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l. Introduction

A short history:
» 1990ff: Schoof-Elkies-Atkin (SEA), Couveignes-FM,
Dewaghe (isogeny cycles);
» Kohel, Galbraith, Fouquet-FM (volcanoes);

» Galbraith-Hess-Smart; Smart; Jao-Miller-Venkatesan;
Teske; Rostovtsev-Stolbunov; Charles-Goren-Lauter.

» Quite recently: finding good Edwards curves (FM); CRT
methods for computing class (resp. modular)
polynomials(Sutherland et al.).

Bibliography:
» Silverman; Lang’s Elliptic functions.

» green book (Blake, Seroussi, Smart). Don’t forget to read
the original papers, when available. ..

» Gathen & Gerhard, etc.



Different usages

» Generalize [m] on E:
» factor f,,: SEA.
» speed up the computation of [k]P when small degree
isogeny exist (Doche-Icart-Kohel).
» Replace E by some sister or cousin having better or
stronger properties:
» find E of the same cardinality, but Y> = X —3X +b
(Brier-Joye);
» preventing the existence of “special points” a la Goubin
(Smart);
» find a convenient Edwards curve (FM).

» Hide a curve in a graph for cryptographic applications
(see later).

» New CRT methods for computing modular or class
polynomials (Sutherland).



ll. Elliptic curves and isogenies

E:y* =x*+Ax+ B over K, char(K) ¢ {2,3}.

Def. (torsion points) For n € N, E[n] = {P € E(K), [n]P = Og}.

Division polynomials:

_ (pn(x,y) w”(x’y)
[n](x7y) - (q[n@c,y)z, llfn(xa)’)3>

On = X‘I’;% —VYntr1V¥n-1
AyOn = Y2 Wy — Yn2Vny)
In K[x,y]/(y* — (x* + Ax+B)), one has:
Yom+1 (xy)7) :f2m+l (x)v Yo, = 2yf2m(x)

for some f,,,(x) € K[A, B, x|.



 wa(xy) for n odd
A ‘{ Va(x.9)/(23) forneven

f—l =1, fOZOa fl =1, f2:1
f3(x,y) = 3x* + 6Ax* + 12Bx — A?
falx,y) = x® 4+ 5Ax* + 20Bx* — 5A%x* — 4ABx — 8B* — A3

f2n :fn(fn+2fnzfl *fnflfanrl)

fasofy —f3+1fn71(16y4) if nis odd
f2n+1 =

(16y4)fn+2fn3 *f,?ﬂ w—1 otherwise.

_{ (*=1)/2 ifnisodd
deg(fu(x)) _{ (n> —4)/2 otherwise.

Thm. P = (x,y) € E[{] <= [2]P = O or fy(x) = 0.



Isogenies
Def. ¢ : E — E, ¢(Og) = O; induces a morphism of groups.

First examples

1. Separable:
P W
kl(x,y :< )
[K] (x, y) v
E = E (endomorphism).
2 3

. Complex multiplication: [i](x,y) = (—x,iy) on E : y*> = x*> — x;
E = E (endomorphism).
3.

Inseparable: 7(x,y) = (x,’), K=TF,; E=E’.

In the sequel:
» only separable isogenies;
» finite fields.



Properties of isogenies
Thm. If F is a finite subgroup of E(K), there exists ¢ and E s.t.
¢:E—E=E/F, ker(¢)=F.
Def. (Separable) degree of ¢ is #F'.

Problem 0: given E, F, compute an equation for £ and
formulas for ¢.

Thm. (dual isogeny) There is a unique ¢ : E — E, ¢ o ¢ = [m],
m = deg¢.

<

[m]

= we can get a factorization of f;.



Finding isogenous curves

Key fact: for all integers n there exists a polynomial
®,(X,Y) € Z[X,Y] (modular polynomial) s.t. E and E’ are
n-isogenous iff ®,(j(E),j(E')) = 0.

Problem 1: given E, find all roots of ®,(X,j(E)) and construct
from this all (E’, ¢) that are n-isogenous.

Rem. If 7 is prime deg(®,) = ¢+ 1 and can be computed in
O(?) operations (Enge).

Thm. When 7 is prime, ®,(X,j(E)) has 0, 1, 2 or £+ 1 roots
over K.

= we can build a graph of isogenies starting from E.



Atkin and Elkies (1986—1990)

The Frobenius 7 : (X,Y) — (X4,Y7) has minimal equation
nron®(g =0, A=r—4q.

If (A/¢) =+1, then over Fy,
Mat(my) ~ ( )(L)l 7? ) < JF,m(F) =F < Fis acyclic
2
subgroup of order ¢, defined over K; E is ¢-isogenous to
E=E/F.
As a consequence, f; has a factor of degree (/—1)/2.

Computational primitive: E — E in direction A.



lll. Computations and algorithms

But what does an isogeny look like? Let

D(x) = H (x—xp) =x""T—ox" 24 o'~ 4
QcF*

where 6 =Y e Xo.
Rem. When / is odd, D(x) = g(x).

Fundamental proposition. £ : ¥* = X* + AX + B where
A=A—-5t, B=B—"7w with

t=A(l—1)43(c>-203),w =340 +2B({— 1) +5(c” =360, +303);

o= (52, (59))




Numerical examples
Ex 1. E:y* =x+bx, F=((0,0));
E‘:y2 = x> —4bx,

X4bx x*—b
¢ : ('x7y) = <x27y> .

¥2



Numerical examples
Ex 1. E:y* =x+bx, F=((0,0));
E:y2:x3—4bx,

X4bx x*—b
¢ : ('x)y) = <x27y> .

A curiosity: E : y> = x> + x+ 3 defined over Fo; E is
6-isogenous to

¥2

E:y* =x’4+830x+82
and o = 739 (formulas for prime ¢ valid here too!!!) for which

N(x)  x0 427027 +3252* +566.x% + 38247 + 5551 +203

D(x) x5 427024 42893 +659x2 4 533x+ 399

The denominator factors as
(x—66) (x —23)* (x — 818)*.

x = 66 is the abscissa of a point of 2-torsion;
23 is the abscissa of a point of 3-torsion;

818 is the abscissa of a primitive point of 6-torsion.



Isogenies and complexity (1/2)

Goal: compute an isogenous curve of degree ¢ over [ .

Basic algorithm:
Given p, n, E/F n,
for jo a root of @,(X,j(E)), compute E and ¢ : E — E.

» Case p > (: (Elkies, Atkin), finding £ costs O(¥)
operations; finding ¢ costs O(¢2) + O(M(¢))
(Bostan-FM-Salvy-Schost).

» Casep </

» p = 2: super fast algorithm by Lercier, complexity not
proven O(¢?) or O(£3)?.

» p > 2: Couveignes’s Artin Schreier approach (remember
L. De Feo’s talk, joint work with E. Schost), O(¢?). To be
confronted with Lercier-Sirvent’s p-adic approach.



Isogenies and complexity (2/2)

Two easy problems:

» Problem 0: given E, F, compute an equation for £ and
formulas for ¢ (Vélu’s formulas).

» Problem 1: given E, find all roots of ®,(X,j(E)) and
construct from this all (E’, ¢) that are n-isogenous (Elkies,
Atkin, etc., but O(n?)).

Two difficult problems:

» Problem 2: given E| and E», are they isogenous?
(modular polynomials can help if bound on degree or very
efficient SEA to use Tate’s theorem).

» Problem 3: given that E| and E, are isogenous, find an
isogeny between them (probably best to solve Problem 0
and use an isomorphism from E to E,; bound required).



IV. Isogeny graphs and cryptographic applications

Def. G = (7,&) where (E|,E;) € & if and only if E; and E, are
isogenous.

Thm. (Tate) isogenous curves (over ;) have the same
cardinality.

= G is complete. It is more interesting to study particular
paths between curves.
For instance: graph of ¢-isogenies for ¢ fixed.

It turns out that endomorphisms are important:
End(E) ={l:E — E}.

First task: classify curves according to their endomorphism
ring.



A) Fixing ¢: volcanoes

Thm. If E is ordinary, write #E = g+ 1 —t and 1> —4g = d = f?D.
Then End(E) is an order ¢ in K = Q(v/D) where
D =disc(K) < 0.

General picture: Z[r| = Z[(d +/d) /2] C End(E) C 0.
Class polynomial: H;(X) = [Tgna(g)=c (X —J(E)) € Z[X].

Important result: (Deuring, Waterhouse, Schoof) number of
isomorphism classes of curves having the same cardinal is

H(d)= )  h0).

Z[n|lcOoC Ok

= #7 is reasonably large (h(A) = O(|A|'/>€)).



Volcano

Most interesting case is (2) = +1 and 2 || disc(r) = * — 4¢:

N [1, @], Hp
< @—r "
/l\ [l,ﬁa)], HKZD
o Z\ _______ 1.5_ . [1,6.2(0], HE“D
///,” '/ \‘ '/ \‘ ‘\*\\\ .
; /\ O [L o], Hpap
\\\\“*___. ___________ -4”’/’,

Navigating in the structure is relatively easy, using modular
polynomials: solve ®,(X,j(E;)) to get E;,; in direction 1; see
Kohel, Fouquet-FM.



B) Varying ¢
Problem: given E|,E, € 7, find a path from E; to E,.

Thm. (Galbraith, over I,,) there exists a probabilistic algorithm
that builds an isogeny I : E; — E, requiring O(p*/?logp)
expected time and expected space O(plogp) at worse.

Algorithm:

INPUT: E; and E, which are isogenous.

OUTPUT: an isogeny path from E; to Ej.

1. Find E] isogenous to E; s.t. End(E)) = Ok.

2. Find two paths from E| and E} that meet in some point.
3. Assemble the isogeny.

Idea: build paths using ¢-isogenies of prime degree
¢ < L=0((logD)? (under GRH).

Conjecture: this will terminate after O(loghk) iterations.



Building a binary tree

Start from any curve and build a tree, at each node selecting
some { at random (this is needed since for fixed ¢, we find a
cycle).

A

g/og\
log, h 5}& U3 /3
Fe R R R

o o0 o0 O 0o O O O

Classical property of binary trees: if height is log, /, then
the total number of nodes is %, half of which are leaves.



Building a “bushy” tree

log, h

At each iteration ¢, for each vertex j, compute the roots of
®,(X,j). Expect the tree to have size O(v/h) after O(logh)
|terat|ons.

Using two trees and a birthday-paradox approach, there exists
a common vertex in both trees after O(logh) iterations.

Build the respective paths and that’s it.



Jao, Miller, Venkatesan (ASIACRYPT 2005)

G = (V,&) where (E|,E,) € & if and only if
31: E| — E,deg(I) = ¢ € O((logq)**9) for some & > 0.

Prop. ¢ is an expander graph, hence there is a rapid mixing
property for random walks.

Prop. Let G be a regular graph of degree k on h vertices. Suppose that the eigenvalue A of any nonconstant

eigenvector satisfies the bound |A| < ¢ for some ¢ < k. Let S be any subset of the vertices of G, and x be any
log(2h/15]'/2)

log(k/c) starting from x will land in S with probability

vertex in G. Then a random walk of any length at least

S| _ 18I
atleast — = ——.
2n 2|6l

Coro. ECDLP is not stronger among an isogeny class.



Some cryptographic applications

Where is the difficult problem? Given two isogenous curves
E; and E», build an explicit isogeny I : E; — E,.

Only known way: Galbraith’s in O(v/h).

Using the graphs:

» Key exchange: (Rostovtsev, Stolbunov) using two routes
and RA(RB(E)) = RB(RA (E))

» ECDLP: the GHS attack is not invariant under isogeny,
hence we could dream of finding an isogenous curve E,
for which the GHS is more (resp. less) successful.
Confirmed by JaMiVe05. = key for trapdoors, see
E. Teske’s (J. Cryptology).

» Hash function: (D. Charles, E. Goren, K. Lauter):
H(mom, ...m_1): start from a given (supersingular) E; use
m; to decide to go left or right at each step; hash value is
the last curve.



Conclusions

» |sogenies prove their interest outside classical number
theory, and even outside the original SEA context.

» Not all algorithmic problems solved: see the current
cleaning of Couveignes’s algorithm, the use of p-adic
methods, etc.

» New applications appear: CRT again; more crypto
things?

» Higher genus: almost everything has to be done (see
FM'’s slides for ANTSS).

= not the end of the story!



