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Motivation

The quest for efficient algorithms to perform computations in finite
fields Fpn (i.e. asymptotically fast as a function of log q, q = pn), is
(too) often restricted to the two cases :

n fixed and p tends to the infinity (Fp is typical) or
p fixed and n tends to the infinity (F2n is typical).

Hence, until now, not that much people designed algorithms with
reasonable behaviors when n and p both tend to ∞.

But, recently, new algorithms for computing discrete logarithms in
Fpn [JL06, JLSV06] yield surprisingly low complexities in this setting. . .

How about counting points on elliptic curves ?
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Introduction

Let p be a prime, Fq a finite field with q = pn elements, E be an elliptic
curve defined over Fq. Let P be a point in E (Fq) and denote with φq
the Frobenius endomorphism, then φq(P) = P if and only if P is
Fq-rational.

How to efficiently compute #E (Fq) ?

Thanks to Schoof, an algorithm with polynomial time complexity is
known whatever the way p and n tend to ∞ [Schoof85, Schoof95].
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Weil’s dream

The general strategy is based on ideas introduced by Weil, Serre,
Grothendieck, Dwork, . . . in order to prove the Weil conjectures.

The dream of Weil was to construct a good cohomology theory such
that the number of fixed points of φq is given by a Lefschetz fixed point
formula known in the complex setting as

#{P ∈ M | f (P) = P} =
∑

i

(−1)i Tr(f∗|H i
DR(M)) .

(M be a compact complex analytic manifold, f : M → M an analytic map, f only has isolated non-degenerate fixed points,

the H i
DR (M) are called the de Rham cohomology groups of M and are finite dimensional vector spaces over C on which f

induces a linear map f ∗)
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Grothendieck’s breakthrough

Very briefly. . . very restricted the elliptic curve case. . .

Let ` 6= p and let Q` be the field of `-adic numbers. Grothendieck
introduced the `-adic cohomology groups H i (E , Q`) s.t.

#E (Fq) =
2∑

i=0

(−1)i Tr(φ∗q; H i (E , Q`)) .

The `-adic cohomology groups H i (E , Q`) are finite dimensional vector
spaces over Q`, which are non-trivial only for i = 1,

H1(E , Q`) ∼= T`(E ) .
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Schoof’s algorithm

Let ` 6= p be a prime, let χE (φq) is the characteristic polynomial of φq
on the Tate module T`(E ). The main idea is to approximate T`(E ) by
the `-torsion points E [`].

The `-torsion is a 2 dimensional Z/`Z vector space, and the restriction
of φq to E [`] is linear. Let P`(T ) denote the characteristic polynomial
of this restriction, then P`(T ) ≡ χE (φq)(T ) (mod `).

Only one coefficient a1 of χE (φq) is needed and we have |a1| ≤ q1/2

(Riemann hypothesis). Using the Chinese remainder theorem, we can therefore
uniquely recover χE (φq) from P`(T ) for primes ` such that∏

primes `,gcd(`,q)=1

` > q1/2 .

This yields a Õ((log q)5) time complexity (with nothing in n or p
hidden in the O) and O((log q)3) in space.
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Elkies’ ideas

For primes ` s.t.

there exists a rational isogeny of degree ` defined on E (half the
primes),
the kernel of which can be efficiently computed,

we can compute P`(T ) on an (only) 1 dimensional Z/`Z sub-vector
space of E [`]. . .

. . . and we can hope a Õ((log q)4) time complexity.
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Computing isogenies

There exists two classes of algorithms following the characteristic p.

_ If p > `, first algorithms by Elkies, Charlap-Coley-Robbins, the best
algorithms [BoMoSaSc06] have Õ((` log q)) time complexity.

_ If p < `, the previous method yields obstructions. But, when p is
fixed, we may consider three other algorithms, mainly :

[Couveignes94]. Time Õ(`3 log q), space O(`2 log q).

[Couveignes96]. Time Õ(n` log q), space O(`2 log q).

[Lercier96]. For p = 2, heuristic time O(n`3), space O(n`2), more
efficient for practical use.
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Computing isogenies for ` ' p

In the worst point counting situation, that is p ' n(' log q →∞), one
has to compute isogenies of degree ` ' p.
[Lercier96] or [BoMoSaSc06] are not an option. It remains Couveignes
algorithms but a careful look at their complexities reveal that we have
bad powers of p “hidden” in the O constant.

For instance, in [Couveignes96],
the complexity is at least the cost of computing an isomorphism
between two Artin-Schreier extensions defined over Fq,
if we precompute the inverse of a pn × pn Fp-matrix,
then, each isogeny kernel computation involves a matrix-vector
multiplication by such a matrix, that is O((pn)2) bit operations.

SEA algorithm runs thus in Õ(log5 q) bit operations . . . again. . .
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Canonical lift

At the end of 1999, Satoh introduced the p-adic approach to compute
the number of points on an ordinary elliptic curve over a finite
field [Satoh00].

Let A be an abelian variety defined over Fq with q = pn. Let Qq be an
unramified extension of Qp of degree n with valuation ring Zq and
residue field Zq/(pZq) ' Fq. Consider a lift A of A defined over Zq,
then in general there exists none F ∈ End(A) that reduces to the
Frobenius φq ∈ End(A).

A canonical lift of an abelian variety A over Fq is an abelian variety A
over Zq such that A reduces to A modulo p and the ring
homomorphism End(A) −→ End(A) induced by reduction modulo p is
an isomorphism.
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Lubin–Serre-Tate Canonical lift

Theorem (Lubin–Serre-Tate) : Let A be an ordinary abelian variety over
Fq (i.e. A[p] ' (Z/pZ)dim(A)). Then there exists a canonical lift Ac of
A over Zq and Ac is unique up to isomorphism.

The construction of a p-adic approximation of Ac given A is as follows:
_ Let A0 be a lift of A to Zq and A0[p]loc = A0[p] ∩ Ker(π1) be the

p-torsion points on A0 that reduce to the neutral element of A.
_ Then, A1 = A0/A0[p]loc is again an abelian variety s.t. its

reduction is ordinary and there exists an isogeny I0 : A0 −→ A1
which reduces to the small Frobenius morphism σ : A −→ Aσ.

_ Repeating this construction, we get a sequence of abelian varieties
and isogenies A0

I0−→ A1
I1−→ . . . .

Clearly Akn reduces to A modulo p; furthermore, {Akn}k∈N converges
to the canonical lift Ac and the convergence is linear.
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Riemann iterations
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p fixed, O(n3) time complexity

Algorithm AGM [Mestre01]
Algorithm to compute the trace of an ordinary elliptic curve
E/F2n : y 2 + xy = x3 + α.
Input: α ∈ F2n .
Output: The trace c of E .

\\Lift phase
1. a := 1 + 8α ∈ Zq; b := 1 ∈ Zq;

2. for (i := 1; i < n/2 + O(1); i := i + 1) {
3. a, b := a+b

2 ,
√

ab ;

4. }
\\Norm phase

5. A := a; B := b;
6. for (i := 1; i < n; i := i + 1) {
7. a, b := a+b

2 ,
√

ab ;

8. }
9. return A

a mod 2n as a signed integer in [−2
√

2n, 2
√

2n].
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O(n2) time complexity, but. . .

Thanks to numerous people in this field, when p id fixed, O(n2) time
complexity can be achieved.

For non fixed p... one bottleneck is that we can not avoid the
calculation of the p-torsion part of the curve and this involves the
computation in the p-adics of the p-th division polynomial.

The best algorithms run finally in Õ(p2n2) bit operations, but requires a
O(p2n2) memory.

One may think to Kedlaya’s algorithm in this setting, but again the
complexity, both in time and space, is reported to be Õ(pn3).

Õ(log4 q) bit operations, but a (too large) O(log4 q) in storage too.
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The idea

In our worst point counting case, p ' n(' log q →∞), we would like to
get rid of the obstructions which arise with isogeny algorithms for ` > p.

In the same spirit as for counting points in the Satoh-Mestre like
fashion, we propose to lift the isogeneous elliptic curves in an
unramified extension denoted Qq of the p-adic (corresponding to the
extension Fq of Fp).

So that the inversions by p which may occur in the isogeny algorithms
are no longer a problem (at least for computations with with enough
precision).
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Algorithm IsogenyLifted [JL06a]
Algorithm to compute separable kernels of isogenies of degree `
Input: An non-supersingular elliptic curve given over Fq by
E : y 2 + a1xy + a3y = x3 + a2x2 + ax + a6 and an Elkies prime `.
Output: Two polynomials in Fq[X ] of degree b`/2c the roots of
which are x-coordinates of points of E [`].

1. Let w = O(`/p) be a p-adic precision.
2. Lift E in Qq in a arbitrary way.
3. Compute an isomorphic Weierstraß model E : y 2 = x3 + A4x + A6

isomorphic by λ to E/Qq.
4. Use Atkin-Elkies’ algorithm to get at precision w in Qq

two isogeneous curves Ẽ and Ẽ ′.
5. Use Atkin-Elkies’ algorithm to get at precision w in Qq

the sums p1 and p′1.
6. Take the isogeny algorithm of your choice to get from (Ẽ , p1) and (Ẽ ′, p′1)

two polynomials H`(X ) and H′`(X ).
7. return {λ−1(H`(X )) mod p, λ−1(H′`(X )) mod p}.
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Complexity analysis

We studied the Charlap-Coley-Robbins algorithm in this case.

Mainly :
the precision needed depends on the number of non invertible
elements that the algorithm will encounter, that is

b15 + 3`/2c if p = 2, 5 + ` if p = 3 and b1 + 2`/pc otherwise.

the complexity in time of the algorithm is still Õ(`2)
multiplications. . . but in Qq, at precision Õ(`/p). We therefore
have a total complexity in time equal to Õ((1 + `/p)`2 log q). The
complexity in space is O((1 + `/p)` log q).
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Example, a degree 13 isogeny in F23

Let E/F23 : y2 = x3 + 6 x + 17. We take as Weierstraß model
isomorphic to E in Q23 at precision 2 the curve

E : y2 = x3 + (6 + O(232)) x + (17 + O(232)).

Atkin-Elkies’ algrithms then enable us to find that E is 13-isogeneous to
a curve approximated by Ẽ : y2 = x3 + (99 + O(232)) x .
Charlap-Coley-Robbins algorithm applied to these inputs yields

H23(X ) = X 6 + (19 + O(232)) X 5 − (50 + O(232)) X 4 + (208 + O(232)) X 3

− (119 + O(232)) X 2 − (252 + O(232)) X − 231 + O(232).

Reducing the result modulo 23, we finally find that

h23(X ) = X 6 + 19 X 5 + 19 X 4 + X 3 + 19 X 2 + X + 22.
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Conclusion

In our main concern, p ' n ' log q, plugging this isogeny algorithm in
the SEA framework yields, for the first time, a nice Õ(log4 q)
complexity in time, and a at most Õ(log3 q) complexity in space.

With a more efficient isogeny algorithm, as the one of [BoMoSaSc06],
we might expect to reduce the isogeny complexity phase as low as
Õ((1 + `/p)` log q), but we may not have such a low complexity for the
overall computation, due to the computation of the isogenous curves in
Qq, via modular polynomials.
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