Wait-free Robot Gathering
Problems on Graphs with
Termination

Sergio Rajsbaum

Based on results in Distributed Computing 2019

MANUEL ALCANTARA
ARMANDO CASTANEDA
DAVID FLORES
SERGIO RAJSBAUM

Instituto de Matematicas
UNAM, Mexico

October 12,2021
Ecole Polytechnique

Introduction

= Since 1999 much interest in studying distributed algorithms for
mobile robots in Look-Compute-Move models

Introduction

= nrobots located in some space

= operate in Look-Compute-Move cycles:

= Looks at its surroundings and obtains a snapshot containing the positions
of all robots;

= Computes a destination, and then

= Moves to an nearby destination

Introduction

= Robots located in various spaces have been considered:

> Plane > Sphere, torus, ...

> Graphs

Introduction

= What problems can the robots solve as a function of their
capabilities?

Introduction

= What problems can the robots solve as a function of their
capabilities?

= many variants have been extensively studied for over two
decades (for many problems)

Introduction

= “... basic coordination problems: pattern formation, gathering,
scattering, leader election,... we analyze the impact of the
different assumptions on the robots' computability power.”

B EEET

Distributed Computing by
Oblivious Mobile Robots

Pasds Flocchine
Camseppe Promope
N wds Sentione

Introduction

capabilities

> Orientation sense > Memory

> Environment visibility > Communication

Introduction

models of timing

> Timing;:
Asynchronous, partially

synchronous,
synchronous

Introduction

models of failures and timing

> Reliability:

Often failure-free (not

always)
> Timing;:
Asynchronous, partially

synchronous,
synchronous

This work

» ; What kind of problems do the robots can solve under restricted
capabilities, in some space, given a failure/timing model?

> This work interested in a central concern: bringing the
robots close to each other

A basic usual model

A basic usual model

n robots

A basic usual model

= Asynchronous (There 1s no concept of global time)

A basic usual model

= The n robots are located on the vertices of a graph G

A basic usual model

= Robots move over edges on the vertices of a graph

A basic usual model

= Robots move over edges on the vertices of a graph

A basic usual model

= Robots move over the edges on the vertices of a graph

A basic usual model

= Use of cameras to see where other robots are located

A basic usual model

= Look: see the locations of all robots in a single observation

I can see
you!

Asynchronous Robots with Lights (ARrL)

» External lights to transmit information

e.g. Das, Flocchini, Prencipe, Santoro, Yamashita, TCS 2016

ONWJ
N

Asynchronous Robots with Lights (ARrL)

» They know G (but may not have the same labeling)

Usual models: Waking Times

= All robots are present initially. Hence, they are visible during
all the execution.

&J

New: Arbitrary Waking Times

= What if robots can appear asynchronously at any time during
the execution ?

New: Arbitrary Waking Times

= What if robots can appear asynchronously at any time Qcﬁsm
the execution ?

Don’t see
blue

Waking Times + failures

= An interesting combination!

A robot
appeared!

Waking Time

= We modeled the arbitrary waking times with a negative number
in the lights.

o &

Waking Time

G(V.E)

i A robot
appeared!

Wait-free algorithms

Tolerate any number of robots crashing or slow
{ 4
\|
@

Is he slow
or crashed?

Solo executions

If any number of robots can crash

Am I
running
alone?

Look-Compute-Move Cycles

= LLook :

= light=-1 means invisible

Look(6)={(z.2).(r.2).(r.3).(f.0)

Look-Compute-Move Cycles

= Compute :

Look-Compute-Move Cycles

= Compute : neighbor vertex and new light

Look-Compute-Move Cycles

= Move(a,l):

Execution

Arbitrary interleaving of Look, Compute, Move operations
by different robots

&J

Execution

i

Q
W, >
Look(G) Compute(view)

TR

General Algorithm in ARL

Initial
vertex

7

. procedure ALGORITHM(G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)

end while

return v;

10: end procedure

General Algorithm in ARL

Initial
| vertex
\ 4 D
. Light,
: procedure ALGORITHM(G, v;) initially -1
Move(v;, 0) g
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)
end while

return v;
10: end procedure

General Algorithm in ARL

ﬁ Initial w
>Humu @mﬁ; w\ vertex

1: procedure AL&GORITHM(G,v;)

2: Move(v;, 0)

3: view; +

4: while undecided do

5: view; < view; - { Look(G) }
6: (vi, i) = Compute(view;)
7: Move(v;,r;)

8: end while

0: return v;

10: end procedure

General Algorithm in ARL

. procedure ALGORITHM(G, v;) May
Move(v;, 0) remember
view; < () the past
while undecided do)
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)
end while
return v;
10: end procedure

General Algorithm in ARL

1: procedure ALGORITHM(G, v;) May

2: Move(v;, 0) remember

3: view; < () the past

4: while undecided do)

5: view; < view; - { Look(G) }

6: (vi, i) = Compute(view;)

7: Move(v;,r;)

8: end while

0: return v; 4)
10: end procedure Where to move

and which light to
emit

_ J

General Algorithm in ARL

. procedure ALGORITHM(G, v;)
Move(v;, 0)

Where to move

view; ¢ 0 . and which light to
while undecided do emit

1
2
3
4
5: view; < view; - { Look(G
6
7
8
9

(vi, ;) < Compute(view;)
Move(v;, ;)
end while
return v;
10: end procedure

Do it!

General Algorithm in ARL

: procedure ALGORITHM(G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(vi, i) = Compute(view;)
Move(v;,r;)

end while

return v; Decide where to

10: end procedure stay

General Algorithm in ARL

1: procedure ALGORITHM(G, v;)

2 Move(v;, 0)

3 view; < ()

4: while undecided do

5: view; <— V¥; - { Look(G) }
6 (vi, i) < Compute(view;)
7 Move(v;,r;)

8 end while

9 return v;

10: end procedure

Gathering

= Move all (correct) robots to the same vertex

Gathering

Gathering

Gathering

Gathering

Gathering

= Gathering 1s trivial if OK to move to a fixed vertex

?

(<)5)

4 6

€«

Gathering

= if there is a common labeling and there are no restrictions.

. . 5

Gathering

>Require that final location not fixed in advance.

. . 5

Gathering definition

s Termination: Every correct robot decides a vertex of
G.

Gathering definition

= Validity: If all robots start on the same vertex v, then
every decided vertex 1s v.

Gathering definition

n Termination: Every correct robot decides a vertex of
G.

s Validity: If all robots start on the same vertex v, then
every decided vertex 1s v. [Prevents trivial]

= Agreement: All decided vertices are the same.

Gathering vs convergence

= If we remove the termination requirement ->
convergence problem

gathering vs edge-gathering

= A different way of weakening -> get close to each
other, instead of to the same vertex

Edge-Gathering

s Termination: Every correct robot decides a vertex of
G.

Edge-Gathering

= Validity: 1f all robots start on the same vertex v then
every decided vertex 1s v. If the initial vertex of robots
cover an edge e, then every decided vertex 1s a vertex

of e.

Edge-Gathering

s Termination: Every correct robot decides a vertex of G.

» Validity: If all robots start on the same vertex v then
every decided vertex 1s v. If the iitial vertex of robots
cover an edge e, then every decided vertex 1s a vertex of
e

= Edge-Agreement: All decided vertices belong to the
same edge.

Gathering Problems Summary

= Convergence (No termination) = Gathering

= Edge-Gathering

= Also 1-Gathering
(see paper)

Convergence without labeling

= [t 1s impossible to achieve convergence in a general Graph
without a common labeling, if the robots are identical

Convergence without labeling

Convergence with labeling (no lights)

= There are various algorithms to solve convergence with a
common labeling of G (with 1dentical robots)

= Many interesting questions, we don’t focus on them here

Function TrivialConvergence(v,, GG)

1: Move(v;)

2: loop

view, +— Look(G)

S: + {v; € view; | v; # v, }

if S, # @ then
canonical, + the vertex with minimum label in G.
v, < some closest vertex to canonical,.

end if
M ove(v,)
10: end loop

Convergence with labeling, no lights

= There are various algorithms to solve convergence with a
common labeling of G

= Many interesting questions, but we don’t consider them here

ﬁ Never decides
where to stay!

Function TrivialConvergence(v,, G

1: Move(v;)

2: loop

view, +— Look(G)

S: + {v; € view; | v; # v, }

if S, # @ then
canonical, + the vertex with minimum label in G.
v, < some cl vertex to canonical,.

end if
M ove(v,)
10: end loop

Algorithm: Convergence

s Trivial algorithm to solve convergence problem

Function TrivialConvergence(v,, G)

1: Move(v;)

2: loop

3: view, +— Look(G)

4: S; + {v; € view; | v; # v, }

5: if S, # @ then

6: canonical, + the vertex with minimum label in G.
7: v, < some closest vertex to canonical;.

8: end if

9: Move(v,)

10: end loop

This is one of many possibilities to solve convergence.

Idea of Convergence Algorithm

— I don’t move

Idea of Convergence Algorithm

. . 5
] The initial positions

_ — are different

Idea of Convergence Algorithm

’ ’ 6

= As the initial positions were different the red robot can go to a
predefined vertex

Proof of Convergence Algorithm

= Stabilization:

Case 1: The initial positions are the same

Proof of Convergence Algorithm

= Stabilization:

Case 2: There are at least two different initial positions.

Proof of Convergence Algorithm

= Stabilization:
Case 2:

Proof of Convergence Algorithm

= Agreement:

By contradiction: Suppose the final position of both robots is not the same

?
\
Move(*,*)

O

Prefix in which both robots stabilized

Proof of Convergence Algorithm

= Agreement:

By contradiction: Suppose the final position of both robots is not the same

!

|
\ — “
Q0O
() _
\
Move(*,*) _ Move(*,*)

Prefix in which both robots stabilized

O

Convergence is possible, what about gathering?

Can a robot decide when to stop ?

Gathering is Impossible in ARL

First result:

For every every G with at least 2 vertices, there 1s
no algorithm that solves gathering on G for n
robots in strong ARL, and even if only one robot
can fail.

Gathering is Impossible in ARL

First result:

For every every G with at least 2 vertices, there 1s
no algorithm that solves gathering on G for n
robots in strong ARL, and even if only one robot

can fail. \

[)

Strong version of the ARL, robots are
non-oblivious, non-anonymous, use
an unbounded number of light colors

and share a labelling (or orientation)
of G

- /

Gathering in ARL

Notice: gathering is POSSIBLE if all robots are
present initially

Gathering is Impossible in ARL

Proof by reduction to
consensus in the read/write

shared-memory model of
FLP

Gathering is Impossible in ARL

Any ARL algorithm can be
simulated in the WESM mode
in a wait-free manner

N

Proof by reduction to
consensus in the read/write

shared-memory model of
FLP

The simulation

ARL Model

. procedure GATHERING (G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)

end while

return v;

10: end procedure

.l S S e

PN T

The simulation

ARL Model

. procedure GATHERING (G, v;)

Move(v;, 0)

view; < ()

while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)

end while

return v;

10: end procedure

.l S S e

PN T

The simulation

ARL Model

. procedure GATHERING (G, v;)
Move(v;, 0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(v3, ;) = Compute(view;)
Mowve(v;, 1)
end while
: return v;
: end procedure

The simulation

,\EN Model WESM Model

. procedure GATHERING (G, v;)
: Move(v;,0) 6 (Vo)

view; < ()

while undecided do Q?)
view; $— view; - A hcoimwv w |
N

(vi, ;) <= Compute(view;)
Mowve(v;, 1)
end while

1

— |—
— ho
—

return v;

. end procedure 6 V)

o

Gathering is Impossible in ARL

ARL Model

. procedure (GATHERING
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

[E—

WESM Model
q;

\@@

(vV,1,)

|_II\)
|_

— |z

Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

[E—

WESM Model
q;

©E

(vV,1,)

I_II\)

(v;,0)

— |z

The simulation

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) wN
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

G

WESM Model
q;

Q0.

(vV,1,)

I_II\)

(v;,0)

— |z

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

Snapshot(M)

WESM Model

—

1

q;

()

(vV,1,)

I_II\)

(v;,0)

— |z

Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G)
(vi,73) <= Compute(vped
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model
q;

Q0.

A<N o Nv e Aﬂm be

— |z

Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model

If v#.1s v, then

I decide x, else x,

v.F -
4 U A<NHNV Aﬂmuﬂxb

— |z

Gathering is Impossible in ARL

ARL Model

. procedure GATHERING (G, v;)
Move(v;,0)
view; < ()
while undecided do
view; < view; - { Look(G) }
(vi,73) <= Compute(view;)
Mowve(v;, 1;)
end while
return v;
: end procedure

WESM Model

If v#.1s v, then

I decide x, else x,

1 . 2

A<N o Nv Aﬂm wav

— |z

= All the processes must to

decide v,)

We solve Binary Consensus

X

Weakening of gathering in ARL

Given that gathering is impossible, even in
strong ARL, require only to get close to each
other

Edge-Gathering for 2 Robots

= The following algorithm solves Edge-Gathering
problem for 2 robots 1n any connected graph without
lights.

Function EdgeGatheringTwoRobots(v;,G)
Move(v;)
for round; + 1 to diam(T) — 1 do
view; +— Look(G)
Si + {v; € view; : v; #v; }
if |S;| =1 then
v; < the only vertex in S;
if (v;,v;) € E(G) then
v; < vertex of Pathr(v;,v;) that is adjacent to v;
end if
end if
Move(v;)
end for
return v;

Edge-Gathering

Results:

= So, 2 robots can solve edge gathering without lights

= What about N=3 robots ?

Impossibility of Edge-Gathering

Theorem

= [f G has a cycle, then there is no edge-gathering algorithm
on G for N=3 robots even if at most 2 robots fail, in strong
ALR

Main impossibility of Edge-Gathering

= [f G has a cycle, then there 1s no edge-gathering
algorithm on G for N=3 robots even if at most 2 robots
fail, in strong ALR

By reduction to shared memory:
Suppose there 1s an algorithm A and let’s prove that we can
solve 2-set agreement for 3 robots.

Main impossibility of Edge-Gathering

= [f G has a cycle, then there 1s no edge-gathering
algorithm on G for N=3 robots even if at most 2 robots
fail, in strong ALR

By reduction to shared memory:
Suppose there 1s an algorithm A and let’s prove that we can
solve 2-set agreement for 3 robots.

Topological reason !!!

(Cycle contractibility->Sperner’s lemma)

Impossibility of Edge-Gathering with
Cycles

Impossibility of Edge-Gathering with Cycles

G =(VE)

Edge-Gathering without Lights

= Edge-Gathering without Lights its impossible in a graph G with
diam(G)=3

(Proof: An indistinguishability argument)

Edge-Gathering N=3

Main Results:

= [f G has a cycle, then there is no edge-gathering algorithm
on G for N=3 robots even if at most 2 robots fail, in strong

ALR

= If G 1s atree, then there 1s an edge-gathering algorithm on
G for N=3 robots even if at most 2 robots fail, in strong

ALR

Edge-Gathering on Trees

= for N=3 robots

Function EdgeGatheringTree(v;,T)

1: Move(v;,0) Need lights

2: for r; «— 1 to diam(T) — 1 do

3: view; < Look(T

4: maz_round; < max{r; : (x,r;) € view, }

5% Si + {v; : (vj, max_round;) € view; V v; = v;}

6: T; + smallest subtree of 1" spanning all vertices in S;
T if diam(T;) > 0 A v; is leaf of T; then

8: v; < vertex of T; that is adjacent to v;

9: end if

10: Move(v;, ;)

11: end for

12: return V4

Edge-Gathering on Trees

Edge-Gathering on Trees

?

i = Robots executing the
(~)<) .
maximum round

Edge-Gathering on Trees

= Subtree spanning all
the vertices of the
leaders.

?

Edge-Gathering on Trees
= A robot moves towards

the center of the

subtree if it 1s a leaf.

Edge-Gathering on Trees

= The algorithm is simple, but the analysis is not due to the
combination of asynchrony, distinct waking times and
failures

For example, in a given execution, two robots might
compute their next vertices using the same maximal
round but with very different sets of positions;

moreover, a robot might compute its next position
considering only crashed robots.

Such difficulties make difficult to find and prove
iInvariants

= We provide a characterization of the solvable robot
tasks in graphs, in the strong ALR

A robot task on G, <I,0,A) is solvable for
N robots if and only if there is a
subdivision Subd(l) and a simplicial
map & from Subd(l) to O, such that for
every input simplex o, 8(Subd(g)) ¢
A(0).

Corollary

= The characterization implies undecidability:

There 1s no (sequential) algorithm that
decides 1f a given robot task on G for three

processes tolerating two failures 1s solvable
in the ALR model.

Conclusions (1)

Investigated the basic asynchronous LOOK-
COMPUTE-MOVE model, considering the possibility
that not all robots are present initially.

Robots on a graph, and may use lights
Gathering-type of problems with stopping

Characterized the solvable cases

Conclusions (2)

Exposed a close relationship with fault-tolerant
shared-memory computing,

and hence with topology

Providing a framework to unify the many Look/
Compute/Move different models

and to study them, eg., synchronous vs asynchronous
allow to solve different tasks, but the underlying
topological setting 1s similar

Open problems

= Non-gathering type of problems

= Other spaces represented by a simplicial complex, and
continuous versions

= Other models: e.g. synchronous, semi-synchronous,
Byzantine failures...

= We focused on computability; study complexity (time,
memory, lights, etc)

= Dynamic networks

Thanks you for your attention

