Trapdooring with Isogenies

Edlyn Teske

C\&O, University of Waterloo/
CWI Amsterdam

Paris, 18.7.2006

Key Escrow with Elliptic Curves.

- Key escrow: BIG BROTHER (BB) wants to listen.
- So, users have to submit information about their secret keys to an escrow agency.
- Often, this simply means submitting the decrypt information. Then BB can decrypt everyone's encrypted messages in polynomial time.
- Proposal: an elliptic curve based key escrow where BB can derive a user's secret key, but only with considerable computational effort.
- For example, this makes widespread wiretapping impossible.

Key escrow with elliptic curves The big picture

- Alice constructs a pair of elliptic curves ($E_{\text {sec }}, E_{\text {pub }}$) over $\mathbb{F}_{2^{161}}$ such that
- $E_{\text {pub }}$ is isogenous to $E_{\text {sec }}\left(\right.$ over $\left.\mathbb{F}_{2^{161}}\right)$.
- Best attack on the ECDLP in $E_{\text {pub }}\left(\mathbb{F}_{2^{161}}\right)$ is the parallelized Pollard rho method.
- ECDLP in $E_{\text {sec }}\left(\mathbb{F}_{2^{161}}\right)$ is computationally feasible, but by far non-trivial.
- Use $E_{\text {pub }}$ just as usual in ECC.
- Submit $E_{\text {sec }}$ to trusted authority.

Magic numbers

- Let N be composite, write $N=n f$. Let $q=2^{f}$.
- For $b \in \mathbb{F}_{2^{N}}, b \neq 0$ let $m=m_{n}(b)="$ magic number" $=$ $\operatorname{dim}_{\boldsymbol{F}_{2}}\left(\operatorname{Span}_{\boldsymbol{F}_{2}}\left\{\left(1, b_{0}^{1 / 2}\right), \ldots,\left(1, b_{n-1}^{1 / 2}\right)\right\}\right)$ where $b_{i}=b^{q^{i}}$.
- Now consider $N=161=7 \cdot 23, n=7$.
- For $b \in \mathbb{F}_{2^{161}}^{*}$ we have $m_{7}(b) \in\{1,4,7\}$.
- There are

$$
\approx 2^{93}
$$

$b \in \mathbb{F}_{2^{161}}^{*}$ for which

$$
m_{7}(b)=4
$$

There are $\approx 2^{23}$ values of b with $m_{7}=1$.
The overwhelming majority has $m_{7}=7$.

Magic numbers and elliptic curves

- Let

$$
E: y^{2}+x y=x^{3}+a x^{2}+b,
$$

$a, b \in \mathbb{F}_{2^{N}}, b \neq 0$ be an elliptic curve.
Then the magic number of E with respect to n is $m=m_{n}(b)$.

- Properties of m :
- m is invariant under isomorphisms.
- m is invariant under the power-2-Frobenius map.
- m is invariant under the 2-isogeny stemming from $\Phi_{2}(X, Y)$.
- m is invariant under the multiplication-by-l map.
- In general, m changes under isogenies.

Weil descent attack

Input:

- A cryptographically interesting curve $E / \mathbb{F}_{2^{N}}$, with N composite.

$$
E: y^{2}+x y=x^{3}+a x^{2}+b, a, b \in \mathbb{F}_{2^{N}}, b \neq 0 .
$$

- $P=$ a point on E of large prime order.

Write $N=n f$. Then $\mathbb{F}_{2^{N}}=\mathbb{F}_{\left(2^{f}\right)^{n}}$.
Gaudry-Hess-Smart (GHS) Weil descent attack and its implementation (in KASH) gives explicit group homomorphism

$$
\Phi:\langle P\rangle \longrightarrow J_{C}\left(\mathbb{F}_{2^{f}}\right)
$$

into the Jacobian of a hyperelliptic curve C.
C is of genus

$$
g=2^{m-1} \text { or } g=2^{m-1}-1,
$$

where $m=m_{n}(b)=$ magic number.

Thus:

Instead of solving the ECDLP

$$
Q=s P
$$

in $E\left(\boldsymbol{F}_{2^{N}}\right)$
for some unknown $s \in[0$, ord $P)$,
solve HCDLP

$$
\Phi(Q)=s \Phi(P)
$$

in the Jacobian $J_{C}\left(\mathbb{F}_{2 f}\right)$.
HCDLP solver: Enge-Gaudry index calculus algorithm.

This may be faster than Pollard rho for corresponding ECDLP if the genus of C has the "right" size.

Now consider $N=161=7 \cdot 23$.

$\mathbb{F}_{2^{23}}$

$$
m=m_{7}(b) \in\{1,4,7\}
$$

If $m_{7}(b)=4$, the ECDLP maps to HCDLP in Jacobian $J_{C}\left(\boldsymbol{F}_{223}\right)$ of curve C of genus 7 or 8.

The vast majority of curves over \mathbb{F}_{2161} has $m_{7}(b)=7$ and yields genus 64 or 63 hyperelliptic curves. In which case the resulting HCDLP is even harder than the ECDLP in $E\left(\mathbb{F}_{2161}\right)$.

Solving the HCDLP

Enge-Gaudry index calculus: $g(C)=7(8)$: expected $2^{34}\left(2^{37}\right)$ hyperelliptic curve operations,
factor base of 2^{22} prime divisors of degree 1 . 25.000 (200.000) days on 1 GHz PIII workstation.

To compare:

DES break using exhaustive search:
110.000 days on a 450 MHz PII.

Pollard rho for 108-bit ECDLP:
200.000 days on 450 MHz PII.

Pollard rho for E161: 2^{80} additions on E161. 10^{14} days on 500 MHz Alpha workstation.

Constructing the secret trapdoor curve

Let

$$
I_{4}=\left\{\begin{array}{c}
\text { isomorphism classes of } \\
E / \mathbb{F}_{2^{161}} \text { with } m_{7}\left(b_{E}\right)=4
\end{array}\right\} .
$$

That is, $I_{4}=\left\{E_{0, b}, E_{1, b}: b \in S\right\}$
where $S=\left\{b \in \mathbb{F}_{2^{161}}: m_{7}(b)=4\right\}$.
Note: $S=\left(W_{0} \oplus\left(W_{1} \backslash\{0\}\right)\right) \cup\left(W_{0} \oplus\left(W_{2} \backslash\{0\}\right)\right)$, where the W_{i} are subspaces of $\mathbb{F}_{2^{161}}$. Bases of the W_{i} can be efficiently computed. (Menezes \& Qu, CT-RSA 2001).

Algorithm to construct the secret curve

1. Choose $b \in_{R} S$ until

$$
\begin{aligned}
& \# E_{1, b}\left(\mathbb{F}_{2161}\right)=2 \cdot \text { prime, or } \\
& \# E_{0, b}\left(\mathbb{F}_{2}{ }^{161}\right)=4 \cdot \text { prime }
\end{aligned}
$$

Denote the resulting curve by E.
2. Let $\Delta=t^{2}-4 \cdot 2^{161}$ be the discriminant of E.
(where $t=2^{N}+1-\# E\left(\mathbb{F}_{2^{161}}\right)$, the trace).
If
(a) Δ is squarefree,
(b) $|\Delta|>2^{157}$,
(c) $2^{76} \leq{\# \mathrm{Cl}_{\Delta}}<2^{83}$
(where $\mathrm{Cl}_{\Delta}=$ class group of \mathcal{O}_{Δ} of $\mathbb{Q}(\sqrt{\Delta}))$,
(d) the odd, cyclic part of Cl_{Δ} has cardinality $\geq 2^{68}$.
then output $E=$: $E_{\text {sec }}$, else go back to (1).

Notes:

- Step (1) = the major barrier. We expect 0.8% of curves to pass.
(Experimentally, 1\% pass.)
- $90-95 \%$ of all E / \mathbb{F}_{2161} have squarefree discriminant. (Experimentally).
- A curve passing Step (2a) most likely passes the remaining steps.
Confirmed experimentally.
- Estimate: There exist $\approx 2^{87}$ suitable secret curves.

Constructing the public curve

Use pseudo-random walk in the isogeny class of $E_{\text {sec }}$.

Theorem: Let $E / \mathbb{F}_{2^{N}}$ be an elliptic curve with endomorphism ring End $(E) \cong \mathcal{O}_{\Delta}$.
Let Cl_{Δ} denote the class group of \mathcal{O}_{Δ} of $\mathbb{Q}(\sqrt{\Delta})$.
Let $\operatorname{Ell}\left(\mathcal{O}_{\Delta}\right)$ denote the set of isomorphism classes of curves isogenous to E with endomorphism ring isomorphic to \mathcal{O}_{Δ}.
Then there is a one-to-one correspondence

$$
\mathrm{Cl}_{\Delta} \longleftrightarrow \mathrm{Ell}\left(\mathcal{O}_{\Delta}\right)
$$

Note:

In our case, Δ squarefree, so $\operatorname{End}\left(E_{\text {sec }}\right) \cong$ \mathcal{O}_{Δ}, and $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}$ for any $E \sim E_{\text {sec }}$.

Ideal classes and isogenous curves.

Cl_{Δ}
$E \|\left(\mathcal{O}_{\Delta}\right)$
a

$$
\begin{gathered}
E_{a, b} \\
b=j^{-1} \\
(j \text {-invariant })
\end{gathered}
$$

prime l
$\left(\frac{\Delta}{l}\right)=1$

2 prime ideals lying over l :

$$
l_{1}, l_{2}
$$

$\mathbf{a} \mapsto \mathbf{a}_{1}=\mathbf{a} * \mathbf{l}_{1}$
$\mathbf{a} \mapsto \mathbf{a}_{2}=\mathbf{a} * \mathbf{l}_{\mathbf{2}}$
$\Phi_{l}(j, X)$,
2 roots in $\mathbb{F}_{2^{N}}$:
j_{1}, j_{2}
$E_{a, b} \mapsto E_{a, j_{1}-1}$
$E_{a, b} \mapsto E_{a, j_{2}-1}$ l-isogenies, "horizontal"

A random walk in the isogeny class

Let $\mathcal{L}=\left\{l_{1}, \ldots, l_{M}\right\}$, the smallest M primes ≥ 3 such that

- $\left(\frac{\Delta}{l_{i}}\right)=1$ and
- the pairs $\left(\operatorname{Red}\left(\mathbf{l}_{\mathbf{i}}\right), \operatorname{Red}\left(\mathbf{l}_{\mathbf{i}}^{\prime}\right)\right)$ of the reduced representatives of the prime ideals $l_{i}, l_{i}^{\prime} l y-$ ing over l are pairwise distinct.

$$
\begin{gathered}
l \in \in_{R} \mathcal{L} \\
E_{a, j^{-1}} \\
\Phi_{l}\left(j, j_{1}\right)=\Phi_{l}\left(j, j_{2}\right)=0 \\
j^{\prime} \in\left\{j_{1}, j_{2}\right\}, \\
l \in \in_{R} \mathcal{L} \\
\longrightarrow \\
\Phi_{l}\left(j^{\prime}, j_{1}\right)=\Phi_{l}\left(j^{\prime}, j_{2}\right)=0 \\
j^{\prime \prime} \in\left\{j_{1}, j_{2}\right\}
\end{gathered}
$$

etc.etc.

Algorithm to construct public curve from secret curve

$$
\text { Let } \begin{aligned}
\mathcal{L}= & \left\{l: l \text { prime }, 3 \leq l \leq 300,\left(\frac{\Delta}{l}\right)=1,\right. \\
& \left.\left(\operatorname{Red}(1), \operatorname{Red}\left(\mathbf{l}^{\prime}\right)\right) \text { pairwise distinct }\right\} . \\
= & :\left\{l_{1}, \ldots, l_{M}\right\} .
\end{aligned}
$$

1. Let $E=E_{\text {sec }}$.
2. For $i=1, \ldots, M$ do
(a) Let $n_{i} \in_{R}\{0,1, \ldots, 11\}$.
(b) Construct a chain of length n_{i} of l_{i}-isogenous curves, starting from E.
(c) Denote the resulting curve by E.
3. Output $E=$: $E_{\text {pub }}$.

Solving the ECDLP in $E_{\text {pub }}\left(\mathbb{F}_{2^{161}}\right)$ using Esec.

Key escrow scenario 1:

Alice submits to the trusted authority (TA) both $E_{\text {sec }}$ and the sequence of j-invariants encountered while computing the public curve.
Then TA easily computes the explicit chain of isogenies using Vélu's formulae.

Key escrow scenario 2:
Alice submits only $E_{\text {sec }}$.
Then starting from $E_{\text {pub }}$ and $E_{\text {sec }}$, TA computes two (deterministic) pseudo-random walks. TA keeps track of all l-values and j-invariants used.
Uses distinguished point method to detect collision between these two walks.
Collision is expected to occur after $\sqrt{\pi h_{\Delta}}$ steps (that is, roughly 2^{41} steps for $E / \mathbb{F}_{2^{161}}$). Efficiently parallelizable.
(Galbraith-Hess-Smart, Eurocrypt 2002).

Security Analysis

Assumption:

The isomorphism classes of curves
(A) over $\mathbb{F}_{2^{161}}$ with $m_{7}(b)=4$ are distributed uniformly at random over all isogeny classes over \mathbb{F}_{2161}.

What does this mean?

- There are 2^{162} isomorphism classes.
- There are 2^{94} isomorphism classes with $m_{7}(b)=4$.
- Assumption $(A) \Rightarrow$ a random curve from a fixed isogeny class has $m_{7}(b)=4$ with probability $2^{94} / 2^{162}=2^{-68}$.
- Assumption (A) \Rightarrow in any isogeny class with square-free Δ we expect

$$
h_{\Delta} / 2^{68}
$$

isomorphism classes of curves with $m_{7}=$ 4.

Security Analysis, continued

To break the system, an attacker must solve the ECDLP in $E_{\text {pub }}\left(\mathbb{F}_{2^{161}}\right)$.

Parallelized Pollard Rho: 2^{80} EC operations.

Or, the attacker solves Problem
Given $E_{\text {pub }}$,
find E,
(P) isogenous to $E_{\text {pub }}$,
and in I_{4}, that is, with $m_{7}\left(b_{E}\right)=4$.

Strategies to solve (P):

1. Reconstruct $E_{\text {sec }}$ from $E_{\text {pub }}$.
2. Search isogeny class of $E_{\text {pub }}$ for a curve in I_{4}.
3. Search I_{4} for a curve isogenous to $E_{\text {pub }}$.

For analysis:
Cost to move around in the isogeny class:
Assume: one step along an l-isogeny costs $16 l^{2}$ elliptic curve operations.
(cost to compute root of $\Phi_{l}(j, X)$ is $O\left(l^{2} \cdot 161\right)$
operations in \mathbb{F}_{2161}, cost for one elliptic curve operation is 10 operations in $\mathbb{F}_{2}{ }^{161}$.)
ad (1): Reconstruct $E_{\text {sec }}$ from $E_{\text {pub }}$.

- Odd cyclic part of Cl_{Δ} is $\geq 2^{68}$.
\Rightarrow Most of the l_{i} used to construct $E_{\text {pub }}$ correspond to ideal classes with order \geq 2^{68}.
- To construct $E_{\text {pub }}$ from $E_{\text {sec }}$, Alice used M subchains of distinct l_{i}-isogenies, with chainlengths $\in_{R}\{0, \ldots, 11\}$.
\Rightarrow there are approx. $\max \left\{12^{M}, 2^{68}\right\}$ possibilities for $E_{\text {pub }}$.
- $3 \leq l_{i} \leq 300 \Longrightarrow M \geq 19$, and on average $M=30$ (experimentally). $12^{19}>2^{68}$.
- Attacker has to try $\approx 2^{68} / 2$ curves to retrieve $E_{\text {sec }}$.
- Each such try costs at least $16 l^{2}$ EC operations, where $l=\max \left\{l_{i}: n_{i} \neq 0\right\}$. If $l \geq 23$, then $16 l^{2}>2^{13}$. Fair to assume.
- \Rightarrow Total cost $2^{67} \cdot 2^{13}=2^{80}$ EC ops.
ad (2): Search through the isogeny class of $E_{\text {pub }}$ for a curve in I_{4}.
- Perform a pseudo-random walk in the isogeny class of $E_{\text {pub }}$.
- Under Assumption (A), expected 2^{68} curves have to be considered until one with $m_{7}=$ 4 is found.
- Cost of considering one curve: $16 l^{2}$ EC operations.
($l=$ degree of isogeny used for this step).
- Even with only 8 different prime ideals, attacker needs to work with l-values up to 80.
- Assume an average l-value of 16 , \Rightarrow considering one curve costs $>16 \cdot 16^{2}=$ 2^{12} EC operations.
- \Rightarrow Total cost $>2^{68} \cdot 2^{12}=2^{80}$ EC ops.
ad (3): Search through the set I_{4} for a curve isogenous to $E_{\text {pub }}$.
- Only method known to date is exhaustive search through I_{4}.
- Recall: $E_{a, b} \in I_{4} \Leftrightarrow m_{7}(b)=4$, and the set S of all those b can be efficiently represented.
- Under Assumption (A), there are $h_{\Delta} / 2^{68}$ curves in I_{4} that are isogenous to $E_{\text {pub }}$.
- S has $2^{93} b$-values, so we expect to have to consider

$$
2^{93} / \frac{h_{\Delta}}{2^{68}}=2^{161} / h_{\Delta}
$$

b-values.

- $h_{\Delta}<2^{83} \Rightarrow$ consider $>2^{78} b$-values.
- Cost of point counting, or scalar multiplication by $\# E_{\text {pub }}\left(\mathbb{F}_{2161}\right)$: >4 EC operations.
- \Rightarrow Total cost $>2^{78} \cdot 2^{2}=2^{80}$ EC ops.

Final words

1. The proposed system can also be used over the fields $\mathbb{F}_{2^{N}}$ with $N=154,182,189,196$.

- Large set I of elliptic curves for which GHS Weil descent attack is feasible. \longrightarrow To avoid exhaustive search attack for $E_{\text {sec }} \in I$.
- I must not be too large.
\longrightarrow otherwise a random walk in the isogeny class of $E_{\text {pub }}$ will succeed too fast.

2. Are there any ways to approach Problem P?

If Problem P can be solved efficiently, $\mathbb{F}_{2^{161}}$ is bad,
in the sense that any ECDLP instance for any elliptic curve over \mathbb{F}_{2161} can be solved using existing computer technology.

