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Introduction

= Since 1999 much interest in studying distributed algorithms for
mobile robots in Look-Compute-Move models




Introduction

= nrobots located in some space

= operate in Look-Compute-Move cycles:

= Looks at its surroundings and obtains a snapshot containing the positions
of all robots;

= Computes a destination, and then

= Moves to an nearby destination




Introduction

= Robots located in various spaces have been considered:

> Plane > Sphere, torus, ...

> Graphs




Introduction

= What problems can the robots solve as a function of their
capabilities?




Introduction

= What problems can the robots solve as a function of their
capabilities?

= many variants have been extensively studied for over two
decades (for many problems)




Introduction

= “... basic coordination problems: pattern formation, gathering,
scattering, leader election,... we analyze the impact of the
different assumptions on the robots' computability power.”
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Introduction

capabilities

> Orientation sense > Memory

> Environment visibility > Communication




Introduction

models of timing

> Timing;:
Asynchronous, partially

synchronous,
synchronous




Introduction

models of failures and timing

> Reliability:

Often failure-free (not

always)
> Timing;:
Asynchronous, partially

synchronous,
synchronous




This work

» ; What kind of problems do the robots can solve under restricted
capabilities, in some space, given a failure/timing model?

> This work interested in a central concern: bringing the
robots close to each other




A basic usual model




A basic usual model

n robots




A basic usual model

= Asynchronous (There 1s no concept of global time)




A basic usual model

= The n robots are located on the vertices of a graph G




A basic usual model

= Robots move over edges on the vertices of a graph




A basic usual model

= Robots move over edges on the vertices of a graph




A basic usual model

= Robots move over the edges on the vertices of a graph




A basic usual model

= Use of cameras to see where other robots are located




A basic usual model

= Look: see the locations of all robots in a single observation

I can see
you!




Asynchronous Robots with Lights (ARrL)

» External lights to transmit information

e.g. Das, Flocchini, Prencipe, Santoro, Yamashita, TCS 2016
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Asynchronous Robots with Lights (ARrL)

» They know G (but may not have the same labeling)




Usual models: Waking Times

= All robots are present initially. Hence, they are visible during
all the execution.

&J




New: Arbitrary Waking Times

= What if robots can appear asynchronously at any time during
the execution ?




New: Arbitrary Waking Times

=  What if robots can appear asynchronously at any time Qcﬁsm
the execution ?

Don’t see
blue




Waking Times + failures

= An interesting combination!

A robot
appeared!




Waking Time

= We modeled the arbitrary waking times with a negative number
in the lights.
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Waking Time

G(V.E)

i A robot
appeared!




Wait-free algorithms

Tolerate any number of robots crashing or slow
{ 4
\|
@

Is he slow
or crashed?




Solo executions

If any number of robots can crash

Am I
running
alone?




Look-Compute-Move Cycles

= LLook :

= light=-1 means invisible

Look(6)={(z.2).(r.2).(r.3).(f.0)




Look-Compute-Move Cycles

= Compute :




Look-Compute-Move Cycles

= Compute : neighbor vertex and new light




Look-Compute-Move Cycles

= Move(a,l):




Execution

Arbitrary interleaving of Look, Compute, Move operations
by different robots

&J




Execution

i

Q
W, >
Look(G) Compute(view)
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General Algorithm in ARL

Initial
vertex

7

. procedure ALGORITHM(G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)

end while

return v;

10: end procedure




General Algorithm in ARL

Initial
| vertex
\ 4 D
. Light,
: procedure ALGORITHM(G, v;) initially -1
Move(v;, 0) g
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)
end while

return v;
10: end procedure




General Algorithm in ARL

ﬁ Initial w
>Humu @mﬁ; w\ vertex

1: procedure AL&GORITHM(G,v;)

2: Move(v;, 0)

3: view; +

4: while undecided do

5: view; < view; - { Look(G) }
6: (vi, i) = Compute(view;)
7: Move(v;,r;)

8: end while

0: return v;

10: end procedure




General Algorithm in ARL

. procedure ALGORITHM(G, v;) May
Move(v;, 0) remember
view; < () the past
while undecided do )
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)
end while
return v;
10: end procedure




General Algorithm in ARL

1: procedure ALGORITHM(G, v;) May

2: Move(v;, 0) remember

3: view; < () the past

4: while undecided do )

5: view; < view; - { Look(G) }

6: (vi, i) = Compute(view;)

7: Move(v;,r;)

8: end while

0: return v; 4 )
10: end procedure Where to move

and which light to
emit

\_ J




General Algorithm in ARL

. procedure ALGORITHM(G, v;)
Move(v;, 0)

Where to move

view; ¢ 0 . and which light to
while undecided do emit

1
2
3
4
5: view; < view; - { Look(G
6
7
8
9

(vi, ;) < Compute(view;)
Move(v;, ;)
end while
return v;
10: end procedure

Do it!




General Algorithm in ARL

: procedure ALGORITHM(G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)

end while

return v; Decide where to

10: end procedure stay




General Algorithm in ARL

1: procedure ALGORITHM(G, v;)

2 Move(v;, 0)

3 view; < ()

4: while undecided do

5: view; <— V¥; - { Look(G) }
6 (vi, i) < Compute(view;)
7 Move(v;,r;)

8 end while

9 return v;

10: end procedure




Gathering

= Move all (correct) robots to the same vertex




Gathering




Gathering




Gathering




Gathering




Gathering

= Gathering 1s trivial if OK to move to a fixed vertex

?

(<)5)

4 6
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Gathering

= if there is a common labeling and there are no restrictions.

. . 5




Gathering

>Require that final location not fixed in advance.

. . 5




Gathering definition

s Termination: Every correct robot decides a vertex of
G.




Gathering definition

= Validity: If all robots start on the same vertex v, then
every decided vertex 1s v.




Gathering definition

n Termination: Every correct robot decides a vertex of
G.

s Validity: If all robots start on the same vertex v, then
every decided vertex 1s v. [Prevents trivial]

= Agreement: All decided vertices are the same.




Gathering vs convergence

= If we remove the termination requirement ->
convergence problem




gathering vs edge-gathering

= A different way of weakening -> get close to each
other, instead of to the same vertex




Edge-Gathering

s Termination: Every correct robot decides a vertex of
G.




Edge-Gathering

= Validity: 1f all robots start on the same vertex v then
every decided vertex 1s v. If the initial vertex of robots
cover an edge e, then every decided vertex 1s a vertex

of e.




Edge-Gathering

s Termination: Every correct robot decides a vertex of G.

» Validity: If all robots start on the same vertex v then
every decided vertex 1s v. If the iitial vertex of robots
cover an edge e, then every decided vertex 1s a vertex of
e

= Edge-Agreement: All decided vertices belong to the
same edge.




Gathering Problems Summary

= Convergence (No termination) = Gathering

= Edge-Gathering

= Also 1-Gathering
(see paper)




Convergence without labeling

= [t 1s impossible to achieve convergence in a general Graph
without a common labeling, if the robots are identical




Convergence without labeling




Convergence with labeling (no lights)

= There are various algorithms to solve convergence with a
common labeling of G (with 1dentical robots)

= Many interesting questions, we don’t focus on them here

Function TrivialConvergence(v,, GG)

1: Move(v;)

2: loop

view, +— Look(G)

S: + {v; € view; | v; # v, }

if S, # @ then
canonical, + the vertex with minimum label in G.
v, < some closest vertex to canonical,.

end if
M ove(v,)
10: end loop




Convergence with labeling, no lights

= There are various algorithms to solve convergence with a
common labeling of G

= Many interesting questions, but we don’t consider them here

ﬁ Never decides
where to stay!

Function TrivialConvergence(v,, G

1: Move(v;)

2: loop

view, +— Look(G)

S: + {v; € view; | v; # v, }

if S, # @ then
canonical, + the vertex with minimum label in G.
v, < some cl vertex to canonical,.

end if
M ove(v,)
10: end loop




Algorithm: Convergence

s Trivial algorithm to solve convergence problem

Function TrivialConvergence(v,, G)

1: Move(v;)

2: loop

3: view, +— Look(G)

4: S; + {v; € view; | v; # v, }

5: if S, # @ then

6: canonical, + the vertex with minimum label in G.
7: v, < some closest vertex to canonical;.

8: end if

9: Move(v,)

10: end loop

This is one of many possibilities to solve convergence.




Idea of Convergence Algorithm

— I don’t move




Idea of Convergence Algorithm

. . 5
] The initial positions

_ — are different




Idea of Convergence Algorithm

’ ’ 6

= As the initial positions were different the red robot can go to a
predefined vertex




Proof of Convergence Algorithm

= Stabilization:

Case 1: The initial positions are the same




Proof of Convergence Algorithm

= Stabilization:

Case 2: There are at least two different initial positions.




Proof of Convergence Algorithm

= Stabilization:
Case 2:




Proof of Convergence Algorithm

= Agreement:

By contradiction: Suppose the final position of both robots is not the same

?
\
Move(*,*)

O

Prefix in which both robots stabilized




Proof of Convergence Algorithm

= Agreement:

By contradiction: Suppose the final position of both robots is not the same

!

|
\ — “
Q0O
() _
\
Move(*,*) _ Move(*,*)

Prefix in which both robots stabilized

O




Convergence is possible, what about gathering?

Can a robot decide when to stop ?




Gathering is Impossible in ARL

First result:

For every every G with at least 2 vertices, there 1s
no algorithm that solves gathering on G for n
robots in strong ARL, and even if only one robot
can fail.




Gathering is Impossible in ARL

First result:

For every every G with at least 2 vertices, there 1s
no algorithm that solves gathering on G for n
robots in strong ARL, and even if only one robot

can fail. \

[ )

Strong version of the ARL, robots are
non-oblivious, non-anonymous, use
an unbounded number of light colors

and share a labelling (or orientation)
of G

- /




Gathering in ARL

Notice: gathering is POSSIBLE if all robots are
present initially




Gathering is Impossible in ARL

Proof by reduction to
consensus in the read/write

shared-memory model of
FLP




Gathering is Impossible in ARL

Any ARL algorithm can be
simulated in the WESM mode
in a wait-free manner

N

Proof by reduction to
consensus in the read/write

shared-memory model of
FLP




The simulation

ARL Model

. procedure GATHERING (G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)

end while

return v;

10: end procedure

.l S S e
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The simulation

ARL Model

. procedure GATHERING (G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)

end while

return v;

10: end procedure

.l S S e

PN T




The simulation

ARL Model

. procedure GATHERING (G, v;)
Move(v;, 0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)
end while
: return v;
: end procedure




The simulation

,\EN Model WESM Model

. procedure GATHERING (G, v;)
: Move(v;,0) 6 (Vo)

view; < ()

while undecided do Q? )
view; $— view; - A hcoimwv w |
N

(vi, ;) <= Compute(view;)
Mowve(v;, 1)
end while

1

— |—
— ho
—

return v;

. end procedure 6 V)

o




Gathering is Impossible in ARL

ARL Model

. procedure (GATHERING
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

[E—

WESM Model
q;

\@@

(vV,1,)

|_II\)
|_

— |z




Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

[E—

WESM Model
q;

©E

(vV,1,)

I_II\)

(v;,0)

— |z




The simulation

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) wN
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

G

WESM Model
q;

Q0.

(vV,1,)

I_II\)

(v;,0)

— |z




ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

Snapshot(M)

WESM Model

—

1

q;

()

(vV,1,)

I_II\)

(v;,0)

— |z




Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G)
(vi,73) <= Compute(vped
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model
q;

Q0.

A<N o Nv e Aﬂm be

— |z




Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model

If v#.1s v, then

I decide x, else x,

v.F -
4 U A<NHNV Aﬂmuﬂxb

— |z




Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model

If v#.1s v, then

I decide x, else x,

1 . 2

A<N o Nv Aﬂm wav

— |z

= All the processes must to

decide v, )

We solve Binary Consensus

X




Weakening of gathering in ARL

Given that gathering is impossible, even in
strong ARL, require only to get close to each
other




Edge-Gathering for 2 Robots

= The following algorithm solves Edge-Gathering
problem for 2 robots 1n any connected graph without
lights.

Function EdgeGatheringTwoRobots(v;,G)
Move(v;)
for round; + 1 to diam(T) — 1 do
view; +— Look(G)
Si + {v; € view; : v; #v; }
if |S;| =1 then
v; < the only vertex in S;
if (v;,v;) € E(G) then
v; < vertex of Pathr(v;,v;) that is adjacent to v;
end if
end if
Move(v;)
end for
return v;




Edge-Gathering

Results:

= So, 2 robots can solve edge gathering without lights

= What about N=3 robots ?




Impossibility of Edge-Gathering

Theorem

= [f G has a cycle, then there is no edge-gathering algorithm
on G for N=3 robots even if at most 2 robots fail, in strong
ALR




Main impossibility of Edge-Gathering

= [f G has a cycle, then there 1s no edge-gathering
algorithm on G for N=3 robots even if at most 2 robots
fail, in strong ALR

By reduction to shared memory:
Suppose there 1s an algorithm A and let’s prove that we can
solve 2-set agreement for 3 robots.




Main impossibility of Edge-Gathering

= [f G has a cycle, then there 1s no edge-gathering
algorithm on G for N=3 robots even if at most 2 robots
fail, in strong ALR

By reduction to shared memory:
Suppose there 1s an algorithm A and let’s prove that we can
solve 2-set agreement for 3 robots.

Topological reason !!!

(Cycle contractibility->Sperner’s lemma)




Impossibility of Edge-Gathering with
Cycles




Impossibility of Edge-Gathering with Cycles

G =(VE)




Edge-Gathering without Lights

= Edge-Gathering without Lights its impossible in a graph G with
diam(G)=3

(Proof: An indistinguishability argument)




Edge-Gathering N=3

Main Results:

= [f G has a cycle, then there is no edge-gathering algorithm
on G for N=3 robots even if at most 2 robots fail, in strong

ALR

= If G 1s atree, then there 1s an edge-gathering algorithm on
G for N=3 robots even if at most 2 robots fail, in strong

ALR




Edge-Gathering on Trees

= for N=3 robots

Function EdgeGatheringTree(v;,T)

1: Move(v;,0) Need lights

2: for r; «— 1 to diam(T) — 1 do

3: view; < Look(T

4: maz_round; < max{r; : (x,r;) € view, }

5% Si + {v; : (vj, max_round;) € view; V v; = v;}

6: T; + smallest subtree of 1" spanning all vertices in S;
T if diam(T;) > 0 A v; is leaf of T; then

8: v; < vertex of T; that is adjacent to v;

9: end if

10: Move(v;, ;)

11: end for

12: return V4




Edge-Gathering on Trees




Edge-Gathering on Trees

?

i = Robots executing the
(~)<) .
maximum round




Edge-Gathering on Trees

= Subtree spanning all
the vertices of the
leaders.

?




Edge-Gathering on Trees
= A robot moves towards

the center of the

subtree if it 1s a leaf.




Edge-Gathering on Trees

= The algorithm is simple, but the analysis is not due to the
combination of asynchrony, distinct waking times and
failures

For example, in a given execution, two robots might
compute their next vertices using the same maximal
round but with very different sets of positions;

moreover, a robot might compute its next position
considering only crashed robots.

Such difficulties make difficult to find and prove
iInvariants




= We provide a characterization of the solvable robot
tasks in graphs, in the strong ALR

A robot task on G, <I,0,A) is solvable for
N robots if and only if there is a
subdivision Subd(l) and a simplicial
map & from Subd(l) to O, such that for
every input simplex o, 8(Subd(g)) ¢
A(0).




Corollary

= The characterization implies undecidability:

There 1s no (sequential) algorithm that
decides 1f a given robot task on G for three

processes tolerating two failures 1s solvable
in the ALR model.




Conclusions (1)

Investigated the basic asynchronous LOOK-
COMPUTE-MOVE model, considering the possibility
that not all robots are present initially.

Robots on a graph, and may use lights
Gathering-type of problems with stopping

Characterized the solvable cases




Conclusions (2)

Exposed a close relationship with fault-tolerant
shared-memory computing,

and hence with topology

Providing a framework to unify the many Look/
Compute/Move different models

and to study them, eg., synchronous vs asynchronous
allow to solve different tasks, but the underlying
topological setting 1s similar




Open problems

= Non-gathering type of problems

= Other spaces represented by a simplicial complex, and
continuous versions

= Other models: e.g. synchronous, semi-synchronous,
Byzantine failures...

= We focused on computability; study complexity (time,
memory, lights, etc)

= Dynamic networks




Thanks you for your attention




