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Overview

A little bit of history

• Kohel’s work on End(E)

• Construction of the volcano

• Application to point counting

• Looking for an isogenous curve with a given

endomorphism ring



Once upon a time ...

Counting the number of points of an elliptic curve E defined over a

finite field was long and difficult ...

Then Schoof’s algorithm arrived !! But still we were stuck with

using the division polynomials fE
ℓ (X) of the curve.

Elkies and Atkin designed a way to use a factor of fE
ℓ (X) : finding

this factor is equivalent to find an ℓ-isogenous curve of E.

Couveignes and Morain showed how to build an isogeny cycle to

find factors of fE
ℓk(X).



Questions

• Building the isogeny cycle is possible in certain cases.

What about the other cases ?

• What is the relation between two curves in the same

isogeny cycle ?

Goal of this talk : Describe the structure of ℓ-isogeny

classes and design an efficient algorithm to compute this

structure.

Means : Kohel’s work on the computation of End(E).



Notations

Let E be an ordinary elliptic curve defined over Fq where

q = pd.

The characteristic polynomial of the Frobenius

endomorphism π is X2 − tX + q and its discriminant is

dπ = t2 − 4q.

End(E) is an order in an imaginary quadratic field K.

f = [OK : End(E)] conductor of End(E). That is if we

denote dK the discriminant of OK , the discriminant dE of

End(E) is dE = f2dK .



Modular equation

The modular equation Φℓ(X,Y ) is a symmetric polynomial of

degree ℓ + 1 in each variable, with integral coefficients and with the

following property:

Let E and E′ two elliptic curves defined over Fq. E and E′ are

ℓ-isogenous over Fq ⇔ #E = #E′ and Φℓ(j(E), j(E′)) = 0.

Existence of formulas to compute the equation of a curve E′

ℓ-isogenous to E from Φℓ(j(E
′), j(E)) = 0. (Vélu; Elkies, Atkin)

Number of ℓ-isogenous curves to E :

Theorem :

#Roots of Φℓ(X, j(E)) =















0 ⇒ (dπ/ℓ) = −1

2 ⇒ (dπ/ℓ) = +1

1 or ℓ + 1 ⇒ (dπ/ℓ) = 0



Computing End(E) (Kohel 1996)

His hypothesis: We suppose known #E as well as the

factorization of dπ = t2 − 4q = g2dK .

Our approach: #E unknown.

π ∈ End(E) ⇒ Z[π] ⊆ End(E)

=⇒ f |g with f conductor of End(E) and g conductor of Z[π].

OK

f

g

↔ dK

End(E)

g/f

↔ f2dK

Z[π] ↔ g2dK

Goal : Locate exactly End(E) in this diagram.



Relation between two ℓ-isogenous curves and their

endomorphism rings

Theorem (Kohel) Let φ : E1 → E2 be an isogeny of degree ℓ 6= p is

a prime number. Then we are in one of those three cases :

OK

End(E1)
ℓ

End(E2)

Z[π]

OK

End(E2)
ℓ

End(E1)

Z[π]

OK

End(E1) ≃ End(E2)

Z[π]

Descending case Ascending case Horizontal case



Classification of the ℓ-isogenies (Kohel)

• Curves such that ℓ ∤ [OK : End(E)] : if ℓ ∤ [End(E) : Z[π]] then

1 + (dK/ℓ) ℓ-isogenies →, if ℓ|[End(E) : Z[π]]
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• Curves such that ℓ | [OK : End(E)] and

ℓ ∤ [End(E) : Z[π]]
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Isogeny volcano
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Height of the volcano = ℓ-adic valuation of g conductor of Z[π].



Isogeny cycle : case (d
π
/ℓ) = +1

• No descending isogenies

• All the ℓ-isogenous curves have the same endomorphim ring

b
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E1

E2 E3

E4

OKℓ

Size of the cycle = ord(l) where l is a prime ideal of norm ℓ of OK



Number of ℓ-isogeny volcanoes

Theorem (F.): Let f be the conductor of End(E) and

let r be its ℓ-adic valuation. Let f ′ be such that f = ℓrf ′.

Then there are

h(f ′2dK)/ord(l)

distinct ℓ-isogeny volcanoes where l is a prime ideal of

norm ℓ of the order of conductor f ′.
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Moving in the volcano

Key point : Once we have started to go down, we keep on

going down.
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=⇒ we can find a path of isogenous curves, starting from

our curve and ending with a curve at the level of Z[π], of

smallest length : a descending path.



Kohel’s algorithm

Idea: Construction of 2 random sequences of ℓ-isogenous curves of

length 6 n where ℓn ‖ g.

Two possible cases:
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Our approach

Idea: Construction of 3 random sequences of ℓ-isogenous curves in

parallel.
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Complexity of the computation of a descending path : O(mF3(ℓ))

where m is such that ℓm ‖ g/f and F3(ℓ) = time to compute three

roots of Φℓ(X, j).



Going up in the volcano

• Compute a descending path for each one of the ℓ + 1

ℓ-isogenous curves to E;

• Compare their sizes and the curves with longuest

path are either up or horizontal.
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Skeleton of the algorithm and complexity

Procedure ComputePartialVolcano

Input : An elliptic curve E and a prime number ℓ 6= p.

Output : A full descending path and the type of the crater.

1. Test if E is in the crater;

2. If yes, compute a descending path starting from E and

determine the type of the crater;

3. If not, go up in the volcano starting from E until finding the

crater and then determine the type of the crater.

Complexity : O(n2ℓF(ℓ)) operations to compute a partial volcano,

where n 6
log(|dK |)
2log(ℓ) and F(ℓ) is the time to compute the set of roots

of Φℓ(X, j).



Application to point counting

Case where dπ ≡ 0 mod ℓ

Incomplete solution given by the computation of isogeny

cycles (Couveignes, Dewaghe, Morain).

Solution : Isogeny volcanoes

dπ = t2 − 4q = g2dK : if ℓn ‖ g and ℓǫ ‖ dK

then t2 ≡ 4q mod ℓ2n+ǫ.

=⇒ Computing n = Computing the height of the volcano

and Computing ǫ = Determining the type of the crater.

Finally compute t mod ℓ2n+ǫ.



Example

Implementation in Magma and in Maple

Case where
(

dK

ℓ

)

= +1

Let p = 10009 and E = [7478, 1649], jE = 83. For ℓ = 3, we get:

E0,1 E0,2 E0,3 E0,4

jjjjjjj
E0,5 E0,6 E0,7

E1,1 E1,2

uuu
E

uuu
u JJJ

J E1,4 E1,5

E2,1 E2,2 E2,3 E2,4 E2,5 E2,6 E2,7

where
curve equation curve equation curve equation curve equation

E0,1 [1336, 8702] E0,6 [352, 4401] E1,5 [3659, 6441] E2,5 [4732, 4541]

E0,2 [56, 8167] E0,7 [616, 274] E2,1 [5412, 9972] E2,6 [6203, 3741]

E0,3 [7418, 8055] E1,1 [9166, 9156] E2,2 [9899, 274] E2,7 [2728, 8215]

E0,4 [7778, 9421] E1,2 [5138, 6736] E2,3 [6796, 2230]

E0,5 [5051, 4157] E1,4 [6435, 570] E2,4 [8899, 8303]

⇒ n = 2 and ǫ = 0, thus t2 ≡ 4p ≡ 34 mod 34 and t ≡ 22 mod 34.



Relation between two curves in a volcano

OKℓ

Z[π]ℓ
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In this case :

f ′ = ℓ3f

.



Looking for an isogenous curve with a given

endomorphism ring

We suppose known #E and the factorization of dπ = g2dK .

Goal : Given f ′ such that f ′|g, find an isogenous curve E′ to

E = E0 with endomorphism ring of conductor f ′.

• Compute End(E).

• Determine f =
∏

i ℓαi

i and f ′ =
∏

i ℓβi

i where ℓi is a prime.

• For each prime ℓi:

• if αi > βi then compute an ascending path from Ei and take

the curve Ei+1 (αi − βi) steps from Ei in the path.

• if αi < βi then compute a descending path from Ei and take

the curve Ei+1 (βi − αi) steps from Ei.

• if αi = βi then Ei = Ei+1.



Improvements to compute the isogeny volcanoes

for certain ℓ

Case ℓ = 2, 3 by Miret, Moreno, Rio, Sadornil, Tena,

Tomas and Valls :

• the structure of the ℓ-Sylow subgroup can be

computed in a polynomial time (O(log5(q)) for ℓ = 2);

• the structure of the ℓ-Sylow subgroup helps you

determine if you are going up, down or horizontally in

a lot of cases. The other cases are treated like

previously.


