Isogeny cycles and volcanoes

Mireille Fouquet

(Joint work with F. Morain)

Institut de Mathématiques de Jussieu

Université Paris 7 - Denis Diderot fouquet@math.jussieu.fr

Overview

A little bit of history

- Kohel's work on $\operatorname{End}(E)$
- Construction of the volcano
- Application to point counting
- Looking for an isogenous curve with a given endomorphism ring

Counting the number of points of an elliptic curve E defined over a finite field was long and difficult ...

Then Schoof's algorithm arrived !! But still we were stuck with using the division polynomials $f_{\ell}^{E}(X)$ of the curve.

Elkies and Atkin designed a way to use a factor of $f_{\ell}^{E}(X)$: finding this factor is equivalent to find an ℓ -isogenous curve of E.

Couveignes and Morain showed how to build an isogeny cycle to find factors of $f_{\ell^k}^E(X)$.

Questions

- Building the isogeny cycle is possible in certain cases. What about the other cases ?
- What is the relation between two curves in the same isogeny cycle ?

Goal of this talk : Describe the structure of ℓ -isogeny classes and design an efficient algorithm to compute this structure.

Means : Kohel's work on the computation of End(E).

Notations

Let E be an ordinary elliptic curve defined over \mathbb{F}_q where $q = p^d$.

The characteristic polynomial of the Frobenius endomorphism π is $X^2 - tX + q$ and its discriminant is

$$d_{\pi} = t^2 - 4q.$$

End(E) is an order in an imaginary quadratic field K. $f = [\mathcal{O}_K : \operatorname{End}(E)]$ conductor of $\operatorname{End}(E)$. That is if we denote d_K the discriminant of \mathcal{O}_K , the discriminant d_E of $\operatorname{End}(E)$ is $d_E = f^2 d_K$.

Modular equation

The modular equation $\Phi_{\ell}(X, Y)$ is a symmetric polynomial of degree $\ell + 1$ in each variable, with integral coefficients and with the following property:

Let E and E' two elliptic curves defined over \mathbb{F}_q . E and E' are ℓ -isogenous over $\mathbb{F}_q \Leftrightarrow \#E = \#E'$ and $\Phi_\ell(j(E), j(E')) = 0$.

Existence of formulas to compute the equation of a curve E' ℓ -isogenous to E from $\Phi_{\ell}(j(E'), j(E)) = 0$. (Vélu; Elkies, Atkin)

Number of ℓ -isogenous curves to E: **Theorem :**

#Roots of
$$\Phi_{\ell}(X, j(E)) = \begin{cases} 0 \Rightarrow (d_{\pi}/\ell) = -1 \\ 2 \Rightarrow (d_{\pi}/\ell) = +1 \\ 1 \text{ or } \ell + 1 \Rightarrow (d_{\pi}/\ell) = 0 \end{cases}$$

Computing $\operatorname{End}(E)$ (Kohel 1996)

His hypothesis: We suppose known #E as well as the factorization of $d_{\pi} = t^2 - 4q = g^2 d_K$.

Our approach: #E unknown.

$$\pi \in \operatorname{End}(E) \Rightarrow \mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$$

 $\implies f|g \text{ with } f \text{ conductor of } End(E) \text{ and } g \text{ conductor of } \mathbb{Z}[\pi].$

Goal : Locate exactly End(E) in this diagram.

Relation between two ℓ -isogenous curves and their endomorphism rings

Theorem (Kohel) Let $\phi : E_1 \to E_2$ be an isogeny of degree $\ell \neq p$ is a prime number. Then we are in one of those three cases :

\mathcal{O}_K	\mathcal{O}_K	\mathcal{O}_K
$\operatorname{End}(E_1)$	$\operatorname{End}(E_2)$	$ \operatorname{End}(E_1) \simeq \operatorname{End}(E_2)$
$\operatorname{End}(E_2)$	$\operatorname{End}(E_1)$	$\mathbb{Z}[\pi]$
$\mathbb{Z}[\pi]$	$\mathbb{Z}[\pi]$	
Descending case	Ascending case	Horizontal case

Classification of the ℓ -isogenies (Kohel)

• Curves such that $\ell \nmid [\mathcal{O}_K : \operatorname{End}(E)] :$ if $\ell \nmid [\operatorname{End}(E) : \mathbb{Z}[\pi]]$ then $1 + (d_K/\ell) \ \ell$ -isogenies \rightarrow , if $\ell \mid [\operatorname{End}(E) : \mathbb{Z}[\pi]]$

• Curves such that $\ell \mid [\mathcal{O}_K : \operatorname{End}(E)]$ and $\ell \mid [\operatorname{End}(E) : \mathbb{Z}[\pi]]$

• Curves such that $\ell \mid [\mathcal{O}_K : \operatorname{End}(E)]$ and $\ell \nmid [\operatorname{End}(E) : \mathbb{Z}[\pi]]$

Isogeny volcano

Height of the volcano = ℓ -adic valuation of g conductor of $\mathbb{Z}[\pi]$.

Isogeny cycle : case $(d_{\pi}/\ell) = +1$

- No descending isogenies
- All the ℓ -isogenous curves have the same endomorphim ring

Size of the cycle = ord(\mathfrak{l}) where \mathfrak{l} is a prime ideal of norm ℓ of \mathcal{O}_K

Number of ℓ -isogeny volcanoes

Theorem (F.): Let f be the conductor of End(E) and let r be its ℓ -adic valuation. Let f' be such that $f = \ell^r f'$. Then there are

$$h({f'}^2 d_K)/\mathrm{ord}(\mathfrak{l})$$

distinct ℓ -isogeny volcanoes where l is a prime ideal of norm ℓ of the order of conductor f'.

Moving in the volcano

Key point : Once we have started to go down, we keep on going down.

 \implies we can find a path of isogenous curves, starting from our curve and ending with a curve at the level of $\mathbb{Z}[\pi]$, of smallest length : a descending path.

Kohel's algorithm

Idea: Construction of 2 random sequences of ℓ -isogenous curves of length $\leq n$ where $\ell^n \parallel g$.

Two possible cases:

Our approach

Idea: Construction of 3 random sequences of ℓ -isogenous curves in parallel.

Complexity of the computation of a descending path : $O(m\mathcal{F}_3(\ell))$ where *m* is such that $\ell^m \parallel g/f$ and $\mathcal{F}_3(\ell) =$ time to compute three roots of $\Phi_\ell(X, j)$.

Going up in the volcano

- Compute a descending path for each one of the $\ell + 1$ ℓ -isogenous curves to E;
- Compare their sizes and the curves with longuest path are either up or horizontal.

Skeleton of the algorithm and complexity

Procedure COMPUTEPARTIALVOLCANO **Input :** An elliptic curve *E* and a prime number $\ell \neq p$. **Output :** A full descending path and the type of the crater.

- 1. Test if E is in the crater;
- 2. If yes, compute a descending path starting from E and determine the type of the crater;
- 3. If not, go up in the volcano starting from E until finding the crater and then determine the type of the crater.

Complexity : $O(n^2 \ell \mathcal{F}(\ell))$ operations to compute a partial volcano, where $n \leq \frac{\log(|d_K|)}{2\log(\ell)}$ and $\mathcal{F}(\ell)$ is the time to compute the set of roots of $\Phi_{\ell}(X, j)$.

Application to point counting

Case where $d_{\pi} \equiv 0 \mod \ell$

Incomplete solution given by the computation of isogeny cycles (Couveignes, Dewaghe, Morain).

Solution : Isogeny volcanoes

$$d_{\pi} = t^2 - 4q = g^2 d_K$$
: if $\ell^n \parallel g$ and $\ell^{\epsilon} \parallel d_K$
then $t^2 \equiv 4q \mod \ell^{2n+\epsilon}$.

 \implies Computing n = Computing the height of the volcano and Computing $\epsilon =$ Determining the type of the crater.

Finally compute $t \mod \ell^{2n+\epsilon}$.

Example

Implementation in Magma and in Maple

Case where
$$\left(\frac{d_K}{\ell}\right) = +1$$

Let p = 10009 and $\mathcal{E} = [7478, 1649], j_{\mathcal{E}} = 83$. For $\ell = 3$, we get:

where

curve	equation	curve	equation	curve	equation	curve	equation
$E_{0,1}$	[1336, 8702]	$E_{0,6}$	[352, 4401]	$E_{1,5}$	[3659, 6441]	$E_{2,5}$	[4732, 4541]
$E_{0,2}$	[56, 8167]	$E_{0,7}$	[616, 274]	$E_{2,1}$	[5412, 9972]	$E_{2,6}$	[6203, 3741]
$E_{0,3}$	[7418, 8055]	$E_{1,1}$	[9166, 9156]	$E_{2,2}$	[9899, 274]	$E_{2,7}$	[2728, 8215]
$E_{0,4}$	[7778, 9421]	$E_{1,2}$	[5138,6736]	$E_{2,3}$	[6796, 2230]		
$E_{0,5}$	[5051, 4157]	$E_{1,4}$	[6435,570]	$E_{2,4}$	[8899, 8303]		

 $\Rightarrow n = 2 \text{ and } \epsilon = 0, \text{ thus } t^2 \equiv 4p \equiv 34 \mod 3^4 \text{ and } t \equiv 22 \mod 3^4.$

Relation between two curves in a volcano

In this case :

٠

$$f' = \ell^3 f$$

Looking for an isogenous curve with a given endomorphism ring

We suppose known #E and the factorization of $d_{\pi} = g^2 d_K$.

Goal: Given f' such that f'|g, find an isogenous curve E' to $E = E_0$ with endomorphism ring of conductor f'.

- Compute $\operatorname{End}(E)$.
- Determine $f = \prod_i \ell_i^{\alpha_i}$ and $f' = \prod_i \ell_i^{\beta_i}$ where ℓ_i is a prime.
- For each prime ℓ_i :
 - if $\alpha_i > \beta_i$ then compute an ascending path from E_i and take the curve E_{i+1} $(\alpha_i - \beta_i)$ steps from E_i in the path.
 - if $\alpha_i < \beta_i$ then compute a descending path from E_i and take the curve E_{i+1} $(\beta_i - \alpha_i)$ steps from E_i .

• if
$$\alpha_i = \beta_i$$
 then $E_i = E_{i+1}$.

Improvements to compute the isogeny volcanoes for certain ℓ

Case $\ell = 2, 3$ by Miret, Moreno, Rio, Sadornil, Tena, Tomas and Valls :

- the structure of the ℓ -Sylow subgroup can be computed in a polynomial time $(O(\log^5(q)) \text{ for } \ell = 2);$
- the structure of the *l*-Sylow subgroup helps you determine if you are going up, down or horizontally in a lot of cases. The other cases are treated like previously.