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There exist easy numbers for the N�1 test,namely those N for which the factorization ofN � 1 is trivial, such as Fermat numbers (N =22k + 1) or special numbers: N = 1 + k!, N =1 + k � an, etc. (see [18] for all this).The purpose of this paper is to exhibit somenumbers that are easy to test with ECPP. It ap-pears that many numbers of the form bn+1 areof this kind. Section 2 recalls a part of the the-ory of ECPP. In Section 3, we describe very easynumbers { numbers analogous to Fermat num-bers { and easy numbers { numbers that can bedealt with more quickly than average numbersof the same size. Numerical computations aredescribed that exemplify our results.2 A brief presentation ofECPP2.1 Fermat's testLet us begin with the converse of Fermat's littleTheorem.Theorem 2.1 If there exists an a prime to Nsuch that aN�1 � 1 mod Nbut a(N�1)=q 6� 1 mod Nfor every prime divisor q of N � 1, then N isprime.



If we cannot factor N � 1 completely, it canhappen that the cofactor of N�1, call it N1, is aprobable prime. Then, we can try to factorN1�1 and so on. This idea forms the DOWNRUNprocess of [19]: Build a decreasing sequence ofprobable primes N0 = N > N1 > � � � > Nksuch that the primality of Ni+1 implies that ofNi (see [11, pp. 376{377]). As an example,consider a proof that N = 105+3 is prime. We�ndN0 = 100003; N0 � 1 = 2� 3� 7 �N1;N1 = 2381; N1 � 1 = 22 � 5� 7� 17if we assume that we can decide the primalityof numbers less than 20 very quickly. Then, wecan take a = 3 for proving that N1 is primeand a = 2 for N0, now that we know that N1 isprime.More sensitive tests are described in [5]. Adi�erent type of primality proving algorithm isdescribed in [1, 9, 8].2.2 Elliptic curvesThe material of this section is taken from [3]. Inorder to overcome the di�culty of having justone number to factor, we use elliptic curves.Informally, an elliptic curve over a �nite �eldZ=pZ is the set (of classes) of points in the pro-jective plane of Z=pZE(Z=pZ) = f(x : y : z) 2 P2(Z=pZ);y2z � x3 + axz2 + bz3 mod pg:We can de�ne a group law on this set, known asthe tangent{and{chord method, ordinarily de-noted by +. If m is the cardinality of E(Z=pZ),then Hasse's theorem tells us that jm�(p+1)j �2pp. More precisely, there exists an algebraicinteger � in a quadratic �eld K = Q(p�D),D a positive integer, such that p = NK(�) andm = NK(� � 1), where NK(�) is the norm ofthe algebraic number � in K.From [10], we have a primality theoremanalogous to Theorem 2.1:

Theorem 2.2 Let N be an integer prime to 6,E an elliptic curve over Z=NZ, together with apoint P on E and m and s two integers withs j m. For each prime divisor q of s, we put(m=q)P = (xq : yq : zq). We assume that mP =OE and gcd(zq; N) = 1 for all q. Then, if p isa prime divisor of N , one has #E(Z=pZ) �0 mod s.We have also:Corollary 2.1 With the same conditions, ifs > ( 4pN + 1)2, then N is prime.It should be noted that in order for the preced-ing condition on s to be ful�lled, m must notbe a perfect square. It was shown in [3] thatthis can only happen if D = 3 (resp. D = 4)for N = x2 + x+ 1 (resp. N = x2 + 1).We can now give a brief description of thealgorithm.function ECPP(N)1. �nd a quadratic �eld K = Q(p�D) inwhich N is the norm of an algebraic in-teger � and for which m = NK(� � 1)is completely factored or has a probableprime cofactor M ;2. put s = m and use Theorem 2.2 to provethe primality of N ;3. recursively prove the primality of M .This algorithm combines a Fermat-like theoremand the DOWNRUN approach. For the actualimplementation of this test, we refer to the ar-ticle [3] as well as [13]. We insist on the follow-ing points. That N is a norm in an imaginaryquadratic �eld is equivalent to the fact that4N = A2+DB2 = (A+Bp�D)(A�Bp�D)with A and B two rational integers. In turn,this implies that4m = (A� 2)2 +DB2:



A number N will be easy to test if the largestprime factor of m is easy to �nd, for instance ifit is small. For average numbers, the cofactorwe get is smaller than N , say the ratio m=M isabout 1010 at best. The following section willdeal with extraordinary numbers with respectto this problem.Throughout the paper, we keep the preced-ing notations.3 Easy numbers3.1 Building easy numbersIt follows from the preceding section that thereexist numbers for which ECPP is very easy.This is indeed the case when N = NK(�) andwhere NK(�� 1) is easy to factor. An exampleof such numbers is � = �0�k1 + 1 where �i isan algebraic integer of small norm of K and ka positive integer. These numbers, called Ellip-tic Mersenne primes were introduced in [7] andsome large ones were given in [15] (see also [4]).Let us assume for simplicity that D �0 mod 4. Then, starting from1 +D=4 = Uwe can multiply both sides by k2 and havek2 + k2D=4 = Uk2 = m:To m, we can now associate N(k) = (k + 1)2 +k2D=4 and sometimes we get a prime. If k iseasy to factor, we have built a prime N forwhich the ratio N=N1 is quite large. For ex-ample, taking D = 8 and k = 10100 + 15034 =2� 6397 � 2967583 � k1 yields a correspondingnumber N(k) which is a 201-digit prime andwe can prove that N is prime by proving thatN1 = k1 is prime. The ratio N=N1 is about10112.3.2 Finding easy numbersAnother kind of relatively easy number was dis-covered during the actual implementation of

ECPP. Suppose we are given a probable primeN that can be written asN = (c2 +Da2)=(c2 +Db2)= NK((c+ ap�D)=(c + bp�D))= NK(�)whereD is a suitable squarefree positive integerand 2a, 2b and 2c are integer. Then a potentialnumber of points on an elliptic curve modulo Nis m = NK(� � 1) = D(a� b)2c2 +Db2 :We must select the signs of a and b such thatthis is an integer in Z. If we have luck, thena�b is easy to factor and we can get a probableprime cofactor N1 ofm with size about half thatof N .3.2.1 ExamplesMany numbers taken from the Cunninghamproject [6] are indeed easy numbers. The �rstand third examples are taken from a list of prob-able primes that S. S. Wagsta� sent to the au-thor recently.First, let us consider the 208-digit probableprime N = (12193 + 1)=13and write it asN = (12 + 3(2X)2)=(12 + 3 � 22)= NK(�)=NK(�) = NK(�=�) = NK(�)with X = 1296, � = 1 + 2Xp�3 and � = 1 +2p�3. A potential number of points ism = NK(� � 1) = 313(2X � 2)2:With this, X � 1 = 13X0 andm = 3� 13 � (2X0)2:Therefore, we are done if X � 1 = 1296 � 1 iseasy to factor, which it is:z96 � 1 = Ydj96�d(z);



d �d(z) factors of �d(12)1 z � 1 112 z + 1 133 z2 + z + 1 1574 z2 + 1 5� 296 z2 � z + 1 7� 198 z4 + 1 89 � 23312 z4 � z2 + 1 2059316 z8 + 1 17 � 97� 26075324 z8 � z4 + 1 193 � 222777732 z16 + 1 1200913648289 � 15395348 z16 � z8 + 1 592734049 � 40609 � 768196 z32 � z16 + 1 7489 � 3122881 � 1461573322938242802306049where �d(z) stands for the d-th cyclo-tomic polynomial (�d(z) = Q(a;d)=1(z �exp(2i�a=d))). We list in the following tablethe algebraic factors of 1296 � 1. (It should benoted that one can �nd the factors of such anumber quite rapidly without resorting to cy-clotomic factorization by using Pollard's p � 1method [17].) In the DOWNRUN process, wemay take N1 = 1461573322938242802306049,the largest probable prime factor of 1296 � 1.The ratio m=N1 is approximatively 10183.Another very interesting example is the fol-lowing. Take N = 23539 + 13which was �rst proved prime by Morain [14].We have N = 12 + 2X212 + 2(1)2with X = 21769. Write this asN = NK(�=�) = NK((1+Xp�2)=(1�p�2)):With � = �=�, one getsm = NK(� � 1) = 23(X + 1)2:And hopefully, we have thatX1769+1 = �((�X)1769�1) = � Ydj1769�d(�X)

yielding21769 + 1 = 3� 59 � 3033169 � p18 � C506(with C506 = �1769(�2) a strong pseudoprimeto base 2) so that the primality of N can bededuced from the factorization of a 506-digitnumber instead of a 1065 number as in [14].A less trivial example is given by the cofac-tor of 10327 + 1. We �rst writeX327+1 = ��1(�X)�3(�X)�109(�X)�327(�X):The number we are interested in is N =�327(�10). We rewrite this as�3(�10)N = 91N = 1 + 103271 + 10109 = 1 � Y + Y 2where Y = 10109. Now comes the trick: Multi-ply this relation by 4 in order to get4 � 91�N = 4 � 4Y + 4Y 2 = 3 + (2Y � 1)2:We multiply each side by 3 and �nally getN = 32 + 3(2Y � 1)212 � 91 = 32 + 3(2Y � 1)232 + 3 � 192 :Choosing � = (3+(2Y �1)p�3)=(3+19p�3),this implies that a potential number of pointsis m = NK(� � 1)= (2Y � 20)2=364 = (Y � 10)2=91:



3.2.2 CommentsWe can hope that this situation occurs when-ever we try to prove the primality of (a fac-tor of) a number of the form bn + 1 with b 2f2; 3; 5; 6; 7; 10; 11; 12g and particularly num-bers of the form (b2k+1 + 1)=(b + 1). If b 2f2; 3; 7; 11; 12g, the �eld Q(p�b) has uniquefactorization and the preceding tricks mightwork. For other values, we can have some luckas demonstrated by our last numerical example.Note also that if N = (b2k+1 + 1)=(b + 1),one has N � 1 = b(bk � 1)(bk + 1)b+ 1and a potential m is:m = (bk � 1)2bb+ 1 :ECPP does not give a faster primality proofthan the use of one of the re�ned version ofthe N � 1 test, which needs the factorisation ofN � 1 up to pN (see [5]). Similar remarks canbe made concerning the N + 1 test.These numbers illustrate the need for a ro-bust factorization routine for ECPP. As a mat-ter of fact, the program must take into accountthe miraculous phenomena described above.4 ConclusionWe have seen that there are potentially manyeasy numbers for ECPP. In particular, manyCunningham numbers are easy. This strength-ens the idea that these numbers are not ran-dom numbers with respect to primality proving.Primality proving algorithms should be run onmore random numbers, such as partition num-bers [12] or numbers built up from the decimalrepresentation of � (see [2]).Acknowledgments. We wish to thank S. S.Wagsta� for providing us with the list of proba-ble primes cited above; V. M�enissier, P. Dumasand M. Golin for reading earlier versions of themanuscript.
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