Isogeny cycles and volcanoes

Mireille Fouquet

(Joint work with F. Morain)

Institut de Mathématiques de Jussieu

Université Paris 7 - Denis Diderot fouquet@math.jussieu.fr

Overview

A little bit of history

- Kohel's work on $\operatorname{End}(E)$
- Construction of the volcano
- Application to point counting
- Looking for an isogenous curve with a given endomorphism ring

Once upon a time ...

Counting the number of points of an elliptic curve E defined over a finite field was long and difficult ...

Then Schoof's algorithm arrived !! But still we were stuck with using the division polynomials $f_{\ell}^{E}(X)$ of the curve.

Elkies and Atkin designed a way to use a factor of $f_{\ell}^{E}(X)$: finding this factor is equivalent to find an ℓ-isogenous curve of E.

Couveignes and Morain showed how to build an isogeny cycle to find factors of $f_{\ell^{k}}^{E}(X)$.

Questions

- Building the isogeny cycle is possible in certain cases. What about the other cases ?
- What is the relation between two curves in the same isogeny cycle?

Goal of this talk: Describe the structure of ℓ-isogeny classes and design an efficient algorithm to compute this structure.

Means : Kohel's work on the computation of $\operatorname{End}(E)$.

Notations

Let E be an ordinary elliptic curve defined over \mathbb{F}_{q} where $q=p^{d}$ 。

The characteristic polynomial of the Frobenius endomorphism π is $X^{2}-t X+q$ and its discriminant is

$$
d_{\pi}=t^{2}-4 q
$$

$\operatorname{End}(E)$ is an order in an imaginary quadratic field K. $f=\left[\mathcal{O}_{K}: \operatorname{End}(E)\right]$ conductor of $\operatorname{End}(E)$. That is if we denote d_{K} the discriminant of \mathcal{O}_{K}, the discriminant d_{E} of $\operatorname{End}(E)$ is $d_{E}=f^{2} d_{K}$.

Modular equation

The modular equation $\Phi_{\ell}(X, Y)$ is a symmetric polynomial of degree $\ell+1$ in each variable, with integral coefficients and with the following property:
Let E and E^{\prime} two elliptic curves defined over $\mathbb{F}_{q} . E$ and E^{\prime} are ℓ-isogenous over $\mathbb{F}_{q} \Leftrightarrow \# E=\# E^{\prime}$ and $\Phi_{\ell}\left(j(E), j\left(E^{\prime}\right)\right)=0$.

Existence of formulas to compute the equation of a curve E^{\prime} ℓ-isogenous to E from $\Phi_{\ell}\left(j\left(E^{\prime}\right), j(E)\right)=0$. (Vélu; Elkies, Atkin)

Number of ℓ-isogenous curves to E :

Theorem :

$$
\text { \#Roots of } \Phi_{\ell}(X, j(E))=\left\{\begin{array}{l}
0 \Rightarrow\left(d_{\pi} / \ell\right)=-1 \\
2 \Rightarrow\left(d_{\pi} / \ell\right)=+1 \\
1 \text { or } \ell+1 \Rightarrow\left(d_{\pi} / \ell\right)=0
\end{array}\right.
$$

Computing $\operatorname{End}(E)$ (Kohel 1996)

His hypothesis: We suppose known $\# E$ as well as the factorization of $d_{\pi}=t^{2}-4 q=g^{2} d_{K}$.

Our approach: \#E unknown.
$\pi \in \operatorname{End}(E) \Rightarrow \mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$
$\Longrightarrow f \mid g$ with f conductor of $\operatorname{End}(E)$ and g conductor of $\mathbb{Z}[\pi]$.

Goal : Locate exactly $\operatorname{End}(E)$ in this diagram.

Relation between two ℓ-isogenous curves and their endomorphism rings

Theorem (Kohel) Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny of degree $\ell \neq p$ is a prime number. Then we are in one of those three cases :

Classification of the ℓ-isogenies (Kohel)

- Curves such that $\ell \nmid\left[\mathcal{O}_{K}: \operatorname{End}(E)\right]:$ if $\ell \nmid[\operatorname{End}(E): \mathbb{Z}[\pi]]$ then $1+\left(d_{K} / \ell\right) \ell$-isogenies \rightarrow, if $\ell \mid[\operatorname{End}(E): \mathbb{Z}[\pi]]$
- Curves such that $\ell \mid\left[\mathcal{O}_{K}: \operatorname{End}(E)\right]$ and $\ell \mid[\operatorname{End}(E): \mathbb{Z}[\pi]]$

$$
\begin{array}{cccc:c}
1 & & = & \\
: & & E & r \\
\vdots & \prime & \backslash & 1 \\
\vdots & 1 & 1 & 1 & r+1 \\
\mathbb{Z}[\pi]_{\ell} & & & & \\
\hline
\end{array}
$$

- Curves such that $\ell \mid\left[\mathcal{O}_{K}: \operatorname{End}(E)\right]$ and $\ell \nmid[\operatorname{End}(E): \mathbb{Z}[\pi]]$

Isogeny volcano

Height of the volcano $=\ell$-adic valuation of g conductor of $\mathbb{Z}[\pi]$.

Isogeny cycle : case $\left(d_{\pi} / \ell\right)=+1$

- No descending isogenies
- All the ℓ-isogenous curves have the same endomorphim ring

Size of the cycle $=\operatorname{ord}(\mathfrak{l})$ where \mathfrak{l} is a prime ideal of norm ℓ of \mathcal{O}_{K}

Number of ℓ-isogeny volcanoes

Theorem (F.): Let f be the conductor of $\operatorname{End}(E)$ and let r be its ℓ-adic valuation. Let f^{\prime} be such that $f=\ell^{r} f^{\prime}$. Then there are

$$
h\left(f^{\prime 2} d_{K}\right) / \operatorname{ord}(\mathfrak{l})
$$

distinct ℓ-isogeny volcanoes where \mathfrak{l} is a prime ideal of norm ℓ of the order of conductor f^{\prime}.

Moving in the volcano

Key point: Once we have started to go down, we keep on going down.

\Longrightarrow we can find a path of isogenous curves, starting from our curve and ending with a curve at the level of $\mathbb{Z}[\pi]$, of smallest length : a descending path.

Kohel's algorithm

Idea: Construction of 2 random sequences of ℓ-isogenous curves of length $\leqslant n$ where $\ell^{n} \| g$.

Two possible cases:

Our approach

Idea: Construction of 3 random sequences of ℓ-isogenous curves in parallel.

Complexity of the computation of a descending path : $O\left(m \mathcal{F}_{3}(\ell)\right)$ where m is such that $\ell^{m} \| g / f$ and $\mathcal{F}_{3}(\ell)=$ time to compute three roots of $\Phi_{\ell}(X, j)$.

Going up in the volcano

- Compute a descending path for each one of the $\ell+1$ ℓ-isogenous curves to E;
- Compare their sizes and the curves with longuest path are either up or horizontal.

Skeleton of the algorithm and complexity

Procedure ComputePartialVolcano

Input : An elliptic curve E and a prime number $\ell \neq p$.
Output : A full descending path and the type of the crater.

1. Test if E is in the crater;
2. If yes, compute a descending path starting from E and determine the type of the crater;
3. If not, go up in the volcano starting from E until finding the crater and then determine the type of the crater.

Complexity : $O\left(n^{2} \ell \mathcal{F}(\ell)\right)$ operations to compute a partial volcano, where $n \leqslant \frac{\log \left(\left|d_{K}\right|\right)}{2 \log (\ell)}$ and $\mathcal{F}(\ell)$ is the time to compute the set of roots of $\Phi_{\ell}(X, j)$.

Application to point counting

Case where $d_{\pi} \equiv 0 \bmod \ell$
Incomplete solution given by the computation of isogeny cycles (Couveignes, Dewaghe, Morain).

Solution: Isogeny volcanoes
$d_{\pi}=t^{2}-4 q=g^{2} d_{K}:$ if $\ell^{n} \| g$ and $\ell^{\epsilon} \| d_{K}$ then $t^{2} \equiv 4 q \bmod \ell^{2 n+\epsilon}$.
\Longrightarrow Computing $n=$ Computing the height of the volcano and Computing $\epsilon=$ Determining the type of the crater.

Finally compute $t \bmod \ell^{2 n+\epsilon}$.

Example

Implementation in Magma and in Maple
Case where $\left(\frac{d_{K}}{\ell}\right)=+1$
Let $p=10009$ and $\mathcal{E}=[7478,1649], j_{\mathcal{E}}=83$. For $\ell=3$, we get:

where

curve	equation	curve	equation	curve	equation	curve	equation
$E_{0,1}$	$[1336,8702]$	$E_{0,6}$	$[352,4401]$	$E_{1,5}$	$[3659,6441]$	$E_{2,5}$	$[4732,4541]$
$E_{0,2}$	$[56,8167]$	$E_{0,7}$	$[616,274]$	$E_{2,1}$	$[5412,9972]$	$E_{2,6}$	$[6203,3741]$
$E_{0,3}$	$[7418,8055]$	$E_{1,1}$	$[9166,9156]$	$E_{2,2}$	$[9899,274]$	$E_{2,7}$	$[2728,8215]$
$E_{0,4}$	$[7778,9421]$	$E_{1,2}$	$[5138,6736]$	$E_{2,3}$	$[6796,2230]$		
$E_{0,5}$	$[5051,4157]$	$E_{1,4}$	$[6435,570]$	$E_{2,4}$	$[8899,8303]$		

$\Rightarrow n=2$ and $\epsilon=0$, thus $t^{2} \equiv 4 p \equiv 34 \bmod 3^{4}$ and $t \equiv 22 \bmod 3^{4}$.

Relation between two curves in a volcano

In this case :

$$
f^{\prime}=\ell^{3} f
$$

Looking for an isogenous curve with a given endomorphism ring

We suppose known \#E and the factorization of $d_{\pi}=g^{2} d_{K}$.
Goal : Given f^{\prime} such that $f^{\prime} \mid g$, find an isogenous curve E^{\prime} to $E=E_{0}$ with endomorphism ring of conductor f^{\prime}.

- Compute $\operatorname{End}(E)$.
- Determine $f=\prod_{i} \ell_{i}^{\alpha_{i}}$ and $f^{\prime}=\prod_{i} \ell_{i}^{\beta_{i}}$ where ℓ_{i} is a prime.
- For each prime ℓ_{i} :
- if $\alpha_{i}>\beta_{i}$ then compute an ascending path from E_{i} and take the curve $E_{i+1}\left(\alpha_{i}-\beta_{i}\right)$ steps from E_{i} in the path.
- if $\alpha_{i}<\beta_{i}$ then compute a descending path from E_{i} and take the curve $E_{i+1}\left(\beta_{i}-\alpha_{i}\right)$ steps from E_{i}.
- if $\alpha_{i}=\beta_{i}$ then $E_{i}=E_{i+1}$.

Improvements to compute the isogeny volcanoes for certain ℓ

Case $\ell=2,3$ by Miret, Moreno, Rio, Sadornil, Tena, Tomas and Valls :

- the structure of the ℓ-Sylow subgroup can be computed in a polynomial time $\left(O\left(\log ^{5}(q)\right)\right.$ for $\left.\ell=2\right)$;
- the structure of the ℓ-Sylow subgroup helps you determine if you are going up, down or horizontally in a lot of cases. The other cases are treated like previously.

