Trapdooring with Isogenies

Edlyn Teske

C&O, University of Waterloo/ CWI Amsterdam

Key Escrow with Elliptic Curves.

- Key escrow: BIG BROTHER (BB) wants to listen.
- So, users have to submit information about their secret keys to an escrow agency.
- Often, this simply means submitting the decrypt information. Then
 BB can decrypt everyone's encrypted messages in polynomial time.
- Proposal: an elliptic curve based key escrow where BB can derive a user's secret key, but only with considerable computational effort.
- For example, this makes widespread wiretapping impossible.

Key escrow with elliptic curves The big picture

- Alice constructs a pair of elliptic curves $(E_{\rm sec}, E_{\rm pub})$ over $\mathbb{F}_{2^{161}}$ such that
 - E_{pub} is isogenous to E_{sec} (over $\mathbf{F}_{2^{161}}$).
 - Best attack on the ECDLP in $E_{\text{pub}}(\mathbf{F}_{2^{161}})$ is the parallelized Pollard rho method.
 - ECDLP in $E_{\text{Sec}}(\mathbb{F}_{2^{161}})$ is computationally feasible, but by far non-trivial.
- Use E_{pub} just as usual in ECC.
- Submit E_{sec} to trusted authority.

Magic numbers

- Let N be composite, write N=nf. Let $q=2^f$.
- For $b \in \mathbb{F}_{2^N}$, $b \neq 0$ let $m = m_n(b) =$ "magic number" = $\dim_{\mathbb{F}_2}(\operatorname{Span}_{\mathbb{F}_2}\{(1,b_0^{1/2}),\dots,(1,b_{n-1}^{1/2})\})$ where $b_i = b^{q^i}$.
- Now consider $N = 161 = 7 \cdot 23, n = 7$.
- For $b \in \mathbb{F}_{2^{161}}^*$ we have $m_7(b) \in \{1, 4, 7\}$.
- There are

$$\approx 2^{93}$$

 $b \in \mathbb{F}_{2^{161}}^*$ for which

$$m_7(b) = 4$$
.

There are $\approx 2^{23}$ values of b with $m_7 = 1$. The overwhelming majority has $m_7 = 7$.

Magic numbers and elliptic curves

• Let

$$E: y^2 + xy = x^3 + ax^2 + b$$
,

 $a,b \in \mathbb{F}_{2^N}, b \neq 0$ be an elliptic curve.

Then the magic number of E with respect to n is $m = m_n(b)$.

• Properties of *m*:

- -m is invariant under isomorphisms.
- $-\ m$ is invariant under the power-2-Frobenius map.
- m is invariant under the 2-isogeny stemming from $\Phi_2(X,Y)$.
- $-\ m$ is invariant under the multiplication-by-l map.
- In general, m changes under isogenies.

Weil descent attack

Input:

• A cryptographically interesting curve E/\mathbb{F}_{2^N} , with N composite.

$$E: y^2 + xy = x^3 + ax^2 + b, a, b \in \mathbb{F}_{2^N}, b \neq 0.$$

 \bullet P = a point on E of large prime order.

Write
$$N = nf$$
. Then $\mathbb{F}_{2^N} = \mathbb{F}_{(2^f)^n}$.

Gaudry-Hess-Smart (GHS) Weil descent attack and its implementation (in KASH) gives **explicit group homomorphism**

$$\Phi: \langle P \rangle \longrightarrow J_C(\mathbf{F}_{2f})$$

into the Jacobian of a hyperelliptic curve C. C is of genus

$$g = 2^{m-1}$$
 or $g = 2^{m-1} - 1$,

where $m = m_n(b) = \text{magic number}$.

Thus:

Instead of solving the ECDLP

$$Q = sP$$

in $E(\mathbf{F}_{2^N})$

for some unknown $s \in [0, \text{ ord } P)$,

solve **HCDLP**

$$\Phi(Q) = s\Phi(P)$$

in the Jacobian $J_C(\mathbb{F}_{2^f})$.

HCDLP solver: Enge-Gaudry index calculus algorithm.

This may be faster than Pollard rho for corresponding ECDLP if the genus of C has the "right" size.

Now consider $N = 161 = 7 \cdot 23$.

$$m = m_7(b) \in \{1, 4, 7\}$$

If $m_7(b) = 4$, the ECDLP maps to HCDLP in Jacobian $J_C(\mathbb{F}_{2^{23}})$ of curve C of genus 7 or 8.

The vast majority of curves over $\mathbb{F}_{2^{161}}$ has $m_7(b)=7$ and yields genus 64 or 63 hyperelliptic curves. In which case the resulting HCDLP is even harder than the ECDLP in $E(\mathbb{F}_{2^{161}})$.

Solving the HCDLP

Enge-Gaudry index calculus: g(C) = 7(8): expected 2^{34} (2^{37}) hyperelliptic curve operations,

factor base of 2^{22} prime divisors of degree 1. 25.000 (200.000) days on 1GHz PIII workstation.

To compare:

DES break using exhaustive search:

110.000 days on a 450MHz PII.

Pollard rho for 108-bit ECDLP:

200.000 days on 450MHz PII.

Pollard rho for E161: 2^{80} additions on E161. 10^{14} days on 500MHz Alpha workstation.

Constructing the secret trapdoor curve

Let

$$I_4 = \left\{ \begin{array}{l} \text{isomorphism classes of} \\ E/\mathbb{F}_{2^{161}} \text{ with } m_7(b_E) = 4 \end{array} \right\}.$$

That is, $I_4 = \{E_{0,b}, E_{1,b} : b \in S\}$

where $S = \{b \in \mathbb{F}_{2^{161}} : m_7(b) = 4\}.$

Note: $S = (W_0 \oplus (W_1 \setminus \{0\})) \cup (W_0 \oplus (W_2 \setminus \{0\}))$, where the W_i are subspaces of $\mathbb{F}_{2^{161}}$. Bases of the W_i can be efficiently computed. (Menezes & Qu, CT-RSA 2001).

Algorithm to construct the secret curve

1. Choose $b \in_R S$ until

$$\#E_{1,b}(\mathbb{F}_{2^{161}}) = 2 \cdot \text{prime, or}$$

 $\#E_{0,b}(\mathbb{F}_{2^{161}}) = 4 \cdot \text{prime.}$

Denote the resulting curve by E.

2. Let $\Delta = t^2 - 4 \cdot 2^{161}$ be the discriminant of E.

(where $t = 2^N + 1 - \#E(\mathbb{F}_{2^{161}})$, the trace).

If

- (a) \triangle is squarefree,
- (b) $|\Delta| > 2^{157}$,
- (c) $2^{76} \le \# \text{Cl}_{\Delta} < 2^{83}$ (where $\text{Cl}_{\Delta} = \text{class group of } \mathcal{O}_{\Delta}$ of $\mathbb{Q}(\sqrt{\Delta})$),
- (d) the odd, cyclic part of Cl_{Δ} has cardinality $\geq 2^{68}$.

then output $E =: E_{sec}$, else go back to (1).

Notes:

- Step (1) = the major barrier. We expect 0.8% of curves to pass. (Experimentally, 1% pass.)
- 90 95% of all $E/\mathbb{F}_{2^{161}}$ have squarefree discriminant. (Experimentally).
- A curve passing Step (2a) most likely passes the remaining steps.
 Confirmed experimentally.
- ullet Estimate: There exist $pprox 2^{87}$ suitable secret curves.

Constructing the public curve

Use pseudo-random walk in the isogeny class of $E_{\rm Sec}$.

Theorem: Let E/\mathbb{F}_{2^N} be an elliptic curve with endomorphism ring $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}$.

Let Cl_{Δ} denote the class group of \mathcal{O}_{Δ} of $\mathbb{Q}(\sqrt{\Delta})$.

Let $EII(\mathcal{O}_{\Delta})$ denote the set of isomorphism classes of curves isogenous to E with endomorphism ring isomorphic to \mathcal{O}_{Δ} .

Then there is a one-to-one correspondence

$$\mathsf{Cl}_\Delta \longleftrightarrow \mathsf{Ell}(\mathcal{O}_\Delta)$$
.

Note:

In our case, Δ squarefree, so $\operatorname{End}(E_{\operatorname{Sec}}) \cong \mathcal{O}_{\Delta}$, and $\operatorname{End}(E) \cong \mathcal{O}_{\Delta}$ for any $E \sim E_{\operatorname{Sec}}$.

Ideal classes and isogenous curves.

$$CI_{\Delta}$$

$$\mathsf{EII}(\mathcal{O}_\Delta)$$

 \mathbf{a}

$$E_{a,b}$$

$$b = j^{-1}$$
(j-invariant)

$$\begin{array}{l} \text{prime } l \\ \left(\frac{\Delta}{l}\right) = 1 \end{array}$$

2 prime ideals lying over l: l_1, l_2

$$\Phi_l(j,X), \\ \text{2 roots in } \mathbb{F}_{2^N}: \\ j_1,j_2$$

$$\mathbf{a} \mapsto \mathbf{a}_1 = \mathbf{a} * \mathbf{l}_1$$

 $\mathbf{a} \mapsto \mathbf{a}_2 = \mathbf{a} * \mathbf{l}_2$

$$E_{a,b}\mapsto E_{a,j_1^{-1}}$$
 $E_{a,b}\mapsto E_{a,j_2^{-1}}$
 l -isogenies,
"horizontal"

A random walk in the isogeny class

Let $\mathcal{L} = \{l_1, \dots, l_M\}$, the smallest M primes \geq 3 such that

- ullet $\left(\frac{\Delta}{l_i}\right)=1$ and
- the pairs (Red(l_i), Red(l_i ')) of the reduced representatives of the prime ideals l_i , l_i ' lying over l are pairwise distinct.

$$E_{a,j^{-1}} \qquad \longrightarrow \qquad E_{a,j'^{-1}}$$

$$\Phi_l(j,j_1) = \Phi_l(j,j_2) = 0$$

$$j' \in \{j_1,j_2\},$$

$$l \in_{R} \mathcal{L}$$

$$\longrightarrow \qquad E_{a,j''^{-1}}$$

$$\Phi_{l}(j', j_{1}) = \Phi_{l}(j', j_{2}) = 0$$

$$j'' \in \{j_{1}, j_{2}\}$$

etc.etc.

Algorithm to construct public curve from secret curve

Let
$$\mathcal{L} = \{l : l \text{ prime}, 3 \leq l \leq 300, \left(\frac{\Delta}{l}\right) = 1,$$
 (Red(l), Red(l')) pairwise distinct}.
=: $\{l_1, \dots, l_M\}$.

- 1. Let $E = E_{\text{sec.}}$
- 2. For i = 1, ..., M do
 - (a) Let $n_i \in_R \{0, 1, \dots, 11\}$.
 - (b) Construct a chain of length n_i of l_i —isogenous curves, starting from E.
 - (c) Denote the resulting curve by E.
- 3. Output $E =: E_{pub}$.

Solving the ECDLP in $E_{\text{pub}}(\mathbb{F}_{2^{161}})$ using E_{Sec} .

Key escrow scenario 1:

Alice submits to the trusted authority (TA) both E_{sec} and the sequence of j-invariants encountered while computing the public curve.

Then TA easily computes the explicit chain of isogenies using Vélu's formulae.

Key escrow scenario 2:

Alice submits only E_{sec} .

Then starting from $E_{\rm pub}$ and $E_{\rm sec}$, TA computes two (deterministic) pseudo-random walks. TA keeps track of all l-values and j-invariants used.

Uses distinguished point method to detect collision between these two walks.

Collision is expected to occur after $\sqrt{\pi h_{\Delta}}$ steps (that is, roughly 2^{41} steps for $E/\mathbb{F}_{2^{161}}$).

Efficiently parallelizable.

(Galbraith-Hess-Smart, Eurocrypt 2002).

Security Analysis

Assumption:

The isomorphism classes of curves over $\mathbb{F}_{2^{161}}$ with $m_7(b)=4$ are distributed uniformly at random over all isogeny classes over $\mathbb{F}_{2^{161}}$.

What does this mean?

- There are 2^{162} isomorphism classes.
- There are 2^{94} isomorphism classes with $m_7(b) = 4$.
- Assumption (A) \Rightarrow a random curve from a fixed isogeny class has $m_7(b)=4$ with probability $2^{94}/2^{162}=2^{-68}$.
- ullet Assumption (A) \Rightarrow in any isogeny class with square-free Δ we expect

$$h_{\Delta}/2^{68}$$

isomorphism classes of curves with $m_7 = 4$.

Security Analysis, continued

To break the system, an attacker must solve the ECDLP in $E_{\text{pub}}(\mathbb{F}_{2^{161}})$.

Parallelized Pollard Rho: 280 EC operations.

Or, the attacker solves **Problem**

Given E_{pub} ,

(P) $\begin{cases} \text{find } E, \\ \text{isogenous to } E_{\text{pub}}, \\ \text{and in } I_{4}, \text{ that is, with } m_{7}(b_{E}) = 4. \end{cases}$

Strategies to solve (P):

- 1. Reconstruct E_{sec} from E_{pub} .
- 2. Search isogeny class of E_{pub} for a curve in I_4 .
- 3. Search I_4 for a curve isogenous to E_{pub} .

For analysis:

Cost to move around in the isogeny class:

Assume: one step along an l-isogeny costs $16l^2$ elliptic curve operations.

(cost to compute root of $\Phi_l(j,X)$ is $O(l^2 \cdot 161)$ operations in $\mathbb{F}_{2^{161}}$,

cost for one elliptic curve operation is 10 operations in $\mathbb{F}_{2^{161}}$.)

ad (1): Reconstruct E_{sec} from E_{pub} .

- Odd cyclic part of Cl_{Δ} is $\geq 2^{68}$. \Rightarrow Most of the l_i used to construct E_{pub} correspond to ideal classes with order $\geq 2^{68}$.
- To construct E_{pub} from E_{sec} , Alice used M subchains of distinct l_i -isogenies, with chainlengths $\in_R \{0,\ldots,11\}$. \Rightarrow there are approx. $\max\{12^M,2^{68}\}$ possibilities for E_{pub} .
- $3 \le l_i \le 300 \Longrightarrow M \ge 19$, and on average M = 30 (experimentally). $12^{19} > 2^{68}$.
- Attacker has to try $\approx 2^{68}/2$ curves to retrieve E_{Sec} .
- Each such try costs at least $16l^2$ EC operations, where $l = \max\{l_i : n_i \neq 0\}$. If $l \geq 23$, then $16l^2 > 2^{13}$. Fair to assume.
- \Rightarrow Total cost $2^{67} \cdot 2^{13} = 2^{80}$ EC ops.

ad (2): Search through the isogeny class of E_{pub} for a curve in I_4 .

- Perform a pseudo-random walk in the isogeny class of E_{pub} .
- Under Assumption (A), expected 2^{68} curves have to be considered until one with $m_7 = 4$ is found.
- Cost of considering one curve: 16l² EC operations.
 (l= degree of isogeny used for this step).
- Even with only 8 different prime ideals, attacker needs to work with l-values up to 80.
- Assume an average l-value of 16, \Rightarrow considering one curve costs $> 16 \cdot 16^2 = 2^{12}$ EC operations.
- \Rightarrow Total cost $> 2^{68} \cdot 2^{12} = 2^{80}$ EC ops.

ad (3): Search through the set I_4 for a curve isogenous to E_{pub} .

- Only method known to date is exhaustive search through I_4 .
- Recall: $E_{a,b} \in I_4 \Leftrightarrow m_7(b) = 4$, and the set S of all those b can be efficiently represented.
- Under Assumption (A), there are $h_{\Delta}/2^{68}$ curves in I_4 that are isogenous to E_{pub} .
- ullet S has 2^{93} b-values, so we expect to have to consider

$$2^{93} / \frac{h_{\Delta}}{2^{68}} = 2^{161} / h_{\Delta}$$

b-values.

- $h_{\Delta} < 2^{83} \Rightarrow \text{consider} > 2^{78} b$ -values.
- Cost of point counting, or scalar multiplication by $\#E_{\text{pub}}(\mathbb{F}_{2^{161}})$: > 4 EC operations.
- \Rightarrow Total cost $> 2^{78} \cdot 2^2 = 2^{80}$ EC ops.

Final words

- 1. The proposed system can also be used over the fields \mathbb{F}_{2^N} with N=154,182,189,196.
 - Large set *I* of elliptic curves for which GHS Weil descent attack is feasible.
 - \longrightarrow To avoid exhaustive search attack for $E_{\text{SeC}} \in I$.
 - I must not be too large.
 - \longrightarrow otherwise a random walk in the isogeny class of $E_{\rm pub}$ will succeed too fast.
- 2. Are there any ways to approach Problem P?

If Problem P can be solved efficiently, $\mathbf{F}_{2^{161}}$ is **bad**,

in the sense that any ECDLP instance for **any** elliptic curve over $\mathbb{F}_{2^{161}}$ can be solved using existing computer technology.