two sums in powers of ¢ and w respectively to obtain

-1 =
Sp =1 12 ) oy(n — = +12 ) ai(n)Fuw”
=1[F v S o] - [ 412 S o
These are the expressions that we were seeking for the other sums. Note that they are
really series in powers of w.

We still need to compute the g-series of the power sums of p;, S, . - ., Si—1. We require
only the first few terms of these series so we need not compute these series in closed form.
Nevertheless we can rewrite the power sums in a more efficient form which makes clear
that they are power series in ¢ rather than w. We treat the powers of p; and the S's
séparately and add the results. The powers of p; which are needed are easily computed’
directly. The power sums of the remaining terms Sy, ..., S;—; are more difficult. Let

y(u) = — + 12 Z o1(n)u®

n=]

and define ¢(j,n) by

o

Y(u)= ) e(j,n)u"

n=0
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Then Sk = l4(g) — 7(¢*w) so that the r-th power sum of the S’s is given by

-1 r

T3 3 1 () rtargpiccto)
k=0 —OJ-O
{1
-_-Z (- 1)1(1)1"" '"’(q)Z‘r’(C"W)]
j=0 L k=0
. -1
= F( 1)-'(])1’ Iy ’(q)ZC(Jm)ZC“" "] (6.4)
j= n=0 k=0
= IZ [( 1)f (j)l""'v""(q) > C(J',nf)q"]
j=0 n=0
=iy -1y (7) ™=ia7=3(q)8(q),

where &;1(q) = Y n—p c(j,nl)q". These equations give & relatively efficient way to compute
the needed terms of the power sums of the S’s.

Now we have expressed the power sums of the zeroes of U; as g-series. However we
need these power sums expressed in terms of 4 and B. We do this by solving a system
of linear equations. The k-th power sum is a symmetric function of the zeroes of U; of
generalized degree 2k. Thus we can express it as a linear combination of the monomials
A" B with j;,7; > 0 and 24, + 3j, = k. Let M (k) be the number of these monomials.
Given M(k) terms of the g-series expansion of the k-th power sum and M(k) terms of the
g-series expansion of each of these monomials, we can form a system of M(k) equations
in M (k) unknowns to find the coefficients in this linear combination. One sees easily that
M(k) ~ k/6, so these systems are much smaller than those which arose in Method 2.
However these systems are simpler in another way which we now describe.

Let

A =12"%(E} - E7) = —27%37%(44° + 27B?),’

a quantity of generalized degree 12. The scaled (see the discussion of scaling in the previous
section) g-series expansion is known [Sey p.95], to be

A=gq H(l — qn)24,
n=1
which has integer coefficients and no constant term. Suppose that k = 2m, m > 1. Then
M(k) = [m/3] + 1. The polynomials
E;‘-ajAjs J = " [m/3] (65)

are all generalized degree 2k polynomials in A and B and they are linearly independent
since the term indexed by j in this sequence has a g-series beginning with ¢7. (Here we
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are essentially following a remark in [Se, p.105].) Now, if we express the k-th power sum
as & linear combination of terms of this basis, our system of equations will be triangular
with 1's on the diagonal which is easier to solve than a random system. If k = 2m + 3 we

can use the basis o
EEF A, j=0,...,[m/3) (6.6)

instead. This basis is just as easy to use with a particular curve. We simply compute
E; = —A/3, E3 = —B/2 and A from the known values of A and B and then use our
formulas expressing the power sums of the roots of U; in terms of E;, Es and A. Finally
we can compute the coefficients of U; with the help of Newton’s formulas.

We discuss the cost of the one-time work in section 8.

Here are the first few U}’s.

Us = z* + 24z + 4Bz — A?/3
Us = z° + 20A2* + 160Bz® —- 804222 — 128 4Bz — 80B?
Ur = 28 + 84A42% + 1512B2° — 18004224
—~ 9072AB2® + 6444%2% — 21168B%2” + 583242 Bz — 56T A%

Remark:

The (scaled) power series for p; and the $’s have integer coefficients. This implies
that the g-series expansions for their elementary symmetric functions will also have integer
coefficients. Thus ultimately the coefficients of U; when expressed as polynomials in E,,
E; and A as described above have integer coefficients. Substituting the expressions for E;,
E, and A in terms of A and B, we find that U; is in Z[A4, B,1/2,1/3]. But we also know
from our integrality argument that U; is in Z[A4, B, 1/l]. This shows that if [ > 3, then U
is really in Z[A, B] as claimed in the discussion of Method 2.

Remark: There are no monomials in A and B of generalized degree 2. Therefore the sum
of the zeroes of ¥;(z), which is a polynomial in A and B of generalized degree 2, is zero.
This implies that

p+Se+S++85-1=0.

Now the preceding expressions for S can be used to give another derivation of the formula
for p;.

Remark: It is possible using much the same style argument as we gave in section 5 to
show that the minimum polynomials which we find for p; which hold over the complex
numbers will hold over any field of characteristic > 3 and not equal to I. We omit the
details.

7. The polynomials satisfied by A' and B'.

Qur plan described in section 3 calls now for expressing p; and p; as rational functions
of p;, A and B. While this is certainly possible in principle, and would be desirable in
practice, we know only one rather ad hoc method for finding these relations (described
in section 10) and we are uncertain what the cost of this method is. Thus it is easier to
find p, and p; using the same methods that we used for p;. However, it turns out to be
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somewhat more convenient to compute (in the notation of section 3) A’ and B’ instead of
p2 and p3. Knowledge of one pair can be converted to the other with the formulas (5.2)
and (5.3).

Note first that, from (5.2) and (5.3), A’ and B’ are integral over Q[A, B] since p;
and ps are integral. We shall see that, using the methods of the previous section, we can
compute the monic minimum polynomials V; and W; of A’ and B’. In the cases that U;
has a zero in our base field, we find the zeroes in the base field of V; and W;.

We expect that the every-time work for our algorithm is concentrated primarily in
solving these polynomial equations. We have to solve one equation of degree ! + 1 for
half the I's and three equations for the other half. Elkies’ method requires solving one
equation of degree I+ 1 for every . This is why we estimate that our method will require
about twice as much work. OQur method has some additional complications such as those
described immediately below, but these should not cost us much extra work.

When we solve the equations for A’ and B’, in the case of favorable I, we expect these
polynomials to have two roots each in the field F' (one for each eigenspace with respect
to ¢). We are then faced with the problem of determining how to associate the zeroes
of V; and W; with those of U;. We can choose an arbitrary root of U; for p;, but then
there remain four possibilities for matching this with values of A’ and B'. We know of no
procedure better than guessing which of the four is correct. Having made the guess we then
construct the putative factor of ¥; according to the method of section 5. We can then test
whether the resulting polynomial is a factor of ¢; by computing ¥; and dividing. However,
the work involved just in computing i; is on the order of 4. A simple way to avoid this
is to use the recursion (2.1) from scratch but compute the t’s modulo the putative factor.
This way the work should be & fraction of I* so we can afford to do it every time. Note also
that that this search through the four possible polynomials will only be necessary in the
half of the cases that [ is favorable. On these occasions we will need to try 21 possibilities
on average.

We now proceed with a discussion of finding the minimum polynomials of A’ and B’.
We will treat the case of A’ carefully and give only the results for B’. All the methods of
the previous section are again available but we will discuss only the analog of Method 3
since it is much more efficient.

Let us denote by V; the monic minimum polynomial for A'. It turns out that the
computation of V; is really simpler than-that-of /. ‘We compute V; for the complex curve
E whose associated lattice is generated by 1 and = by finding the power sums of its roots
as g-series and then solving a triangular system of linear equations to express the power
sums as polynomials in By, F, and A. The ! + 1 subgroups of E of order [ are generated
by the I+ 1 complex numbers 1/l and (k+ 7)/l, k =0,...,1 — 1. The roots of V; are the
g-series for the “A-coefficient” of the curves whose associated lattices are spanned by 1/m
and 7, in the first case, and by 1 and (k+7)/l, k =0,...,1 — 1 in the other I cases. For
the first of these curves the A-coefficient is, from (4.2), I* times the coefficient associated
to the lattice spanned by 1 and Ir. Therefore from (6.2) its series (conventionally scaled)

is
-3 (1 + 240 i ag(n)q'“) :

n=1
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The series (in powers of w = g'/! ) for the coefficients for the other ! curves can be obtained
by substituting (k + 7)/ for T in (6.2). They are

3 (1 +24OEa'3(n)C""w") , k=0,...,1-1
n=1
where as in the last section w = €?™7/! and ¢ = e2*i/!,

We again use Newton’s formulas and compute the power sums of these roots rather
than their elementary symmetric functions. Let

a(u) =1+ 240 i o3(n)u”

n=1
and suppose that a(r,n) are defined by
a"(u) = E a(r,n)u”.
n=0

The r-th power sum is

-1
3T (’4rar(q1) + Zar(ckw))

=3" (14" i a(r,n)g'™ +1 i a(r, ln)qn)

n={ n=0

(7.1)

In this case we need to expand the g-series of the r-th power sum to M(2r) terms since
the A’s have degree 4. If I, is the largest prime that we wish to process, all the g-series
that we need can be easily be computed from the first 1, M (2], 4 2) coefficients of the o’ ,
J=1,...,1 +1. The work for this part is I3/18 field operations with classical algorithms.
However, this is essentially all the one-time work there is, and it is all concentrated in

these polynomial multiplications of high degree polynomials.” Thus it is possible to save — —

time with fast multiplication techniques.

Remark: The I-th Hecke operator applied to a modular form H(7) of degree d is

-1
d— 1 k+1'
ESEAn+ B3

k=0

It is interesting to note that the r-th power sum of the roots of V;, which is given in (7.1)
above is actually (! times) the /-th Hecke operator applied to the modular form A™. We
do not see how to make use of this observation.
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Here are the corresponding formulas for B'. Let us denote by W; the monic minimum
polynomial satisfied by B’ over Q[A, B]. Let

Bu) =1-504 Y ox(n)u"

n=1

and suppose that b(r,n) are defined by

B (u) = Z b(r,n)u™.

n=0

Then the r-th power sum of the roots of W is given by

2r (1’6' f: b(r,n)g'™ +1 f: b(r, In)q“) (7.2)

n=0 n=0

Here the r-th power sum has generalized degree 6r so that we need to compute M(3r)
terms of their g-series. In the end the work involved is about /8 field operations.

8. The size of the integers needed in a one-time computation.

The one-time work of our algorithm is essentially the work involved.in expressing
the power sums of the roots of Uj, V;, W; as polynomials in A, B (or more efficiently as
polynomials in E;, E; and A.) The most efficient method is the last method of section 6.

At any stage in the one-time work we have the option of reducing all our computed
results modulo p and doing the rest of our work over GF(p). As long as we are calculating
over the integers we will calculate modulo a collection of single-precision primes and com-
bine results in the end with the Chinese Remainder Theorem. So long as we proceed this
way we need to know maximum size of the final integers that we are computing. It may
be posssible to estimate this by doing the calculations in floating point arithmetic. Here
we may have some annoying, but not insurmountable, problems with overflow. Another
possibly much more serious difficulty is round-off error.

Probably the most expensive part of the one-time work is the calculation of the powers
of the series -

Blu)=1-504 Z as(n)u”.
n=l1

A practical method is to find first the powers of

Alu) = Z: os(n)u™

n=1

find the powers of A(u) later with the help of the binomial theorem.
Let us estimate the size of the largest coefficient that we will obtain. We have

as(n) = %:- <nt Zd—lﬁ = ¢(5)n".

din d=1
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Therefore A(u) is dominated term by term by ((5) 3 .-, n®u™ which is in turn dominated

by
o0
c’g (" ;'4):;" = Cu(l—u)™,
where C = 5!((5). It follows that A™(u) is dominated by C™(1 — u)~%™ The highest term
we will need in A™ is about m?/2. We can obtain an approximation to the size of the

coefficient of u™" /2 in A™(u):

c™ (m’/:n'i'f‘r;l - 1) PN il (m:éi'/l"e?;ln)ﬁm . (1_62_)6’“ (m +12)°".

The largest value m that we need here is about log, p. This shows that the number of

bits needed for the largest coefficient is order of magnitude 6(log, p) log,(log, p). A similar
analysis could be done of the sizes of the other large integers that are needed for one-time

work.

9. Finding rational relations.

We now consider briefly our original plan of expressing p» and p; as rational functions
of p1, A and B. A method something like Method 2 of section 6 is possible. We simply
look for linear relations among monomials in p;, p; A and B, which are of degree at most
cne in ps. We may restrict our search to homogeneous linear combinations of monomials.
The problem is that we do not know what the lowest degree is where we can expect to find
non-trivial linear relations. We have had to experiment to find cut what this lowest degree
is for each I, If we attempt to solve the resulting homogeneous systems of linear equations
with rational arithmetic, we need high precision. Thus we would like to have recourse to
solving modulo a set of primes. Now, however, we have the added complication that we do
not know how to scale the solutions so that we have integer coefficients and the integers,
when we do find them, may well be larger than the coefficients we needed to compute in
the previous section.

We still have the option of solving modulo the characteristic of F'. This is probably a
practical alternative. Here the main objection is that the systems of equations are larger
than those we needed to solve in Method 3 of section 6. Also it does not seem possible to
produce the systems in triangular form as we did above.

. An alternative to looking for rational relations is just_to look for relations among all
monomials of lowest generalized degree in, say, p;, p2, A and B. The resulting equations
are not necessarily linear in ps but they are of lower degree so it is possible that there will
be only one rational solution for p; given the values of p;, A and B allowing us to avoid
the awkwardness of having to guess the match-ups. Also less work is involved in solving
the lower degree relations for pj.

Appendix I.
Here we prove the facts claimed in section 3. These must certainly be present in the

literature of elliptic curves. Our object here is to provide easily accessible proofs.

Theorem: Suppose that ! is an odd prime. Then ¥;(z) regarded as a polynomial in
Q[4, B, z], is irreducible.
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Proof: Let I be an odd prime. Regarding 1;(z) as a polynomial in z with coefficients in
Z[A, B], we note that it has no factors which are polynomials in A and B since the leading
coefficient is /. Suppose that it factored into two polynomials of positive degree in 2. Then
it would factor with integer coefficients. Thus it suffices to prove that there exists a prime
p and elements A and B of GF(p) such that ¢(z) is irreducible mod p. Choose integers
a and b such that the polynomial A2 + @) + b is primitive mod /. Choose p with p = b
mod ! and |a] < 2,/p. Then according to [U, Theorem 4] there exists a curve |E| defined
over GF(p) with ¢ = |E,| — 1 — p = a. For this curve then the Frobenius operator ¢ will
act as a single cycle of length {2 — 1 on the I-torsion points. It will also therefore act as a
single cycle on the z-coordinates of the I-torsion points. It follows that t;(z) is a power
of an irreducible polynomial modulo this prime. However we also know that () has
distinct roots mod p for any p # ! and any A and B with 44% + 27B2 # 0. This proves
the theorem.

Theorem: Suppose that ! is an odd prime. Then the polynomial Ui(z) regarded as a
polynomial in Q[A, B, z] is irreducible. ST

Proof: Let [ be an odd prime. U is the monic polynomial whose zeroes are the sums of z-
coordinates from 1-dimensional subspaces of E[l]. If I = 3, U; = ¢;/3 which is irreducible.
If I > 3, from the discussion section 6, we know that the coefficients of U; are polynomials
in Z{A, B]. Thus it suffices to prove that, for some A and B and p > 3, U is irreducible
mod p. The argument of the previous theorem shows that there exist p, A and B for which
the Frobenius operator is transitive on the roots of U so that, for this choice of p, A and
B, U, is 2 power of an irreducible polynomial.

Thus we need to show that, for at least one of these curves, the polynomial U; has
distinct roots. We know that the polynomial has distinct roots over the complex numbers
since our g-series expansions exhibit distinct roots in the field of formal Laurent series
in w = ¢*/! with rational coefficients. Thus the discriminant is non-zero over fields of
characteristic zero. However the discriminant is also & homogeneous function of A and B
of generalized degree 2I(I + 1) since it is the product of the squares of the differences of
the [ + 1 roots and each root has generalized degree 2. Thus there are at most 2I(I + 1)
distinct values of the the ratio of A® to B? over any field for which the U; has repeated
roots. We shall show in the Lemma below that there are at most six possible values for
the cardinality of the set of rational points for a curve over GF(p) if we are given the ratio
of A% to B2. Thus there are at most 12I(] +1) possible cardinalities for the rational points
of a curve over GF(p) for which U; has repeated roots.

Assuming the Lemma we now choose p = b mod [ such that there are more than
12/(1 + 1) integers t with ¢ = ¢ mod ! and [¢} < 2,/F. Thus at least one of these values
of ¢ arises from a curve for which U; has distinct roots. For any such curve U; will be
irreducible. This completes the proof of the theorem.

Lemma: Given p, and the ratio of A® to B?, there are at most two possible values for
the number of rational points on curve y? = z* + Az + B if 4, B # 0, at most 4 values if
A #0, B=0and at most 6 values if A = 0, B #£ 0.

Proof of Lemma: We consider the case A4, B # 0. It suffices to show that if we are
given two curves, one determined by A, B and the other by 4', B, and A%/B? = 4'®/B"?
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and A/B has the same quadratic character as A'/B’, then the two curves have the same
number of elements. In this case we can choose A # 0 such that \24/B = A'/B’. It is now
routine to check that the 4, B-curve can be converted to the A', B'-curve by replacing z
by £/A? and y by y/A3.

Similarly if A # 0, B = 0, the cardinality depends only on the coset of A modulo
the fourth powers in the multiplicative group of F, while if A =0, B # 0, the cardinality
depends only on the coset of B modulo the sixth powers in the multiplicative group of F.
This proves the Lemma.

These two theorems prove some claims made in section 3. In particular the last
theorem implies that p; generates the field L over the field F in the notation of section 3
as claimed. Indeed we now know that p; is an element of L and the root of an irreducible
polynomial of degree ! + 1 with coeffcients in F', which is the same as the degree of the
extension L/F.

Appendix II.

Eric Liverance has suggested an improvement to our method of finding a factor of
the division polynomial. This improvement is based on a paper of Stark ([St]). We think
that this idea could be used to shorten and clarify the exposition. It may also shorten the
running time of our version of Schoof’s algorithm.

Suppose we are given an elliptic curve E with equation y? = 2% + Az + B. Given a
small prime [/, on page 9 we define a curve E’ over the complex numbers whose coordinate
functions are =’ and y', and whose equation is

(yl)'...’ —_ (z:)a = Alxi‘ +B’.

We can consider z’ as a function on F, and since it is even (i.e. z'(P) = z'(-P)), z' is a
rational function of z alone. Write

z'(z) = f(z)/g(=)

where f and g are relatively prime polynomials. It is easy to see that this implies that
g = h?, and h is a polynomial of degree %(I—1) which is a factor of the division polynomial
1. Furthermore the degree of f is L

To find f and g in the complex case we would write

z'(z) - 9(z) = f(=)-

Then we could replace = and z' by the Laurent series for the Weierstrass p-functions for
E and E' respectively. These series only depend on A, B, A’, and B'. We are given 4 and
B, and we can compute A’ and B’ using the methods of Section 7. Comparing terms in
the above equation gives & system of linear equations which must determine f and g. The
polynomial g is then the square of the desired factor of ;.

For the case of positive characteristic p, the coefficients of these Laurent series make
sense up to about degree p. Since f has degree ! and g has degree ! — 1, if ! is small
compared to p, the technique described above should work in this case too.
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If all of the details work out, we would not need the polynomial U;, nor would we need
Elkies’ method of finding p4, ps,... from p;, p2, and p3, i.e. we would not need Sections
5 and 6. Since the work in our version of Schoof’s algorithm is dominated by finding the
roots of V; and W}, there would be little improvement in running time because of this.
However, the discussion on page 18 could then be revised. We would have to solve one
equation of degree [ + 1 half of the time and two equations for the other half. Hence our
method with Liverance’s improvement should require about 50% more work than Elkies’
method.
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