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Key Escrow with Elliptic Curves.

e Key escrow: BIG BROTHER (BB) wants
to listen.

e SO, users have to submit information about
their secret keys to an escrow agency.

e Often, this simply means submitting the
decrypt information. Then
BB can decrypt everyone’s encrypted
messages in polynomial time.

e Proposal: an elliptic curve based key es-
crow where BB can derive a user’'s secret
key, but only with considerable compu-
tational effort.

e For example, this makes widespread wire-
tapping impossible.



Key escrow with elliptic curves -
The big picture

e Alice constructs a pair of elliptic curves
(Esec, Epyp) over F,i61 such that

— Epyp is isogenous to Esec (over Fsi61).

— Best attack on the ECDLP in Eyp(Fy161)
IS the parallelized Pollard rho method.

— ECDLP in Esec(F5161) is computation-
ally feasible, but by far non-trivial.

e Use Epyp just as usual in ECC.

e Submit Esec to trusted authority.



Magic numbers

e Let N be composite, write N = nf. Let
q = 2F .

e For b € F,n, b# 0 let
m = mp(b) = "mMagic number’ =

dimg, (Spang, {(1, bé/z), (1 5711/_21)})

where b; = ba .
e Now consider N =161 =7-23,n=7.
e For b € F},6; we have mz(b) € {1,4,7}.

e [ here are

~ 2793
b € F161 for which

m7(b) =4 .

There are ~ 223 values of b with m7 = 1.
The overwhelming majority has m7 = 7.



Magic numbers and elliptic curves

o Let

E:y2—|—:cy=:v3—|—aa:2—|—b,
a,b € F,n,b 7 0 be an elliptic curve.

Then the magic number of E with respect
to n is m = mn(b).

e Properties of m:
— m IS invariant under isomorphisms.

— m isinvariant under the power-2-Frobenius
map.

— m is invariant under the 2-isogeny stem-
ming from ®>(X,Y).

— m is invariant under the multiplication-
by-I map.

— In general, m changes under isogenies.



Weil descent attack

Input:

e A cryptographically interesting curve E/F,n,
with N composite.

E:y°+ay = 234az’+b,a,b € Fon,b# 0.

e P = a point on E of large prime order.

Gaudry-Hess-Smart (GHS) Weil descent at-
tack and its implementation (in KASH) gives
explicit group homomorphism

b : <P> —_ Jc(]sz)

into the Jacobian of a hyperelliptic curve C.
C' is of genus

g=2m"torg=2om"1_1,

where m = my(b) = magic number.



Thus:

Instead of solving the ECDLP
Q = sP
in E(]FQN)

for some unknown s € [0, ord P),

solve HCDLP
P(Q) = sP(P)
in the Jacobian Jo(F,f).

HCDLP solver: Enge-Gaudry index calculus
algorithm.

This may be faster than Pollard rho for cor-
responding ECDLP if the genus of C has the
“right” size.



Now consider N =161 =7 - 23.

Fsi61

m = m7(b) € {1,4,7}

If m7(b) = 4, the ECDLP maps to HCDLP in
Jacobian Jo(F,23) of curve C' of genus 7 or
8.

The vast majority of curves over F 5161 has
m7(b) = 7 and yields genus 64 or 63 hyper-
elliptic curves. In which case the resulting
HCDLP is even harder than the ECDLP in

E(]F2161).



Solving the HCDLP

Enge-Gaudry index calculus: g¢g(C) = 7(8):
expected 234 (237) hyperelliptic curve oper-
ations,

factor base of 222 prime divisors of degree 1.
25.000 (200.000) days on 1GHz PIII worksta-
tion.

TO compare:
DES break using exhaustive search:

110.000 days on a 450MHz PII.
Pollard rho for 108-bit ECDLP:

200.000 days on 450MHz PII.

Pollard rho for E161: 280 additions on E161.
1014 days on 500MHz Alpha workstation.



Constructing the secret trapdoor curve

Let

I, = isomorphism classes of
4= E/]F2161 with m7(bE) — 4 (-

Thatis, I4 ={Egyp, E1p : be S}
where S = {b € ]F2161 . m7(b) = 41,

Note: S = (Woe(W1\{0}))Uu(Wod(W2\{0})),
where the W, are subspaces of Fi61.

Bases of the W, can be efficiently computed.
(Menezes & Qu, CT-RSA 2001).



Algorithm to construct the secret curve

1. Choose b €r S until
#El,b(lem) — 2.prime, or
#EO,b(F2161) = 4.prime.

Denote the resulting curve by FE.

2. Let A = t2 — 4.2161 pe the discriminant
of F.
(where t = 2N 4+1—#F(F,161), the trace).
If

(a) A is squarefree,
(b) |A]> 2137,

(c) 270 < #Clp < 283
(where Clan = class group of Oa of

Q(VA)),

(d) the odd, cyclic part of Cla has cardi-
nality > 268

then output E =: FEsec, €lse go back to

(1).



Notes:

e Step (1) = the major barrier. We expect
0.8% of curves to pass.
(Experimentally, 1% pass.)

e 90 — 95% of all E/F,161 have squarefree
discriminant. (Experimentally).

e A curve passing Step (2a) most likely passes
the remaining steps.
Confirmed experimentally.

e Estimate: There exist ~ 287 suitable se-
cret curves.



Constructing the public curve

Use pseudo-random walk in the isogeny class
of FEsec.

Theorem: Let E/F,y be an elliptic curve
with endomorphism ring End(E) = OA.

Let Cla denote the class group of Oa of
QWA).

Let EII(OA) denote the set of isomorphism
classes of curves isogenous to E with endo-
morphism ring isomorphic to OA.

Then there is a one-to-one correspondence

Cia «— EII(OA) .

Note:
In our case, A squarefree, so End(FEsec) =
Oa, and End(E) = O for any E ~ FEsec.



Ideal classes and isogenous curves.

Cla EII(OA)
a Ea,b
b=j1
(j-invariant)
prime [
A\ _
(T)=
2 prime ideals d;(7, X),
lying over [: 2 roots in F,n:
11,12 J1,J2
a—a; —=axly Eqp— E, ;-1
ar—agp=axlg Eqp— E, ;-1
[-isogenies,

“horizontal”



A random walk in the isogeny class

Let £ = {l1,...,l);}, the smallest M primes
> 3 such that

° (%) =1 and

e the pairs (Red(l;), Red(l;")) of the reduced
representatives of the prime ideals l;, li’ ly-
ing over [ are pairwise distinct.

ler L
Ea,j_l 7 Ea,j’_l

®;(7,71) = ®1(J,g2) =0
j, S {jlan}a

ZERL1

- E -1

a,j
(5, 51) = ®;(§',j2) =0
3" € {41,792}

etc.etc.



Algorithm to construct public curve from
secret curve

Let £={l : | prime,3 <1< 300, (%) =1,
(Red(1), Red(1")) pairwise distinct}.

=. {ll,...,lM}.

1. Let FF = FEsec.

2. For:=1,...,M do
(a) Let n; € {0,1,...,11}.

(b) Construct a chain of length n; of
[;—isogenous curves, starting from FE.

(c) Denote the resulting curve by F.

3. Output FE =: Epp.



Solving the ECDLP in E,,,(F,161) using
Esec.

Key escrow scenario 1:

Alice submits to the trusted authority (TA)
both Esec and the sequence of j-invariants en-
countered while computing the public curve.

Then TA easily computes the explicit chain of
iIsogenies using VEélu's formulae.

Key escrow scenario 2:
Alice submits only FEsec.

Then starting from Ej,,p and Esec, TA com-
putes two (deterministic) pseudo-random walks.
TA keeps track of all [-values and j-invariants
used.

Uses distinguished point method to detect col-
lision between these two walks.

Collision is expected to occur after /wh A steps
(that is, roughly 24! steps for E/F5161).
Efficiently parallelizable.
(Galbraith-Hess-Smart, Eurocrypt 2002).



Security Analysis

Assumption:

The isomorphism classes of curves
over ]F2161 with m7(b) =4

are distributed uniformly at random
over all isogeny classes over F,ie1.

(A)

What does this mean?

e There are 2102 isomorphism classes.

e There are 29% isomorphism classes with
m7(b) = 4.

e Assumption (A) = a random curve from
a fixed isogeny class has m7(b) = 4 with

probability 294/2162 = 2=68

e Assumption (A) = in any isogeny class
with square-free A we expect

hA/268

iIsomorphism classes of curves with m7 =
4.



Security Analysis, continued

To break the system, an attacker must solve
the ECDLP in Epub(F2161)-

Parallelized Pollard Rho: 289 EC operations.

Or, the attacker solves Problem

Given Epp,

find F,

isogenous to Epp,

and in I, that is, with m7(bg) = 4.

(P)



Strategies to solve (P):

1. Reconstruct FEsec from Epub-

2. Search isogeny class of Ep,p for a curve
in I4.

3. Search I4 for a curve isogenous to Epp.

For analysis:
Cost to move around in the isogeny class:

Assume: one step along an [-isogeny costs
1612 elliptic curve operations.

(cost to compute root of ®;(j, X) is O(12-161)
operations in F 161,
cost for one elliptic curve operation is 10 op-

erations in F5i161.)



ad

(1): Reconstruct Esec from Ep .

Odd cyclic part of Cla is > 208,
= Most of the [; used to construct Epp

correspond to ideal classes with order >
268

To construct Ep,p from Esec, Alice used
M subchains of distinct [;-isogenies, with
chainlengths € {0,...,11}.

= there are approx. max{12M 2681 pos-
sibilities for Eyp.

3<[;<300=— M > 19,
and on average M = 30 (experimentally).
1219 > 2068,

Attacker has to try ~ 298/2 curves to re-
trieve FEsec.

Each such try costs at least 1612 EC op-
erations, where | = max{l; : n; # 0}.
If I > 23, then 1612 > 213 Fair to assume.

— Total cost 207 .213 = 280 EC ops.



ad (2): Search through the isogeny class
of E,,p fOr a curve in Iy.

e Perform a pseudo-random walk in the isogeny
Class of Epyp.

e Under Assumption (A), expected 28 curves
have to be considered until one with m7 =
4 is found.

e Cost of considering one curve: 1612 EC
operations.
(I= degree of isogeny used for this step).

e Even with only 8 different prime ideals, at-
tacker needs to work with [-values up to
80.

e Assume an average [-value of 16,
— considering one curve costs > 16-162 =

212 EC operations.

e = Total cost > 208.212 — 280 EC ops.



ad

(3): Search through the set I, for a

curve isogenous to Epp.

Only method known to date is exhaustive
search through Ig4.

Recall: E,; € 14 & m7(b) = 4,
and the set S of all those b can be effi-
ciently represented.

Under Assumption (A), there are h /2°8
curves in I4 that are isogenous to Epp.

S has 293 b-values, so we expect to have
to consider

h

03 A __ Al61

2 /—268_2 /hA
b-values.

ha < 283 = consider > 278 p-values.

Cost of point counting,
or scalar multiplication by #Ey,p(Fy161):
> 4 EC operations.

— Total cost > 278.22 = 280 EC ops.



Final words

1. The proposed system can also be used
over the fields F,ny with N = 154,182,189, 196.

e Large set I of elliptic curves for which
GHS Weil descent attack is feasible.
—— TO avoid exhaustive search attack
for Esec € 1.

e /| must not be too large.
—— otherwise a random walk in the
isogeny class of Ep,p Will succeed too
fast.

2. Are there any ways to approach Problem
P

If Problem P can be solved efficiently, F 5161
IS bad,

in the sense that any ECDLP instance for
any elliptic curve over F 5161 Can be solved
using existing computer technology.



