
Isogeny volanoes and the SEA algorithmM. Fouquet and F. Morain?Laboratoire d'Informatique (CNRS / UMR 7650), �Eole Polytehnique, F-91128Palaiseau Cedex, FraneAbstrat. Reently, Kohel gave algorithms to ompute the ondutorof the endomorphism ring of an ordinary ellipti urve, given the ar-dinality of the urve. Using his work, we give a omplete desription ofthe struture of urves related via rational `-degree isogenies, a struturewe all a volano. We explain how we an travel through this strutureusing modular polynomials. The omputation of the struture is possiblewithout knowing the ardinality of the urve, and that as a result, wededue information on the ardinality.1 IntrodutionLet E be an ellipti urve over a �nite �eld Fq , where q = pr with p prime. ByHasse's theorem, the Frobenius � of the urve is an endomorphism of degree 2with harateristi polynomial �(T ) = T 2 � tT + q where jtj � 2pq. It is alsoknown sine Deuring [6℄ that the endomorphism ring of E is either an order in animaginary quadrati �eld (the ordinary ase) or an order in a quaternion algebra(the supersingular ase). Suppose that E is ordinary and let d� = t2� 4q be thedisriminant of �. We an write d� = g2dK where dK is the disriminant of theassoiated imaginary quadrati �eld K. To eah f j g orresponds an order ofK and to eah suh order orresponds an isogeny lass of ellipti urves havingthis partiular order as endomorphism ring.Kohel has shown in his thesis [10℄ how all these urves are related via isogeniesof degree dividing g. Studying this orrespondane more losely, we introduethe omplete struture of isogenies that we all a volano. Kohel's approahstarts from g and �nds the ondutor f of End(E), using modular polynomials.We revert this algorithm, using modular polynomials to �nd g and f . As aonsequene, we an ome up with an algorithm for omputing an ellipti urveof any presribed ondutor k j g and in partiular the maximal endomorphismring (k = 1), algorithm that is needed in [9℄.After introduing some basi notations, we will reall the relevant fats aboutKohel's work that desribe the struture that grows \under" the isogeny ylesintrodued by Couveignes and Morain in [4℄, forming a volano. Then we re-all the relevant theory of modular polynomials and we are ready to \invert"? The seond author is on the leave from the Frenh Department of Defense, D�el�egationG�en�erale pour l'Armement. This researh was partially supported by the FrenhMinistry of Researh { ACI Cryptologie.



Kohel's theorem to see the situation from the modular side, whih will lead toour algorithm. We then give some appliations. The �rst one is related to theomputation of t. For a prime ` j g, our algorithm gives the `-adi valuation oft and this information an be used in Shoof's algorithm. Also, we relate thenew struture to the trees that were invented in [3℄ and solve a problem raisedby Lerier in his thesis. We an also use this struture in the algorithm given in[2℄ to ompute the equation lass of an order O. This method is based on theomputation of all the j-invariants of urves satisfying ertain onditions. Theproblem is that they never distinguish the urves having an endomorphism ringequal to O from the others, problem that an be solved using the struture ofthe volanoes. Numerial examples are given to illustrate our work.Although the general theory works for any harateristi, we onentrate onexamples where the harateristi is not 2 or 3. The modi�ations to be madeonern formulas for omputing isogenous urves, but we do not insist on thesein this artile.2 Extending Kohel's work2.1 Prerequisites and notationsIf an ellipti urve is not supersingular, then it is known that its ring of endomor-phisms is an order in an imaginary quadrati �eld. Isogenous urves share thesame underlying �eld. In this artile, we will onsider a set of isogenous urvesand the relations between them, so that we an assume that we are dealingwith a �xed imaginary quadrati �eld K of disriminant dK and maximal orderOK , whih an be written as Z[!K℄ with !K = dK+pdK2 . As is well known [1℄,an order O in K is ompletely haraterized by its ondutor f or equivalentlyits disriminant. As a matter of fat, O has �nite index in OK equal to f andO = Z+ fOK. The disriminant of O is simply D = f2dK . Remember also thatif O1 and O2 are two orders in K of respetive disriminants D1 and D2, thenO1 � O2 i� there exists a positive integer k suh that D1 = k2D2.The main fous of the artile is the relationship between three orders inK related to a given ellipti urve E: OK , the order Z[�℄ generated by theFrobenius map � and the endomorphism ring End(E) of E. These orders aresuh that Z[�℄� End(E) � OK or equivalently, [OK : O℄ = f , [O : Z[�℄℄ = g et[OK : Z[�℄℄ = g=f .In his thesis [10℄, Kohel omputes End(E) starting from the known valueof d� = t2 � 4q = g2dK , where t was omputed using a polynomial algorithmfor point ounting [11, 13, 12, 8℄. In our ase, we dedue from Kohel's work astruture that desribes the relations between isogenous urves and their endo-morphism rings.Let us �x the notations that will be used in the rest of the paper. Let E=Fqbe an ordinary ellipti urve and j its j-invariant. Let O be the endomorphismring of E, D its disriminant and f its ondutor. Let ` be a prime di�erentfrom p.



2.2 Kohel's theoremThe following proposition justi�es the use of `-isogenies of an ellipti urve todetermine its endomorphism ring O (and overall its ondutor f).Proposition 21 [10, Proposition 21℄ Let � : E ! E0 be an isogeny of primedegree `. Then O ontains O0 or O0 ontains O in K and the index of one inthe other divides `.This is equivalent to saying [O : O0℄ = 1, ` or 1̀ . We will use the followinglanguage when speaking about `-isogenies. A \desending" `-isogeny, denotedby #, is an `-isogeny � : E1 ! E2 suh that [O1 : O2℄ = ` whilst an \asending"`-isogeny, denoted by ", is an `-isogeny � : E1 ! E2 suh that [O2 : O1℄ = `.In the ase where the endomorphim ring is preserved we say that we have an\horizontal" `-isogeny, denoted by !.Theorem 21 [10, Proposition 23℄ Table 1 lassi�es the possibilities for the ra-tional `-isogenies of E de�ned over Fq .Case Number and type Total number` - [OK : O℄ ` - [O : Z[�℄℄ 1 + � D̀ � ! 1 + � D̀ �` j [O : Z[�℄℄ (1 + � D̀ � !`� � D̀ � # `+ 1` j [OK : O℄ ` - [O : Z[�℄℄ 1 " 1` j [O : Z[�℄℄ (1 "` # `+ 1Table 1. Number and type of the `-isogenies depending on [OK : O℄ and[O : Z[�℄℄.2.3 Some lemmas about the lassi�ation of `-isogenies.Table 1 gives the keys to understand how the endomorphism rings of isogenousurves are related. We �rst dedue from these results the relation between an`-isogeny � and its dual denoted by �̂.Lemma 21 Let � : E ! E0 be an `-isogeny and �̂ its dual. Then � is anasending `-isogeny i� �̂ is a desending `-isogeny and � is an horizontal `-isogeny i� �̂ is an horizontal `-isogeny.From these results, we an dedue some properties of the endomorphismrings O and O0 suh that � : E ! E0 is an `-isogeny. With respet to `, wedistinguish two ases for the endomorphism rings: the ase Z[�℄ maximal at `,i.e. ` - [OK : Z[�℄℄ or not.The following lemma ensures that if Z[�℄ maximal at `, we an only �ndhorizontal `-isogenies.



Lemma 22 Let E be an ellipti urve suh that Z[�℄ is maximal at `. If thereexists an `-isogeny of E, then this `-isogeny is an horizontal `-isogeny.We suppose now that Z[�℄ is non-maximal at `.Lemma 23 [7℄ If ` j [OK : Z[�℄℄ and ` - [O : Z[�℄℄, i.e. if `n k g with n � 1then `n k f , then the only `-isogeny � : E ! E0 is suh that ` j [O0 : Z[�℄℄, i.e.`n�1 k f 0.Lemma 24 [7℄ If � : E1 ! E2 is a desending `-isogeny and ` j [O2 : Z[�℄℄,then for every � : E2 ! E3 suh that O3 6' O1, � is a desending `-isogeny.Moreover, there are ` suh `-isogenies.In other words, if � 6= �̂, then � is a desending `-isogeny. Sine E2 has` + 1 `-isogenies, �̂ is an asending `-isogeny and the ` others are desending`-isogenies.Let us now desribe a very partiular ase.Lemma 25 [7℄ If there exist two `-isogenies di�erent up to isomorphism froma urve E to a urve E0, then they are both horizontal `-isogenies. We an alsoonlude that ` splits in O.This peuliar ase gives us some informations about the imaginary quadrati�eld the endomorphism ring is in.Theorem 22 [13℄ Suppose there are two `-isogenies � and � distint up toisomorphism from E to the same urve E0. Then the disriminant D of theendomorphism ring of E is suh that jDj � 4`2.This set of lemmas gives us an idea of the graph of `-isogenies of the elliptiurves having the same Frobenius map. It has a struture of a volano trunatedat the level of Z[�℄. The rater omes from the horizontal `-isogenies (if theyexist) that we an �nd when O is maximal at ` using Table 1 and the rest of thevolani struture omes from the fat that by Lemmas 23 and 24, we see that if` j [OK : O℄ then E does not have any horizontal `-isogeny. Figure 1 summarizesthese ideas.The level of an ellipti urve in the volano is the `-adi valuation of itsondutor. The height of the volano is equal to the level of a urve with endo-morphism ring isomorphi to Z[�℄ loally at `.
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3 Modular equations and isogeniesWe remind the reader that there exists a bivariate polynomial �`(X;Y ) withinteger oeÆients with the following property. Two ellipti urves E and E0de�ned over Fq , are related via a yli isogeny � of degree ` if and only if#E = #E0 and �`(j(E); j(E0)) = 0.To �nd the urves related to E via an `-isogeny, we must solve the equation�`(X; j(E)) = 0, whih gives us their potential invariants. Suppose j� is one ofthese roots. The urve E� we are looking for is known up to twist and we must�nd an equation for it. Formulas for omputing an equation of E� are given in[13℄. These formulas do not work in the ase where j or j� are in f0; 1728g or��`=�X(j; j�) = ��`=�Y (j; j�) = 0. We will all suh a urve a speial urve (orhaving a speial endomorphism ring) and have a proedure deteting this, whihis ostless, sine testing whether ��`=�X(j; j�) = ��`=�Y (j; j�) = 0 osts onepolynomial gd.For later use, we will suppose that we have a proedure IsogenousCurves(E,`) that gives us the list of urves that are `-isogenous to a given urve E whenE is not speial.4 Our algorithmLet ` be a prime number di�erent from p and N`(E) denote the number of rootsof �`(X; j(E)) in Fq . Depending on N`(E), we an determine some propertiesof End(E) using Table 1. We summarize them in Table 2.N`(E) Type of the `-isogenies � D̀ � �d�̀ �0 none ` - [OK : O℄ and ` - [O : Z[�℄℄ �1 �12 ! ` - [OK : O℄ and ` - [O : Z[�℄℄ +1 +1ase 1:! ` - [O : Z[�℄℄ and ` - [OK : O℄ 0 01 ase 2: " ` - [O : Z[�℄℄ and ` j [OK : O℄ 0 0ase 1':(1 + � D̀ � !`� � D̀ � # ` j [O : Z[�℄℄ and ` - [OK : O℄ nothing known 0`+ 1 ase 2':(1 "` # ` j [O : Z[�℄℄ and ` j [OK : O℄ 0 0Table 2. Properties of O depending on the number and type of the `-isogeniesof E.Kohel [10℄ uses this approah as one of his methods to ompute the endo-morphism ring of the ellipti urve E. We use it to ompute isogeny volanoes.4.1 Goal of the algorithmLet E be a given ordinary ellipti urve de�ned over a �nite �eld Fq and j(E)its j-invariant. Let ` be a prime di�erent from p. Starting from E , we want to



onstrut a partial isogeny volano, that is we want to determine the type of therater of the isogeny volano and determine a part of the volano ontaining E ,plus a set of isogenous urves to E ontaining a urve with endomorphism ringisomorphi to Z[�℄ loally at ` and one with endomorphism ring isomorphi toOK loally at `.We �rst give the skeleton of the algorithm and then detail every step.4.2 Skeleton of the algorithmThe algorithm is divided into two parts. First, we determine whether Z[�℄ ismaximal at ` or not. If not, then we look for a urve Es in the rater of theisogeny volano (Figure 1), determine the type of the rater by determining� = �dK̀ � and then �nd the height of the volano using what we all a fulldesending path. Sine speial urves need a areful treatment, we signal thesewith an EXIT statement, so as to ligthen the exposition.Proedure ComputePartialVolanoInput: An ellipti urve E and a prime `, ` 6= p.Output: � = �dK̀ � and a list F of full desending paths of the volano.1. IF E is speial THEN EXIT;2. F  IsogenousCurves(E ; `);3. IF #F = 0 THEN f� �1; F  fEg; GOTO 5gELIF #F = 2 THEN f� +1; F  fEg; GOTO 5gELIF #F = 1 THEN{ E0  F [1℄;{ IF E0 is speial THEN EXIT;ELIF N`(E0) = 1 THEN f� 0; F  fEg; GOTO 5gELSE GOTO 4;ELIF #F = `+ 1 THEN GOTO 4;4. (Es; P; �; n;F) FindFullDesendingPaths(E ; `).5. RETURN (�;F).4.3 Speial urves.If our original urve E has its j-invariant equal to 0 or 1728, then we annotbuild any part of the volano. We do not know how to distinguish the urvesthat are isogenous to E over Fq from the ones whih are only isogenous to E overthe algebrai losure of Fq . If we enounter suh a urve during the onstrutionof the volano, we know that this urve is in the rater of the volano and wean dedue from this a full desending path and �. But we will not be able toonstrut the whole volano.If at any moment in the onstrution, we enounter a urve E having twodistint `-isogenies to a urve E0, then we dedue that E is in the rater and thetype of the rater. We will not be able to onstrut the entire volano sine wedo not have the equation of E0 but we an still get the omplete subtree belowE and therefore a full desending path.



4.4 The ase N`(E) 6= ` + 1.� N`(E) = 0: In this ase, if we refer to Table 2, we see that there is no `-isogenyfrom E to another ellipti urve and that ` is inert in Z[�℄. We an also deduethat OK` ' End(E)` ' Z[�℄`.� N`(E) = 2: Referring to Table 2, we see that ` splits in Z[�℄. This ase has al-ready been treated by Couveignes, Dewaghe and Morain ([4℄, [3℄). Using Lemma22, we know that for every ellipti urve E0 suh that � : E ! E0 with � `-isogeny then O0 ' End(E). We an also dedue that OK` ' End(E)` ' Z[�℄`.� N`(E) = 1: In this ase, ` rami�es in Z[�℄. In Table 2, we see that this is adual ase. By dual, we mean that we may be in a ase where Z[�℄ is maximal at` or not. We need to distinguish those two ases. In order to do so, we will needits isogenous urve E0 and N`(E0).Case 1: N`(E0) = 1. Suppose that Z[�℄ is not maximal at `. Referring toTable 2, we know that ` - [End(E) : Z[�℄℄, ` j [OK : O℄ and the `-isogeny� : E ! E0 is an asending `-isogeny. Therefore applying Lemma 23, we have` j [O0 : Z[�℄℄. Thus, referring to Table 1, N`(E0) = `+1, whih ontradits whatwe �rst found for N`(E0). Therefore, Z[�℄ is maximal at `.Case 2: N`(E0) = `+1. Suppose that Z[�℄ is maximal at `, i.e. ` - [End(E) :Z[�℄℄ and ` - [OK : End(E)℄. Referring to Table 2, we know that the `-isogeny� : E ! E0 is an horizontal `-isogeny and (DE=`) = 0. Therefore O0 has thesame ondutor as End(E), i.e. ` - [O0 : Z[�℄℄, ` - [OK : O0℄ and (D0=`) = 0.Referring to Table 1, we see that N`(E0) = 1 + �D0` � = 1 whih ontradits theresult we �rst found for N`(E0). Therefore, Z[�℄ is not maximal at `.In this ase, we an already make some onlusion about O: OK` 6' End(E)`and End(E)` ' Z[�℄`, i.e. there exists an n > 1 suh that `n k g and `n k f .4.5 The general ase N`(E) = ` + 1.By looking at the skeleton of the algorithm in Setion 4.2, we see that this aseis the most interesting one.From now on, we assume that E is of level r, r 2 N, and N`(E) equals `+1.In fat, we have the equality N`(Ei) = ` + 1 until we �nd the ending point ofour reurrene that we reognize by N`(Ei) = 1.This part of the algorithm is based on �nding an ellipti urve Es suh thatEs is in the rater, using desending paths. First we preise this notion.Desending paths.De�nition 41 A desending path of an ellipti urve E is a path E = E0 !E1 ! E2 ! � � � ! Em�1 ! Em of ellipti urves suh that the map Ei ! Ei+1,for i 2 [0; : : : ;m[, is a desending `-isogeny and ` - [Om : Z[�℄℄. We will say thatwe have a full desending path if E is in the rater of the volano.Lemma 41 With the notations of De�nition 41, if E is of level r then Ei is oflevel r + i.



Proof: We prove this lemma by indution. E0 = E is of level r. Let us supposethat the result is true for Ej , with 0 � j < m. We know that the map Ej ! Ej+1is a desending `-isogeny. Therefore, sine the level of Ej is r+j, i.e. `r+j k [OK :Oj ℄ and by de�nition of a desending `-isogeny, then `r+j+1 k [OK : Oj+1℄. ThusEj+1 is of level r + (j + 1). �The main goal of �nding a desending path starting from an ellipti urve Eis to loate the endomorphism ring of E in the volani struture (see Figure 1)with respet to Z[�℄.Corollary 41 Let P be a desending path starting from E and let m = #P�1.Then E is of level (n�m) where n is the height of the volano.Now that we have de�ned this notion and its interest, we will show howto ompute a desending path. We �rst give the algorithm and then prove itsorretness.Proedure FindDesendingPathInput: A non speial ellipti urve E suh that ` j [OK : Z[�℄℄.Output: A desending path starting from E.1. F  IsogenousCurves(E; `);2. IF #F = 1 THEN fP [1℄ fEg; i0  1; GOTO 6g;3. FOR i := 1 TO 3 DO(a) P [i℄ fEg [ fF [i℄g; G[i℄ E; G0[i℄ F [i℄;(b) IFG0[i℄ is speial THEN S[i℄ ; ELSE S[i℄ IsogenousCurves(G0[i℄; `);4. i0  �15. WHILE (i0 = �1) DOFOR i := 1 TO 3 DO (at this point, G0[i℄ is one of the urves isogenousto G[i℄ and S[i℄ ontains a list of urves isogenous to G0[i℄)IF S[i℄ = ; THEN use next i;IF #S[i℄ = 1 THEN fi0  i; (we have found the base of the vol-ano)gELSE(a) IF (j(S[i℄[1℄) = j(G[i℄)) THEN f(we must not use the dual ofthe preeding isogeny) G[i℄ G0[i℄; G0[i℄ S[i℄[2℄;g;ELSE fG[i℄ G0[i℄; G0[i℄ S[i℄[1℄;g;(b) P [i℄ P [i℄ [ fG0[i℄g;() IFG0[i℄ is speial THEN S[i℄ ; ELSE S[i℄ IsogenousCurves(G0[i℄; `);6. RETURN P [i0℄.By Lemma 24, we know that whenever we have an `-isogeny � : E ! E0 thatis a desending `-isogeny, every `-isogeny � : E0 ! E00 suh that End(E00) 6'End(E) is a desending `-isogeny. Therefore, indutively, if we start a path of`-isogenies with a desending `-isogeny, we will get a desending path.To �nd suh an `-isogeny to start the path, we will ompute in parallelthree di�erent paths starting from any three di�erent urves isogenous to E.Having three di�erent starting urves ensures us of having a path starting with



a desending `-isogeny and therefore a non-empty path. Sine a non-desendingpath is omposed of a path of non-desending `-isogenies and a desending path,a non-desending path is longer than a desending path. Therefore, the �rst paththat stops is a desending path.Lemma 42 The omplexity of the algorithm FindDesendingPath is O(mF(`)),where m is the height of E and F(`) the time to �nd three roots of a modularpolynomial.Proof: To alulate eah one of the three paths, it takes m+1 partial fatoriza-tions of the modular equation. �Why do we need a urve in the rater? If we have a urve Es in the raterand a full desending path Es ! E1 ! E2 ! � � � ! Em�1 ! Em, we get theheight of the volano and then using the algorithms that are given to �nd apartial volano, we an move easily in the volano and onstrut the rest of itif we want. To �nd suh a urve Es we need to know how to reognize that aurve is in the rater.Deteting the rater and thus determining �. From Table 2, we see thata urve in the rater has 1 + � D̀ � horizontal `-isogenies and `� � D̀ � desending`-isogenies. We detet these three di�erent ases in three di�erent ways.Suppose E is in the rater and let n be the height of the volano. Then oneof the following onditions will be met.� Case a: There is no horizontal `-isogeny. Considering the fat that we are inthe rater, we have `+ 1 desending `-isogenies. Then all the desending pathsstarting from the `+1 isogenous urves to E have the same length. The followinggraph haraterizes this situation.OK`
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We annot onfuse this ase with the \normal" ase of one asending `-isogeny and ` desending `-isogenies, beause in the horizontal ase, the di�er-ene between the length of the path starting on E0 and the other paths is 1whereas in the \normal" ase this di�erene is 2. We know also that ` rami�esin OK and therefore � = 0.� Case : There are two horizontal `-isogenies and there are also `�1 desending`-isogenies. Then two of the desending paths starting from the `+ 1 isogenousurves to E are of length n (let us say that these two paths start on E1 and E2)and the other `� 1 ones are of length n � 1. The following graph haraterizesthis situation. OK`
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2. Find imax suh that #P[i℄ is maximal;3. I  fi s.t. i 6= imax and #P[i℄ = #P[imax℄g;4. /* Case where the rater is deteted and �dK̀ � = �1 (ase a) */IF #I = `THEN f� �1; � #P[imax℄; imax  �1;F  ffEur;P[1℄gg;g5. /* Case where the rater is deteted and �dK̀ � = +1 (ase )*/IF #I = 1 THEN f imax2  I [1℄; �  1; �  #P[imax℄ � 1; i0  anyindex distint from imax and imax2; F  ffEur;P[i0℄g;P[imax℄;P[imax2℄g;imax  �1; g6. IF #I = 0 THEN(a) IF imax = 1 THEN i0  2; ELSE i0  1;(b) IF #P[imax℄ � #P[i0℄ = 1 /* Case where the rater is deteted and�dK̀ � = 0 (ase b) */THEN f�  0; �  #P[imax℄ � 1; F  ffEur;P[i0℄g;P[imax℄g ;imax  �1; gELSE f� #P[imax℄� 1;g7. RETURN (�; imax; �;F).Proedure FindFullDesendingPathsInput: A non-speial ellipti urve E suh that ` j [OK : Z[�℄℄.Output: (Es; P; �; n;F) suh that Es is in the rater, isogenous to E, P is anasendin path from E to Es, � = (dK=`), n the height of the volano and F is alist of (some) full desending paths.1. Eur  E;2. F  IsogenousCurves(Eur; `);3. P  fEurg;4. IF #F = 1 THEN fEur  F [1℄; IF Eur is speial THEN EXIT; ELSEfP  P [ fF [1℄g;gg5. i0  0;6. WHILE i0 6= �1 DO(a) F  IsogenousCurves(Eur; `);(b) FOR i := 1 TO `+ 1 DOIF F [i℄ is speial THEN EXIT;P[i℄ FindDesendingPath(F [i℄);() (�; i0; �;F) DetetSurfae(P);(d) IF i0 6= �1 THEN fEur  F [i0℄; P  P [ fEurg;g7. Es  Eur;8. RETURN (Es; P; �; �;F);Lemma 44 The omplexity of the algorithm FindFullDesendingPaths isO(n2`F(`)), with F(`) the time to alulate all the roots of a modular polynomial.Proof: To go from level � to level � � 1, we need to alulate ` + 1 desendingpaths. This takes O(�`F(`)) operations, for a total of �n�=1�F(`) = n(n+1)2 F(`).Therefore it takes O(n2`F(`)) operations to ompute an asending path. �The following theorem gives the omplexity of the algorithm to ompute apartial volano.



Theorem 41 It takes O(n2`F(`)) operations to ompute a partial volano of`-isogenies, with n � log2(jdKj)log2(`) and F(`) the time to alulate all the roots of amodular polynomial.Proof: The whole algorithm is based on the omputation of an asending pathstarting from E . �5 Number of isogeny volanoesWe de�ne the endomorphism lass of E denoted by C(E) to be a set of urvesisogenous but non isomorphi having the same endomorphism ring O. Thereexists a bijetion between C(O) and C(E). If there exists a unique `-isogenyvolano then we an ompute the set of h(O) ellipti urves in C(E) using thisvolano. Therefore we use properties of h(O) to ompute the number of `-isogenyvolanoes.Theorem 51 The number of di�erent volanoes of `-isogenies is h(f 02dK)=ord(l)where ord(l) is the order of the ideal l whih is a prime ideal of norm `.Proof: We treat separately the di�erent types of volanoes.Case where �dK̀ � = �1. In this situation, every `-isogeny volano is of theform: `+ 1 urves r � 1 levelsO ` di�erent urvesIn this type of volano we have found `r+`r�1 of the h(O) urves isogenous to Ehaving the same endomorphism ringO. We have h(m2D) = h(D)m[O�1 :O�2 ℄ Qpjm �1� �Dp � 1p�where O1 and O2 are the orders of disriminant D and m2D ([5, Coro 7.28℄)and when D is di�erent from �4 and �3, [O�1 : O�2 ℄ is equal to 1. In our asewe onsider m = `r where r is the `-adi valuation of the ondutor f of O. Weset f = f 0`r. Then h(f2dK) = h(f 02D)`r �1� � D̀ � 1̀� = h(f 02D)`r(1 + 1=`) =h(f 02D)(`r + `r�1). Then there are h(f 02D) distint volanoes of this type.Case where �dK̀ � = 0. In this situation, every `-isogeny volano is of theform: ` urves r levelsO ` di�erent urvesIn suh a volano, we get 2`r urves in C(E). In this ase, it is also lear thatthere are h(f 02DK)=2 distint volanoes (reusing the preeding notations).Case where �dK̀ � = 1. We get a volano of the form:
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b`� 1 urves r � 1 levelsO ` di�erent urvesFor eah one of the graph under the rater we get (`�1)`r�1 urves in C(E). Wenow have to determine the size of the rater. If we onsider the set of the urvesin the rater lifted in C , we get the following yle E0 ! E1 ! � � � Es�1 ! Es ' E0where Ei ' C =ai . Sine we onsider `-isogenies we have ai = ai+1l where l is aprime ideal of norm `. Therefore a0 = as = lsa0 i.e. ls is a prinipal ideal of OKand thus s is the order of l in OK and s is the size of the rater. Therefore thenumber of di�erent volanoes we an build is h(f 02dK)=ord(l) where ord(l) isthe order of the ideal l whih is a prime ideal of norm `.Using the type of deomposition of the ideal `OK , we an generalise this lastformula to all the types of volanoes. �6 Appliation to point ountingFirst, we suppose that ` 6= 2 and that we have not enountered a speial urve(for these ases see [7℄).If N`(E) is equal to 1 or `+1, then we an dedue that ` rami�es in Z[�℄ i.e.�d�̀ � = 0 and therefore we immediately know that t2 � 4q (mod `). Our idea isto explain how a more preise result an be found, namely the `-adi valuationof t2�4q that we note �`. We will determine n suh that `n k g, i.e. the height ofthe isogeny volano, and sine t2 � 4q = g2dK , we get t2 � 4q (mod `2n+Æ) andtherefore �` � 2n+Æ. The value of Æ is determined by the Legendre symbol �dK̀ �.If it is equal to 0, then we dedue that ` j dK , therefore Æ = 1. Otherwise, Æ = 0.By de�nition of the fundamental disriminant dK , we have in fat �` = 2n+ Æ(exept maybe in the ase ` = 2, see [7℄).6.1 Finding t mod `�In general (that is exept in the ases where we happened to �nd a speial ase),our algorithm has given us t2 � 4q mod `� , we may want t mod `� . Suppose` 6= 2. Then there are only two squareroots of 4q modulo `� . To �nd the signof t, it is enough to �nd the sign of t1 � t mod `. Finding t1 is done via thedetermination of an eigenspae of � and the assoiated eigenfator of the `-thdivision polynomial 	` �a la Elkies. This will determine the eigenvalue, whihturns out to be t1=2 mod ` in that ase.6.2 Finding t mod `�+1Now that we have t mod `� , is it possible to �nd t mod `�+1? When (dK=`) 6= +1,we annot do anything, sine we already explored all possible isogenies. In the



ase where (dK=`) = +1, the head of the volano is an isogeny yle and theideas of [4℄ apply there too (see [7℄).Further appliations are given in [7℄. In partiular, we solve a problem ofLerier enountered in [11℄.7 Numerial examplesThe reader an �nd a more omplete set of examples in [7℄.Example 1 (Normal ase, ` splits in OK i.e. �dK̀ � = +1): Let p = 10009and E = [7478; 1649℄. The j-invariant of E is jE = 83. Using ` = 3, we �ndE0;1 E0;2 E0;3 E0;4
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I E1;4 E1;5E2;1 E2;2 E2;3 E2;4 E2;5 E2;6 E2;7Therefore, n = 2, �dK̀ � = 1 thus Æ = 0 and t2 � 4p (mod 34) and in fatt � 34 mod 34. Moreover, in this ase, we are able to onstrut at the surfae ayle of isogenies. We get the following graph:E0;1 // E0;2 // E0;3 // E0;4 // E0;5 // E0;6 // E0;7ssUsing this yle, we �nd that t � �47 mod 35. As a matter of fat, t = �47.Example 2 (Inomplete ase for ` = 2 from [3℄): Let p = 1009 andE = [1; 3℄. The j-invariant of E is jE = 269. For ` = 2, one getsE0;1
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E2;3 E2;4 E2;5E3;1 E3;2 E3;3 E3;4 E3;5 E3;6 E3;7Therefore, n = 3, �dK̀ � = 0 thus Æ = 2 and t2 � 4p (mod 28). As a matterof fat, t = �50, therefore dK = �24, g = 23 and (�50)2 � 4� 1009 (mod 29).In this ase, we only get a lower bound of the valuation.Example 3 (Case where the urve Es has j-invariant equal to 0):Let p = 1009 and E = [363; 690℄. The j-invariant of E is jE = 433. Consider` = 3: Curve with j�invariant equal to 0E1
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uu IIE3;1 E3;2 E3;3 E3;4 E3;5 E3;6 E3;7 E3;8 E3;9Therefore, n = 3, �dK̀ � = 0 thus Æ = 1 and t2 � 4p (mod 37). As a matterof fat, t = 43.
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