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I. Introduction

A short history:
I 1990ff: Schoof-Elkies-Atkin (SEA), Couveignes-FM,

Dewaghe (isogeny cycles);
I Kohel, Galbraith, Fouquet-FM (volcanoes);
I Galbraith-Hess-Smart; Smart; Jao-Miller-Venkatesan;

Teske; Rostovtsev-Stolbunov; Charles-Goren-Lauter.
I Quite recently: finding good Edwards curves (FM); CRT

methods for computing class (resp. modular)
polynomials(Sutherland et al.).

Bibliography:
I Silverman; Lang’s Elliptic functions.
I green book (Blake, Seroussi, Smart). Don’t forget to read

the original papers, when available. . .
I Gathen & Gerhard, etc.



Different usages

I Generalize [m] on E:
I factor fm: SEA.
I speed up the computation of [k]P when small degree

isogeny exist (Doche-Icart-Kohel).
I Replace E by some sister or cousin having better or

stronger properties:
I find Ẽ of the same cardinality, but Y2 = X3−3X +b

(Brier-Joye);
I preventing the existence of “special points” à la Goubin

(Smart);
I find a convenient Edwards curve (FM).

I Hide a curve in a graph for cryptographic applications
(see later).

I New CRT methods for computing modular or class
polynomials (Sutherland).



II. Elliptic curves and isogenies

E : y2 = x3 +Ax+B over K,char(K) 6∈ {2,3}.

Def. (torsion points) For n ∈ N, E[n] = {P ∈ E(K), [n]P = OE}.

Division polynomials:

[n](x,y) =
(

ϕn(x,y)
ψn(x,y)2 ,

ωn(x,y)
ψn(x,y)3

)

ϕn = xψ
2
n −ψn+1ψn−1

4yωn = ψn+2ψ
2
n−1−ψn−2ψ

2
n+1

In K[x,y]/(y2− (x3 +Ax+B)), one has:

ψ2m+1(x,y) = f2m+1(x), ψ2m = 2yf2m(x)

for some fm(x) ∈K[A,B,x].



fn(x) =
{

ψn(x,y) for n odd
ψn(x,y)/(2y) for n even

f−1 =−1, f0 = 0, f1 = 1, f2 = 1

f3(x,y) = 3x4 +6Ax2 +12Bx−A2

f4(x,y) = x6 +5Ax4 +20Bx3−5A2x2−4ABx−8B2−A3

f2n = fn(fn+2f 2
n−1− fn−2f 2

n+1)

f2n+1 =


fn+2f 3

n − f 3
n+1fn−1(16y4) if n is odd

(16y4)fn+2f 3
n − f 3

n+1fn−1 otherwise.

deg(fn(x)) =
{

(n2−1)/2 if n is odd
(n2−4)/2 otherwise.

Thm. P = (x,y) ∈ E[`] ⇐⇒ [2]P = OE or f`(x) = 0.



Isogenies

Def. φ : E → Ẽ, φ(OE) = OẼ; induces a morphism of groups.

First examples
1. Separable:

[k](x,y) =
(

ϕk

ψ2
k
,

ωk

ψ3
k

)
,

Ẽ = E (endomorphism).

2. Complex multiplication: [i](x,y) = (−x, iy) on E : y2 = x3− x;
Ẽ = E (endomorphism).

3. Inseparable: π(x,y) = (xp,yp), K = Fp; Ẽ = Ep.

In the sequel:
I only separable isogenies;
I finite fields.



Properties of isogenies
Thm. If F is a finite subgroup of E(K), there exists φ and Ẽ s.t.

φ : E → Ẽ = E/F, ker(φ) = F.

Def. (Separable) degree of φ is #F.

Problem 0: given E, F, compute an equation for Ẽ and
formulas for φ .

Thm. (dual isogeny) There is a unique φ̂ : Ẽ → E, φ̂ ◦φ = [m],
m = degφ .

E -
φ

Ẽ

E
?

φ̂

@
@

@
@R

[m]

⇒ we can get a factorization of f`.



Finding isogenous curves

Key fact: for all integers n there exists a polynomial
Φn(X,Y) ∈ Z[X,Y] (modular polynomial) s.t. E and E′ are
n-isogenous iff Φn(j(E), j(E′)) = 0.

Problem 1: given E, find all roots of Φn(X, j(E)) and construct
from this all (E′,φ) that are n-isogenous.

Rem. If ` is prime deg(Φ`) = `+1 and can be computed in
Õ(`3) operations (Enge).

Thm. When ` is prime, Φ`(X, j(E)) has 0, 1, 2 or `+1 roots
over K.

⇒ we can build a graph of isogenies starting from E.



Atkin and Elkies (1986–1990)

The Frobenius π : (X,Y) 7→ (Xq,Yq) has minimal equation

π
2
` 	 [t]π`⊕ [q] = 0, ∆ = t2−4q.

If (∆/`) = +1, then over F`,

Mat(π`)'
(

λ1 0
0 λ2

)
⇔∃F,π`(F) = F ⇔ F is a cyclic

subgroup of order `, defined over K; E is `-isogenous to
Ẽ = E/F.

As a consequence, f` has a factor of degree (`−1)/2.

Computational primitive: E 7→ Ẽ in direction λ .



III. Computations and algorithms
But what does an isogeny look like? Let

D(x) = ∏
Q∈F∗

(x− xQ) = x`−1−σx`−2 +σ2x`−3−σ3x`−4 + · · · .

where σ = ∑Q∈F∗ xQ.

Rem. When ` is odd, D(x) = g(x)2.

Fundamental proposition. Ẽ : Y2 = X3 + ÃX + B̃ where
Ã = A−5t, B̃ = B−7w with

t = A(`−1)+3(σ2−2σ2),w = 3Aσ +2B(`−1)+5(σ3−3σσ2 +3σ3);

φ(x,y) =
(

N(x)
D(x)

,y
(

N(x)
D(x)

)′)
,

N(x)
D(x)

= `x−σ − (3x2 +A)
D′(x)
D(x)

−2(x3 +Ax+B)
(

D′(x)
D(x)

)′



Numerical examples
Ex 1. E : y2 = x3 +bx, F = 〈(0,0)〉;

Ẽ : y2 = x3−4bx,

φ : (x,y) 7→
(

x3 +bx
x2 ,y

x2−b
x2

)
.

A curiosity: E : y2 = x3 + x+3 defined over F1009; E is
6-isogenous to

Ẽ : y2 = x3 +830x+82
and σ = 739 (formulas for prime ` valid here too!!!) for which

N(x)
D(x)

=
x6 +270x5 +325x4 +566x3 +382x2 +555x+203

x5 +270x4 +289x3 +659x2 +533x+399
.

The denominator factors as

(x−66)(x−23)2 (x−818)2 .

x = 66 is the abscissa of a point of 2-torsion;
23 is the abscissa of a point of 3-torsion;
818 is the abscissa of a primitive point of 6-torsion.
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Isogenies and complexity (1/2)

Goal: compute an isogenous curve of degree ` over Fpn .

Basic algorithm:
Given p, n, E/Fpn ,
for j0 a root of Φ`(X, j(E)), compute Ẽ and φ : E → Ẽ.

I Case p� `: (Elkies, Atkin), finding Ẽ costs O(`)
operations; finding φ costs O(`2)+O(M(`))
(Bostan-FM-Salvy-Schost).

I Case p� `:
I p = 2: super fast algorithm by Lercier, complexity not

proven O(`2) or O(`3)?.
I p > 2: Couveignes’s Artin Schreier approach (remember

L. De Feo’s talk, joint work with É. Schost), Õ(`2). To be
confronted with Lercier-Sirvent’s p-adic approach.



Isogenies and complexity (2/2)

Two easy problems:
I Problem 0: given E,F, compute an equation for Ẽ and

formulas for φ (Vélu’s formulas).
I Problem 1: given E, find all roots of Φn(X, j(E)) and

construct from this all (E′,φ) that are n-isogenous (Elkies,
Atkin, etc., but Õ(n3)).

Two difficult problems:
I Problem 2: given E1 and E2, are they isogenous?

(modular polynomials can help if bound on degree or very
efficient SEA to use Tate’s theorem).

I Problem 3: given that E1 and E2 are isogenous, find an
isogeny between them (probably best to solve Problem 0
and use an isomorphism from Ẽ to E2; bound required).



IV. Isogeny graphs and cryptographic applications

Def. G = (V ,E ) where (E1,E2) ∈ E if and only if E1 and E2 are
isogenous.

Thm. (Tate) isogenous curves (over Fq) have the same
cardinality.

⇒ G is complete. It is more interesting to study particular
paths between curves.

For instance: graph of `-isogenies for ` fixed.

It turns out that endomorphisms are important:
End(E) = {I : E → E}.

First task: classify curves according to their endomorphism
ring.



A) Fixing `: volcanoes

Thm. If E is ordinary, write #E = q+1− t and t2−4q = d = f 2D.
Then End(E) is an order O in K = Q(

√
D) where

D = disc(K) < 0.

General picture: Z[π] = Z[(d +
√

d)/2]⊂ End(E)⊂OK .

Class polynomial: Hd(X) = ∏End(E)=O(X− j(E)) ∈ Z[X].

Important result: (Deuring, Waterhouse, Schoof) number of
isomorphism classes of curves having the same cardinal is

H(d) = ∑
Z[π]⊂O⊂OK

h(O).

⇒ #V is reasonably large (h(∆) = O(|∆|1/2+ε)).



Volcano

Most interesting case is
(D

`

)
= +1 and `2n || disc(π) = t2−4q:

•λ λ
[1,ω], HD

• [1, `ω], H`2D

• • [1, `2ω], H`4D

• •

...
[1, `nω], H`2nD

Navigating in the structure is relatively easy, using modular
polynomials: solve Φ`(X, j(Ei)) to get Ei+1 in direction λ ; see
Kohel, Fouquet-FM.



B) Varying `

Problem: given E1,E2 ∈ V , find a path from E1 to E2.

Thm. (Galbraith, over Fp) there exists a probabilistic algorithm
that builds an isogeny I : E1 → E2 requiring O(p3/2 logp)
expected time and expected space O(p logp) at worse.

Algorithm:
INPUT: E1 and E2 which are isogenous.
OUTPUT: an isogeny path from E1 to E2.
1. Find E′i isogenous to Ei s.t. End(E′i) = OK .
2. Find two paths from E′1 and E′2 that meet in some point.
3. Assemble the isogeny.

Idea: build paths using `-isogenies of prime degree
`≤ L = O((logD)2 (under GRH).

Conjecture: this will terminate after O(loghK) iterations.



Building a binary tree

Start from any curve and build a tree, at each node selecting
some ` at random (this is needed since for fixed `, we find a
cycle).

`1 `1

`2 `2 `3 `3

`4 `4 `5 `5 `6 `6 `7 `7

log2 h

Classical property of binary trees: if height is log2 h, then
the total number of nodes is h, half of which are leaves.



Building a “bushy” tree

`1 `1

`2 `2 `3 `3

`4 `4 `5 `5 `6 `6 `7 `7

log2 h
`2

`2

`3

`4

At each iteration `, for each vertex j, compute the roots of
Φ`(X, j). Expect the tree to have size O(

√
h) after O(logh)

iterations.
Using two trees and a birthday-paradox approach, there exists
a common vertex in both trees after O(logh) iterations.
Build the respective paths and that’s it.



Jao, Miller, Venkatesan (ASIACRYPT 2005)

G = (V ,E ) where (E1,E2) ∈ E if and only if
∃I : E1 → E2,deg(I) = ` ∈ O((logq)2+δ ) for some δ > 0.

Prop. G is an expander graph, hence there is a rapid mixing
property for random walks.

Prop. Let G be a regular graph of degree k on h vertices. Suppose that the eigenvalue λ of any nonconstant

eigenvector satisfies the bound |λ | ≤ c for some c < k. Let S be any subset of the vertices of G, and x be any

vertex in G. Then a random walk of any length at least
log(2h/|S|1/2)

log(k/c)
starting from x will land in S with probability

at least
|S|
2h

=
|S|

2|G|
.

Coro. ECDLP is not stronger among an isogeny class.



Some cryptographic applications

Where is the difficult problem? Given two isogenous curves
E1 and E2, build an explicit isogeny I : E1 → E2.

Only known way: Galbraith’s in O(
√

h).

Using the graphs:
I Key exchange: (Rostovtsev, Stolbunov) using two routes

and RA(RB(E)) = RB(RA(E)).
I ECDLP: the GHS attack is not invariant under isogeny,

hence we could dream of finding an isogenous curve E2
for which the GHS is more (resp. less) successful.
Confirmed by JaMiVe05. ⇒ key for trapdoors, see
E. Teske’s (J. Cryptology).

I Hash function: (D. Charles, E. Goren, K. Lauter):
H(m0m1 . . .mk−1): start from a given (supersingular) E; use
mi to decide to go left or right at each step; hash value is
the last curve.



Conclusions

I Isogenies prove their interest outside classical number
theory, and even outside the original SEA context.

I Not all algorithmic problems solved: see the current
cleaning of Couveignes’s algorithm, the use of p-adic
methods, etc.

I New applications appear: CRT again; more crypto
things?

I Higher genus: almost everything has to be done (see
FM’s slides for ANTS8).

⇒ not the end of the story!


