Public-Key Cryptosystem Based on Isogenies

Alexander Rostovtsev
Anton Stolbunov

Saint-Petersburg State Polytechnical University
Quantum Computer

Public-key cryptosystems

Problem of calculation of group order and structure
 RSA Rabin

Discrete logarithm problem
 Diffie-Hellman DSA

Shor's algorithm

Quantum computer

Breaking with polynomial complexity

2 of 18
Basic conceptions

- Non-supersingular elliptic curves over a finite field F_p: $Y^2 = X^3 + aX + b; \quad j \neq 0, 1728$
- $\pi^2 - t\pi + p = 0$ - a Frobenius equation
- $D_{\pi} = t^2 - 4p$ - a Frobenius discriminant
- Isogenous elliptic curves
- Isogeny degree
- Isogeny kernel
- Modular equation: $\Phi_l (S, T) = 0$
Branchless Cycles

- Elkies criterion: for an elliptic curve given, if
 \[
 \left(\frac{D \pi}{l} \right) = 1,
 \]
 then there are two \(l \)-isogenous elliptic curves over \(\mathbb{F}_p \).
- Isogenies of an Elkies degree form branchless cycles:

![Graphical representation of branchless cycles](image-url)
Direction Determination

- Frobenius equation for points of order \(l \):
 \[\pi^2 - t\pi + \rho = 0 \pmod{l} \]

 \[\left(\frac{t^2 - 4\rho}{l} \right) = 1 \quad \Rightarrow \quad \text{there are 2 roots: } \pi_1, \pi_2 \text{ over } F_l \]
 – the Frobenius eigenvalues

- Action of the Frobenius endomorphism on an isogeny kernel is equivalent to multiplication of points by an eigenvalue [Elkies 1998]:
 \[(X^p, Y^p) = \pi \cdot (X, Y) \text{ in } F_p[X, Y] / (Y^2 - X^3 - aX - b, H(X)) \]
Directed Step

Input: field \(F_p \), curve \(E \), degree \(l \), direction \(\pi \)

Algorithm:

- Find a root \(j_1 \) of \(\Phi_1(j, T) = 0 \) over \(F_p \)
- Compute an isogenous elliptic curve \(E_1 \)
- Compute the polynomial \(H_1(X) \) which determines the isogeny kernel [Müller 1995]
- Check whether \((X^p, Y^p) = \pi \cdot (X, Y) \) in \(F_p [X, Y] / (Y^2 - X^3 - aX - b, H_1(X)) \)
 - If not, then compute \(E_2 \) using the root \(j_2 \)
Cycle of Prime Length

- U - a set of isogenous elliptic curves over F_p
- $\#U = H(D_{\pi})$ - a class number [Schoof 1987]
- Practical observation:
 $\#U$ is prime \Rightarrow single isogeny cycle
Isogeny Star

Example over \mathbb{F}_{83}:

Isogenies of degree 3

Star

Isogenies of degree 5

A graph of prime number of elliptic curves, connected by isogenies of Elkies degrees
Route on Star

- For given
 - F_p - a finite field
 - E - an elliptic curve in a star
 - $\{ l_i \}$ - a set of isogeny degrees
 - $\{ \pi_i \}$ - a set of positive directions

- A route is a set $R=\{ r_i \}$, where r_i is a number of steps by l_i-isogeny in the direction π_i

- Routes are commutative: $R_A R_B = R_B R_A$
Key Agreement

\[A \xrightarrow{R_A(E_0)} B \]
\[A \xleftarrow{R_B(E_0)} B \]

\[R_A R_B(E_0) = R_B R_A(E_0) \]
Key Agreement - Algorithm

Common parameters:
- F_p – a finite field
- E_0 – an initial elliptic curve
- $\{ l_i \}$ – a set of Elkies isogeny degrees
- $\{ \pi_i \}$ - a set of Frobenius eigenvalues

Algorithm:
- A randomly chooses a route R_A and sends $E_A = R_A(E_0)$
- B randomly chooses a route R_B and sends $E_B = R_B(E_0)$
- A computes $E_K = R_A(E_B)$, B computes $E_K = R_B(E_A)$
- Resulting key is the j-invariant of E_K
Public-Key Encryption

\[E_{\text{init}} - \text{initial elliptic curve} \quad \rightarrow \quad R_{\text{priv}} - \text{computation of public key} \quad \rightarrow \quad E_{\text{pub}} - \text{public-key elliptic curve} \]

\[R_{\text{enc}} - \text{encryption} \quad \rightarrow \quad E_{\text{add}} - \text{additional elliptic curve} \quad \rightarrow \quad R_{\text{priv}} - \text{decryption} \quad \rightarrow \quad E_{\text{enc}} - \text{encryption elliptic curve} \]

\[\quad \rightarrow \quad R_{\text{priv}} - \text{private-key route} \quad \rightarrow \quad R_{\text{enc}} - \text{encryption route} \]
Security

- Problem of searching for a route between elliptic curves

- Solving methods on an \#U-curves star:
 - Brute-force: $O(\#U)$ isogenous steps
 - Meet-in-the-middle: $O(\sqrt{\#U})$ isogenous steps
 - Others - ?
Quantum Computer Resistance

- An algorithm of a route search requires a subroutine, which calculates a chain of isogeny steps

- Calculation of an isogeny chain requires consecutive solving of modular equation $\Phi_j(j, T) = 0$, where j is being changed with every step

- Leads to exponential time of the algorithm
Complexity and Sizes

- Key agreement complexity:
 - $O(\log \#U)$ isogeny steps, or
 - $O(\log^4 p)$ field operations

- Consuming operations:
 - $X^p \mod H(X)$
 - solving of $\Phi_i(j, T) = 0$

- For 2^{80} secrecy:
 - field characteristic: $p \sim 2^{320}$
 - star size $\sim 2^{160}$
 - number of isogeny degrees ~ 40
 - steps per degree: 0 ... ±8
Parameters Selection

- Obtaining a large prime \#U is very complicated
- Hypothesis: \#U must have a large prime divisor
- Choose $D_{\pi} = D \cdot f^2$, where f is a large prime conductor and $h(D)$ is small. Then [Cohen, 1996]

\[
h_{D_{\pi}} = h_D \cdot \left(f - \left(\frac{D}{f} \right) \right) = h_D \cdot (f \pm 1)
\]

Choose f such that $\frac{f \pm 1}{2}$ is prime
Test Implementation

- Mathematica 5.0
- $F_{2038074743}$
- Star of 55103 elliptic curves (prime), chosen by direct computation of a class number
- 6 isogeny degrees: $\{3, 5, 7, 11, 13, 17\}$
- 0...9 steps per each isogeny degree
A. Rostovtsev and A. Stolbunov
Public-Key Cryptosystem Based on Isogenies
http://eprint.iacr.org/2006/145