Isogeny cycles and volcanoes

Mireille Fouquet

(Joint work with F. Morain)

Institut de Mathématiques de Jussieu

Université Paris 7 - Denis Diderot

fouquet@math.jussieu.fr
Overview

A little bit of history

• Kohel’s work on $\text{End}(E)$

• Construction of the volcano

• Application to point counting

• Looking for an isogenous curve with a given endomorphism ring
Once upon a time ...

Counting the number of points of an elliptic curve E defined over a finite field was long and difficult ...

Then Schoof’s algorithm arrived!! But still we were stuck with using the division polynomials $f_{\ell}^{E}(X)$ of the curve.

Elkies and Atkin designed a way to use a factor of $f_{\ell}^{E}(X)$: finding this factor is equivalent to find an ℓ-isogenous curve of E.

Couveignes and Morain showed how to build an isogeny cycle to find factors of $f_{\ell k}^{E}(X)$.
Questions

- Building the isogeny cycle is possible in certain cases. What about the other cases?
- What is the relation between two curves in the same isogeny cycle?

Goal of this talk: Describe the structure of \(\ell \)-isogeny classes and design an efficient algorithm to compute this structure.

Means: Kohel’s work on the computation of \(\text{End}(E) \).
Notations

Let E be an ordinary elliptic curve defined over \mathbb{F}_q where $q = p^d$.

The characteristic polynomial of the Frobenius endomorphism π is $X^2 - tX + q$ and its discriminant is

$$d_\pi = t^2 - 4q.$$

$\text{End}(E)$ is an order in an imaginary quadratic field K.

$f = [\mathcal{O}_K : \text{End}(E)]$ conductor of $\text{End}(E)$. That is if we denote d_K the discriminant of \mathcal{O}_K, the discriminant d_E of $\text{End}(E)$ is $d_E = f^2 d_K$.
Modular equation

The modular equation $\Phi_\ell(X, Y)$ is a symmetric polynomial of degree $\ell + 1$ in each variable, with integral coefficients and with the following property:

Let E and E' two elliptic curves defined over \mathbb{F}_q. E and E' are ℓ-isogenous over $\mathbb{F}_q \iff \#E = \#E'$ and $\Phi_\ell(j(E), j(E')) = 0$.

Existence of formulas to compute the equation of a curve E' ℓ-isogenous to E from $\Phi_\ell(j(E'), j(E)) = 0$. (Vélu; Elkies, Atkin)

Number of ℓ-isogenous curves to E:

Theorem:

$$\#\text{Roots of } \Phi_\ell(X, j(E)) = \begin{cases} 0 \Rightarrow (d_\pi / \ell) = -1 \\ 2 \Rightarrow (d_\pi / \ell) = +1 \\ 1 \text{ or } \ell + 1 \Rightarrow (d_\pi / \ell) = 0 \end{cases}$$
Computing $\text{End}(E)$ (Kohel 1996)

His hypothesis: We suppose known $\# E$ as well as the factorization of $d_\pi = t^2 - 4q = g^2 d_K$.

Our approach: $\# E$ unknown.

$\pi \in \text{End}(E) \Rightarrow \mathbb{Z}[\pi] \subseteq \text{End}(E)$

$\implies f | g$ with f conductor of $\text{End}(E)$ and g conductor of $\mathbb{Z}[\pi]$.

![Diagram showing the relationships between \mathcal{O}_K, $\mathbb{Z}[\pi]$, $\text{End}(E)$, f, and g]

Goal: Locate exactly $\text{End}(E)$ in this diagram.
Relation between two ℓ-isogenous curves and their endomorphism rings

Theorem (Kohel) Let $\phi : E_1 \to E_2$ be an isogeny of degree $\ell \neq p$ is a prime number. Then we are in one of those three cases:

- **Descending case**

 \[
 \mathcal{O}_K \quad \downarrow \quad \text{End}(E_1) \quad \uparrow \quad \text{End}(E_2) \quad \downarrow \quad \mathbb{Z}[\pi]
 \]

- **Ascending case**

 \[
 \mathcal{O}_K \quad \downarrow \quad \text{End}(E_2) \quad \uparrow \quad \text{End}(E_1) \quad \downarrow \quad \mathbb{Z}[\pi]
 \]

- **Horizontal case**

 \[
 \mathcal{O}_K \quad \downarrow \quad \text{End}(E_1) \quad \uparrow \quad \text{End}(E_2) \quad \downarrow \quad \mathbb{Z}[\pi]
 \]

\[
\text{Descending case} \quad \text{Ascending case} \quad \text{Horizontal case}
\]
Classification of the ℓ-isogenies (Kohel)

- Curves such that $\ell \nmid [\mathcal{O}_K : \text{End}(E)]$: if $\ell \nmid [\text{End}(E) : \mathbb{Z}[\pi]]$ then $1 + (d_K/\ell)$ ℓ-isogenies \rightarrow, if $\ell|[\text{End}(E) : \mathbb{Z}[\pi]]$

- Curves such that $\ell \mid [\mathcal{O}_K : \text{End}(E)]$ and $\ell \mid [\text{End}(E) : \mathbb{Z}[\pi]]$

\[\begin{array}{c}
\mathcal{O}_K \quad E \\
\downarrow \quad \downarrow \\
\mathbb{Z}[\pi]_\ell \quad \downarrow \\
\end{array} \quad \begin{array}{ccc}
E & \rightarrow & E_0 \\
\downarrow & & \downarrow \\
E_1 & \rightarrow & E - E_2 \\
\downarrow & & \downarrow \\
0 & & 1 \\
\end{array} \quad \begin{array}{c}
\downarrow \\
r \downarrow \\
r + 1 \\
\downarrow \\
\mathbb{Z}[\pi]_\ell \\
\end{array} \quad \begin{array}{c}
\downarrow \\
n \\
\end{array} \]
• Curves such that $\ell \mid \mathcal{O}_K : \text{End}(E)$ and $\ell \nmid \text{End}(E) : \mathbb{Z}[\pi]$
Height of the volcano = \(\ell \)-adic valuation of \(g \) conductor of \(\mathbb{Z}[\pi] \).
Isogeny cycle: case $(d_π/\ell) = +1$

- No descending isogenies
- All the ℓ-isogenous curves have the same endomorphism ring

Size of the cycle $= \text{ord}(t)$ where t is a prime ideal of norm ℓ of \mathcal{O}_K
Number of \(\ell \)-isogeny volcanoes

Theorem (F.): Let \(f \) be the conductor of \(\text{End}(E) \) and let \(r \) be its \(\ell \)-adic valuation. Let \(f' \) be such that \(f = \ell^r f' \).

Then there are

\[
h(f'^2 d_K) / \text{ord}(\mathfrak{l})
\]

distinct \(\ell \)-isogeny volcanoes where \(\mathfrak{l} \) is a prime ideal of norm \(\ell \) of the order of conductor \(f' \).
Moving in the volcano

Key point: Once we have started to go down, we keep on going down.

\[E_1 \xleftarrow{\alpha} \xrightarrow{\hat{\alpha}} E_2 \]

\[\ell \text{ curves} \]

\[\Rightarrow \] we can find a path of isogenous curves, starting from our curve and ending with a curve at the level of \(\mathbb{Z}[\pi] \), of smallest length: a descending path.
Kohel’s algorithm

Idea: Construction of 2 random sequences of ℓ-isogenous curves of length $\leq n$ where $\ell^n \mid g$.

Two possible cases:
Our approach

Idea: Construction of 3 random sequences of \(\ell \)-isogenous curves in parallel.

\[\mathcal{O}_K \]

\[\mathbb{Z} [\pi] \]

Complexity of the computation of a descending path: \(O(mF_3(\ell)) \) where \(m \) is such that \(\ell^m \parallel g/f \) and \(F_3(\ell) = \) time to compute three roots of \(\Phi_\ell(X, j) \).
Going up in the volcano

• Compute a descending path for each one of the $\ell + 1$ ℓ-isogenous curves to E;

• Compare their sizes and the curves with longest path are either up or horizontal.
Skeleton of the algorithm and complexity

Procedure ComputePartialVolcano
Input : An elliptic curve E and a prime number $\ell \neq p$.
Output : A full descending path and the type of the crater.

1. Test if E is in the crater;
2. If yes, compute a descending path starting from E and determine the type of the crater;
3. If not, go up in the volcano starting from E until finding the crater and then determine the type of the crater.

Complexity : $O(n^2 \ell \mathcal{F}(\ell))$ operations to compute a partial volcano, where $n \leq \frac{\log(|d_K|)}{2\log(\ell)}$ and $\mathcal{F}(\ell)$ is the time to compute the set of roots of $\Phi_\ell(X, j)$.
Application to point counting

Case where \(d_\pi \equiv 0 \mod \ell \)

Incomplete solution given by the computation of isogeny cycles (Couveignes, Dewaghe, Morain).

Solution: Isogeny volcanoes

\[
d_\pi = t^2 - 4q = g^2d_K: \text{ if } \ell^n \parallel g \text{ and } \ell^\epsilon \parallel d_K
\]

then \(t^2 \equiv 4q \mod \ell^{2n+\epsilon} \).

\[\implies \text{ Computing } n = \text{ Computing the height of the volcano and Computing } \epsilon = \text{ Determining the type of the crater.} \]

Finally compute \(t \mod \ell^{2n+\epsilon} \).
Example

Implementation in Magma and in Maple

Case where \(\left(\frac{d_K}{\ell} \right) = +1 \)

Let \(p = 10009 \) and \(\mathcal{E} = [7478, 1649] \), \(j_\mathcal{E} = 83 \). For \(\ell = 3 \), we get:

where

\[
\begin{align*}
E_{0,1} & \quad E_{0,2} \quad E_{0,3} \quad E_{0,4} \quad E_{0,5} \quad E_{0,6} \quad E_{0,7} \\
E_{1,1} & \quad E_{1,2} & \quad \mathcal{E} & \quad E_{1,4} & \quad E_{1,5} \\
E_{2,1} & \quad E_{2,2} & \quad E_{2,3} & \quad E_{2,4} & \quad E_{2,5} & \quad E_{2,6} & \quad E_{2,7}
\end{align*}
\]

where

<table>
<thead>
<tr>
<th>curve</th>
<th>equation</th>
<th>curve</th>
<th>equation</th>
<th>curve</th>
<th>equation</th>
<th>curve</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{0,1})</td>
<td>[1336, 8702]</td>
<td>(E_{0,2})</td>
<td>[56, 8167]</td>
<td>(E_{0,3})</td>
<td>[7418, 8055]</td>
<td>(E_{0,4})</td>
<td>[7778, 9421]</td>
</tr>
<tr>
<td>(E_{0,6})</td>
<td>(E_{0,7})</td>
<td>(E_{1,1})</td>
<td>[9166, 9156]</td>
<td>(E_{1,2})</td>
<td>[5138, 6736]</td>
<td>(E_{1,3})</td>
<td>[6435, 570]</td>
</tr>
<tr>
<td>(E_{1,5})</td>
<td>(E_{2,1})</td>
<td>(E_{2,2})</td>
<td>[9899, 274]</td>
<td>(E_{2,3})</td>
<td>[6796, 2230]</td>
<td>(E_{2,4})</td>
<td>[8899, 8303]</td>
</tr>
<tr>
<td>(E_{2,6})</td>
<td>(E_{2,7})</td>
<td>(E_{2,7})</td>
<td>[2728, 8215]</td>
<td>(E_{2,7})</td>
<td>[2728, 8215]</td>
<td>(E_{2,7})</td>
<td>[2728, 8215]</td>
</tr>
</tbody>
</table>

\[\Rightarrow n = 2 \text{ and } \epsilon = 0, \text{ thus } t^2 \equiv 4p \equiv 34 \mod 3^4 \text{ and } t \equiv 22 \mod 3^4. \]
Relation between two curves in a volcano

\[\mathcal{O}_{K_{\ell}} \]

\[\mathbb{Z}[\pi]_{\ell} \]

In this case:

\[f' = \ell^3 f \]
Looking for an isogenous curve with a given endomorphism ring

We suppose known \#E and the factorization of \(d_\pi = g^2 d_K \).

Goal: Given \(f' \) such that \(f'|g \), find an isogenous curve \(E' \) to \(E = E_0 \) with endomorphism ring of conductor \(f' \).

- Compute \(\text{End}(E) \).
- Determine \(f = \prod_i \ell_i^{\alpha_i} \) and \(f' = \prod_i \ell_i^{\beta_i} \) where \(\ell_i \) is a prime.
- For each prime \(\ell_i \):
 - if \(\alpha_i > \beta_i \) then compute an ascending path from \(E_i \) and take the curve \(E_{i+1} \) \((\alpha_i - \beta_i)\) steps from \(E_i \) in the path.
 - if \(\alpha_i < \beta_i \) then compute a descending path from \(E_i \) and take the curve \(E_{i+1} \) \((\beta_i - \alpha_i)\) steps from \(E_i \).
 - if \(\alpha_i = \beta_i \) then \(E_i = E_{i+1} \).
Improvements to compute the isogeny volcanoes for certain ℓ

Case $\ell = 2, 3$ by Miret, Moreno, Rio, Sadornil, Tena, Tomas and Valls:

- the structure of the ℓ-Sylow subgroup can be computed in a polynomial time ($O(\log^5(q))$ for $\ell = 2$);
- the structure of the ℓ-Sylow subgroup helps you determine if you are going up, down or horizontally in a lot of cases. The other cases are treated like previously.