A remark on an article of S. Müller

François Morain
INRIA Saclay-Île-de-France
\& Laboratoire d'Informatique (CNRS/UMR 7161)
École polytechnique
91128 Palaiseau
France
morain@lix.polytechnique.fr
Version 2 - October 22, 2009

The following proposition proves Conjecture 1 of [2].
Proposition 1 Let $E: y^{2}=F(x)=x^{3}+a x+b$ be an elliptic curve defined over \mathbb{F}_{p} having three rational 2 -torsion points. If $p \equiv 3 \bmod 4$, there are no rational 4 -torsion points on E.

Remember Swan's theorem [3]. Let $\left(\frac{a}{p}\right)$ denote the Legendre's symbol.
Theorem 2 Let $f(X)$ be a squarefree polynomial of degree d and n its number of irreducible factors modulo p. Then

$$
\left(\frac{\operatorname{Disc}(f)}{p}\right)=(-1)^{d-n}
$$

Proof: with the notations of the paper, let the discriminant of E be $\Delta=-16\left(4 a^{3}+27 b^{2}\right)=16 D$ where $D=\operatorname{Disc}\left(X^{3}+a X+b\right)$. By hypothesis and Swan's theorem, we get that $(D / p)=+1$. Inspired by [1, $\S 2.2 .2$], we write $F(X)=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)$ and get

$$
\Delta=2^{4}\left(e_{1}-e_{2}\right)^{2}\left(e_{1}-e_{3}\right)^{2}\left(e_{2}-e_{3}\right)^{2}=16 D
$$

The 4 -th division polynomial f_{4} has three rational quadratic factors

$$
\begin{aligned}
f_{4}(X)= & \left(X^{2}-2 e_{1} X+e_{1}\left(e_{2}+e_{3}\right)-e_{2} e_{3}\right) \\
& \times\left(X^{2}-2 e_{2} X+e_{2}\left(e_{1}+e_{3}\right)-e_{1} e_{3}\right) \\
& \times\left(X^{2}-2 e_{3} X+e_{3}\left(e_{1}+e_{2}\right)-e_{1} e_{2}\right)
\end{aligned}
$$

of respective discriminants $\Delta_{1}=4\left(e_{1}-e_{3}\right)\left(e_{1}-e_{2}\right), \Delta_{2}=4\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right), \Delta_{3}=4\left(e_{3}-e_{1}\right)\left(e_{3}-e_{2}\right)$. Since

$$
\Delta_{1} \Delta_{2} \Delta_{3}=-64 D
$$

we deduce that
Fact 1: either one of the Δ_{i} 's is a non-square or all of them are non-squares.
On the other hand, the discriminant of f_{4} is $-2^{28} D^{5}$ so that by Swan's theorem again, we get

$$
\left(\operatorname{Disc}\left(f_{4}\right) / p\right)=(-D / p)=-1=(-1)^{6-\omega}
$$

and f_{4} must have an odd number of irreducible factors, so that
Fact 2: the splitting type of f_{4} can be $(6),(4)(1)^{2},(3)(2)(1),(2)^{3},(2)(1)^{4}$.
The only possible way in which we can have both Fact 1 and Fact 2 valid at the same time is that the splitting of f_{4} is $(2)^{3}$, so that f_{4} has no rational roots.

References

[1] F. Morain. Edwards curves and CM curves. http://hal.inria.fr/inria-00375427/fr, April 2009.
[2] S. Müller. On the existence and non-existence of elliptic pseudoprimes. Math. Comp., 2009. electronically published October 16, 2009.
[3] R. G. Swan. Factorization of polynomials over finite fields. Pacific J. Math., 12:1099-1106, 1962.

