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Key Escrow with Elliptic Curves.

• Key escrow: BIG BROTHER (BB) wants

to listen.

• So, users have to submit information about

their secret keys to an escrow agency.

• Often, this simply means submitting the

decrypt information. Then

BB can decrypt everyone’s encrypted

messages in polynomial time.

• Proposal: an elliptic curve based key es-

crow where BB can derive a user’s secret

key, but only with considerable compu-

tational effort.

• For example, this makes widespread wire-

tapping impossible.



Key escrow with elliptic curves -

The big picture

• Alice constructs a pair of elliptic curves

(Esec, Epub) over IF2161 such that

– Epub is isogenous to Esec (over IF2161).

– Best attack on the ECDLP in Epub(IF2161)

is the parallelized Pollard rho method.

– ECDLP in Esec(IF2161) is computation-

ally feasible, but by far non-trivial.

• Use Epub just as usual in ECC.

• Submit Esec to trusted authority.



Magic numbers

• Let N be composite, write N = nf . Let

q = 2f .

• For b ∈ IF2N , b 6= 0 let

m = mn(b) = ”magic number” =

dimIF2
(SpanIF2

{(1, b
1/2
0 ), . . . , (1, b

1/2
n−1)})

where bi = bqi
.

• Now consider N = 161 = 7 · 23, n = 7.

• For b ∈ IF∗
2161 we have m7(b) ∈ {1,4,7}.

• There are

≈ 293

b ∈ IF∗
2161 for which

m7(b) = 4 .

There are ≈ 223 values of b with m7 = 1.

The overwhelming majority has m7 = 7.



Magic numbers and elliptic curves

• Let

E : y2 + xy = x3 + ax2 + b ,

a, b ∈ IF2N , b 6= 0 be an elliptic curve.

Then the magic number of E with respect

to n is m = mn(b).

• Properties of m:

– m is invariant under isomorphisms.

– m is invariant under the power-2-Frobenius

map.

– m is invariant under the 2-isogeny stem-

ming from Φ2(X, Y ).

– m is invariant under the multiplication-

by-l map.

– In general, m changes under isogenies.



Weil descent attack

Input:

• A cryptographically interesting curve E/IF2N ,

with N composite.

E : y2+xy = x3+ax2+b , a, b ∈ IF2N , b 6= 0 .

• P = a point on E of large prime order.

Write N = nf . Then IF2N = IF(2f)n.

Gaudry-Hess-Smart (GHS) Weil descent at-

tack and its implementation (in KASH) gives

explicit group homomorphism

Φ : 〈P 〉 −→ JC(IF2f)

into the Jacobian of a hyperelliptic curve C.

C is of genus

g = 2m−1 or g = 2m−1 − 1 ,

where m = mn(b) = magic number.



Thus:

Instead of solving the ECDLP

Q = sP

in E(IF2N)

for some unknown s ∈ [0,ordP ),

solve HCDLP

Φ(Q) = sΦ(P )

in the Jacobian JC(IF2f).

HCDLP solver: Enge-Gaudry index calculus

algorithm.

This may be faster than Pollard rho for cor-

responding ECDLP if the genus of C has the

“right” size.



Now consider N = 161 = 7 · 23.

IF2161

|
| n = 7

|
IF223

m = m7(b) ∈ {1,4,7}

If m7(b) = 4, the ECDLP maps to HCDLP in

Jacobian JC(IF223) of curve C of genus 7 or

8.

The vast majority of curves over IF2161 has

m7(b) = 7 and yields genus 64 or 63 hyper-

elliptic curves. In which case the resulting

HCDLP is even harder than the ECDLP in

E(IF2161).



Solving the HCDLP

Enge-Gaudry index calculus: g(C) = 7(8):

expected 234 (237) hyperelliptic curve oper-

ations,

factor base of 222 prime divisors of degree 1.

25.000 (200.000) days on 1GHz PIII worksta-

tion.

To compare:

DES break using exhaustive search:

110.000 days on a 450MHz PII.

Pollard rho for 108-bit ECDLP:

200.000 days on 450MHz PII.

Pollard rho for E161: 280 additions on E161.

1014 days on 500MHz Alpha workstation.



Constructing the secret trapdoor curve

Let

I4 =

{

isomorphism classes of
E/IF2161 with m7(bE) = 4

}

.

That is, I4 = {E0,b, E1,b : b ∈ S}

where S = {b ∈ IF2161 : m7(b) = 4}.

Note: S = (W0⊕(W1\{0}))∪(W0⊕(W2\{0})),
where the Wi are subspaces of IF2161.

Bases of the Wi can be efficiently computed.

(Menezes & Qu, CT-RSA 2001).



Algorithm to construct the secret curve

1. Choose b ∈R S until

#E1,b(IF2161) = 2·prime, or

#E0,b(IF2161) = 4·prime.

Denote the resulting curve by E.

2. Let ∆ = t2 − 4 · 2161 be the discriminant

of E.

(where t = 2N+1−#E(IF2161), the trace).

If

(a) ∆ is squarefree,

(b) |∆| > 2157,

(c) 276 ≤#Cl∆ < 283

(where Cl∆ = class group of O∆ of

Q(
√

∆)),

(d) the odd, cyclic part of Cl∆ has cardi-

nality ≥ 268.

then output E =: Esec, else go back to

(1).



Notes:

• Step (1) = the major barrier. We expect

0.8% of curves to pass.

(Experimentally, 1% pass.)

• 90 − 95% of all E/IF2161 have squarefree

discriminant. (Experimentally).

• A curve passing Step (2a) most likely passes

the remaining steps.

Confirmed experimentally.

• Estimate: There exist ≈ 287 suitable se-

cret curves.



Constructing the public curve

Use pseudo-random walk in the isogeny class

of Esec.

Theorem: Let E/IF2N be an elliptic curve

with endomorphism ring End(E) ∼= O∆.

Let Cl∆ denote the class group of O∆ of

Q(
√

∆).

Let Ell(O∆) denote the set of isomorphism

classes of curves isogenous to E with endo-

morphism ring isomorphic to O∆.

Then there is a one-to-one correspondence

Cl∆ ←→ Ell(O∆) .

Note:

In our case, ∆ squarefree, so End(Esec)
∼=

O∆, and End(E) ∼= O∆ for any E ∼ Esec.



Ideal classes and isogenous curves.

Cl∆ Ell(O∆)

a Ea,b

b = j−1

(j-invariant)

prime l
(

∆
l

)

= 1

2 prime ideals Φl(j, X),
lying over l: 2 roots in IF2N :

l1, l2 j1, j2

a 7→ a1 = a ∗ l1 Ea,b 7→ Ea,j1
−1

a 7→ a2 = a ∗ l2 Ea,b 7→ Ea,j2
−1

l-isogenies,
“horizontal”



A random walk in the isogeny class

Let L = {l1, . . . , lM}, the smallest M primes

≥ 3 such that

•
(

∆
li

)

= 1 and

• the pairs (Red(li),Red(li
′)) of the reduced

representatives of the prime ideals li, li
′ ly-

ing over l are pairwise distinct.

l ∈R L
Ea,j−1 −→ E

a,j′−1

Φl(j, j1) = Φl(j, j2) = 0

j′ ∈ {j1, j2},

l ∈R L
−→ E

a,j′′−1

Φl(j
′, j1) = Φl(j

′, j2) = 0

j′′ ∈ {j1, j2}

etc.etc.



Algorithm to construct public curve from

secret curve

Let L = {l : l prime,3 ≤ l ≤ 300,
(

∆
l

)

= 1,

(Red(l),Red(l′)) pairwise distinct}.
=: {l1, . . . , lM}.

1. Let E = Esec.

2. For i = 1, . . . , M do

(a) Let ni ∈R {0,1, . . . ,11}.
(b) Construct a chain of length ni of

li−isogenous curves, starting from E.

(c) Denote the resulting curve by E.

3. Output E =: Epub.



Solving the ECDLP in Epub(IF2161) using

Esec.

Key escrow scenario 1:

Alice submits to the trusted authority (TA)

both Esec and the sequence of j-invariants en-

countered while computing the public curve.

Then TA easily computes the explicit chain of

isogenies using Vélu’s formulae.

Key escrow scenario 2:

Alice submits only Esec.

Then starting from Epub and Esec, TA com-

putes two (deterministic) pseudo-random walks.

TA keeps track of all l-values and j-invariants

used.

Uses distinguished point method to detect col-

lision between these two walks.

Collision is expected to occur after
√

πh∆ steps

(that is, roughly 241 steps for E/IF2161).

Efficiently parallelizable.

(Galbraith-Hess-Smart, Eurocrypt 2002).



Security Analysis

Assumption:

(A)

The isomorphism classes of curves

over IF2161 with m7(b) = 4

are distributed uniformly at random

over all isogeny classes over IF2161.

What does this mean?

• There are 2162 isomorphism classes.

• There are 294 isomorphism classes with
m7(b) = 4.

• Assumption (A) ⇒ a random curve from
a fixed isogeny class has m7(b) = 4 with

probability 294/2162 = 2−68 .

• Assumption (A) ⇒ in any isogeny class
with square-free ∆ we expect

h∆/268

isomorphism classes of curves with m7 =
4.



Security Analysis, continued

To break the system, an attacker must solve

the ECDLP in Epub(IF2161).

Parallelized Pollard Rho: 280 EC operations.

Or, the attacker solves Problem

(P)

Given Epub,

find E,

isogenous to Epub,

and in I4, that is, with m7(bE) = 4.



Strategies to solve (P):

1. Reconstruct Esec from Epub.

2. Search isogeny class of Epub for a curve

in I4.

3. Search I4 for a curve isogenous to Epub.

For analysis:

Cost to move around in the isogeny class:

Assume: one step along an l-isogeny costs

16l2 elliptic curve operations.

(cost to compute root of Φl(j, X) is O(l2·161)
operations in IF2161,

cost for one elliptic curve operation is 10 op-

erations in IF2161.)



ad (1): Reconstruct Esec from Epub.

• Odd cyclic part of Cl∆ is ≥ 268.

⇒ Most of the li used to construct Epub

correspond to ideal classes with order ≥
268.

• To construct Epub from Esec, Alice used

M subchains of distinct li-isogenies, with

chainlengths ∈R {0, . . . ,11}.
⇒ there are approx. max{12M ,268} pos-

sibilities for Epub.

• 3 ≤ li ≤ 300 =⇒M ≥ 19,

and on average M = 30 (experimentally).

1219 > 268.

• Attacker has to try ≈ 268/2 curves to re-

trieve Esec.

• Each such try costs at least 16l2 EC op-

erations, where l = max{li : ni 6= 0}.
If l ≥ 23, then 16l2 > 213. Fair to assume.

• ⇒ Total cost 267 · 213 = 280 EC ops.



ad (2): Search through the isogeny class

of Epub for a curve in I4.

• Perform a pseudo-random walk in the isogeny

class of Epub.

• Under Assumption (A), expected 268 curves

have to be considered until one with m7 =

4 is found.

• Cost of considering one curve: 16l2 EC

operations.

(l= degree of isogeny used for this step).

• Even with only 8 different prime ideals, at-

tacker needs to work with l-values up to

80.

• Assume an average l-value of 16,

⇒ considering one curve costs > 16·162 =

212 EC operations.

• ⇒ Total cost > 268 · 212 = 280 EC ops.



ad (3): Search through the set I4 for a

curve isogenous to Epub.

• Only method known to date is exhaustive

search through I4.

• Recall: Ea,b ∈ I4 ⇔ m7(b) = 4,

and the set S of all those b can be effi-

ciently represented.

• Under Assumption (A), there are h∆/268

curves in I4 that are isogenous to Epub.

• S has 293 b-values, so we expect to have

to consider

293/
h∆

268
= 2161/h∆

b-values.

• h∆ < 283 ⇒ consider > 278 b-values.

• Cost of point counting,

or scalar multiplication by #Epub(IF2161):

> 4 EC operations.

• ⇒ Total cost > 278 · 22 = 280 EC ops.



Final words

1. The proposed system can also be used

over the fields IF2N with N = 154,182,189,196.

• Large set I of elliptic curves for which

GHS Weil descent attack is feasible.

−→ To avoid exhaustive search attack

for Esec ∈ I.

• I must not be too large.

−→ otherwise a random walk in the

isogeny class of Epub will succeed too

fast.

2. Are there any ways to approach Problem

P?

If Problem P can be solved efficiently, IF2161

is bad,

in the sense that any ECDLP instance for

any elliptic curve over IF2161 can be solved

using existing computer technology.


