
Homology, Homotopy and Appli
ations, vol.?(?), 2001, pp.1{70ON THE GEOMETRY OF INTUITIONISTIC S4 PROOFSJEAN GOUBAULT-LARRECQ and �ERIC GOUBAULT(
ommuni
ated by Gunnar Carlsson)Abstra
tThe Curry-Howard 
orresponden
e between formulas andtypes, proofs and programs, proof simpli�
ation and programexe
ution, also holds for intuitionisti
 modal logi
 S4. It turnsout that the S4 modalities translate as a monoidal 
omonad onthe spa
e of proofs, giving rise to a 
anoni
al augmented sim-pli
ial stru
ture. We study the geometry of these augmentedsimpli
ial sets, showing that ea
h type gives rise to an aug-mented simpli
ial set whi
h is a disjoint sum of nerves of �-nite latti
es of points, plus isolated (�1)-dimensional sub
om-plexes. As an appli
ation, we give semanti
s of modal proofs(a.k.a., programs) in 
ategories of augmented simpli
ial set andof topologi
al spa
es, and prove a 
ompleteness result in thestyle of Friedman: if any two proofs have the same denotationsin ea
h augmented simpli
ial model, then they are 
onvert-ible. This result rests both on the �ne geometri
 stru
ture ofthe 
onstru
ted spa
es of proofs and on properties of subs
one
ategories|the 
ategori
al generalization of the notion of log-i
al relations used in lambda-
al
ulus.
1. Introdu
tionOne of the most su

essful paradigms in modern theoreti
al 
omputer s
ien
e isthe so-
alled Curry-Howard isomorphism [26℄, an easy but surprising 
onne
tion be-tween proofs in intuitionisti
 logi
s and fun
tional programs, whi
h has far-rea
hing
onsequen
es. One 
ardinal prin
iple here is that logi
s help design well-
raftedprogramming 
onstru
ts, with good semanti
al properties. In intuitionisti
 logi
,impli
ations denote fun
tion spa
es, 
onjun
tions give rise to 
artesian produ
ts,disjun
tions are disjoint sums, false is the empty type, true is the unit type, univer-sal quanti�
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ations, vol. ?(?), 2001 2data types. Classi
al logi
 in addition introdu
es the ri
h 
on
ept of 
ontinuation[23, 39℄, while the modal logi
 S4 introdu
es a form of staged 
omputation [41, 11℄.Our aim in this paper is to show that S4 proofs are also geometri
 obje
ts. Tobe pre
ise, S4 formulas 
orrespond to augmented simpli
ial sets, and S4 proofs
orrespond to maps between these spa
es. In parti
ular, this extends the Curry-Howard pi
ture to:Logi
 Programming GeometryFormulae = Types = Augmented Simpli
al SetsProofs = Programs = Augmented Simpli
ial MapsEquality of Proofs = Convertibility = Equality of MapsThe = signs are exa
t, ex
ept possibly for the Programs=Augmented Simpli
ialMaps one (we only get de�nable augmented simpli
ial maps). In parti
ular, it iswell-known that equality of proofs, as de�ned by the symmetri
 
losure of detour,or 
ut-elimination [44℄, is exa
tly 
onvertibility of terms (programs). We shall inaddition show that two (de�nable) augmented simpli
ial maps are equal if and onlyif their de�ning terms are 
onvertible, i.e., equal as proofs (bottom right = sign).This will be Theorem 69 and Corollary 70, an S4 variant of Friedman's Theorem[16℄, whi
h will 
onstitute the main goal of this paper.While Friedman's Theorem in the ordinary, non-modal, intuitionisti
 
ase 
anbe proved in a relatively straightforward way using logi
al relations [37℄, the S4
ase is more 
omplex, and seems to require one to establish the existen
e of a
ertain strong retra
tion of one augmented simpli
ial set Homb�(S4 [F ℄;S4 [G℄) ontoanother S4 [F � G℄ (Corollary 47). By the way, we invite the reader to 
he
k thatthe existen
e of the 
orresponding strong retra
tion in the 
ategory of sets (as wouldbe needed to map our te
hniques to the non-modal 
ase) is trivial. The existen
eof the announ
ed retra
tion in the 
ategory b� of augmented simpli
ial sets is moreinvolved, and prompts us to study the geometry of S4 proofs themselves.The plan of the paper is as follows. After we review related work in Se
tion 2,we deal with all logi
al preliminaries in Se
tion 3. We start by re
alling some basi

on
epts in logi
s in Se
tion 3.1, and go on to the Curry-Howard 
orresponden
ebetween types and formulae, proofs and programs, equality of proofs and 
onvert-ibility in Se
tion 3.2. We also introdu
e the logi
 we shall use, namely minimalintuitionisti
 S4, giving its Kripke semanti
s (Se
tion 3.4) as well as a natural de-du
tion system and a proof term language �S4, essentially due to [7℄, for it. This isin Se
tion 4.1, where we also prove basi
 properties about �S4|
on
uen
e, strongnormalization of typed terms|and study the stru
ture of normal and so-
alled�-long normal forms.We 
ome to the meat of this paper in Se
tion 4, where we observe that ea
htype F indu
es an augmented simpli
ial set whose q-simpli
es are terms of type�q+1F modulo �. We 
hara
terize exa
tly the 
omputation of fa
es and degen-era
ies on terms written in �-long normal form in Se
tion 4.1, where they take aparti
ularly simple form. This allows us to study the geometry of these terms in apre
ise way in Se
tion 4.2. The 
ru
ial notion here is oriented 
ontiguity, whi
h isan oriented form of path-
onne
tedness. It turns out that this allows us to 
hara
-terize the simpli
ial part of these augmented simpli
ial sets as the nerve of its points
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ations, vol. ?(?), 2001 3ordered by 
ontiguity|this is an oriented simpli
ial 
omplex. In dimension �1, weget all 
onne
ted 
omponents of these simpli
ial 
omplexes, as we show in Se
-tion 4.3. We also show that ea
h non-empty 
onne
ted 
omponent is a �nite latti
eof points (0-simpli
es). In Se
tion 4.4 we turn to another important 
onstru
tion inthese augmented simpli
ial sets, that of planes. Using the latti
e stru
ture, we areable to show that there are augmented simpli
ial maps proje
ting the whole spa
eonto planes, under mild 
onditions. This is the essential ingredient in showing thatHomb�(S4 [F ℄;S4 [G℄) strongly retra
ts onto S4 [F � G℄, as announ
ed above.Se
tion 5 reverses the pi
ture and shows that we may always interpret proofsas augmented simpli
ial maps. In general, we may always interpret proofs in any
artesian 
losed 
ategory (CCC) with a (stri
t) monoidal 
omonad|so-
alled stri
tCS4 
ategories|, as shown in Se
tion 5.1 and Se
tion 5.2. We give examples ofstri
t CS4 
ategories in Se
tion 5.1. In Se
tion 5.2, we show additionally that thetyped �S4 
al
ulus is a way of des
ribing the free stri
t CS4 
ategory on a givenset of base types. In parti
ular, stri
t CS4 
ategories o�er a sound a 
omplete wayof des
ribing �S4 terms and equalities between them. However, these 
ategories aregeneral 
onstru
tions that need to be made more 
on
rete. We would like to be ableto 
ompare proofs in S4 by looking at them not in any stri
t CS4 
ategory, but inmore 
on
rete ones, in parti
ular in the 
ategory b� of augmented simpli
ial sets. Weshow that �S4 terms still get interpreted faithfully in b� in Se
tion 5.7|this is Fried-man's Theorem for S4, whi
h we prove using a variant of Kripke logi
al relationsindexed over the 
ategory �, and using in an essential way the strong retra
tionof Homb�(S4 [F ℄;S4 [G℄) onto S4 [F � G℄ that we 
onstru
ted in Se
tion 4.4. We re-view logi
al relations in Se
tion 5.3, explain how they work and why they shouldbe generalized to some form of Kripke logi
al relation in our 
ase. This is 
omplex,and better viewed from an abstra
t, 
ategori
al viewpoint: this is why we use sub-s
ones (presented in Se
tion 5.4), establish the Basi
 Lemma in Se
tion 5.5 andthe Bounding Lemma in Se
tion 5.6, the main two ingredients in the equational
ompleteness theorem of Se
tion 5.7.The proof of some minor theorems of this paper have been elided. Please refer tothe full report for fuller proofs (LSV Resear
h Report, 2001, available at http://www.lsv.ens-
a
han.fr/Publis/publis-y3-2001.html).
2. Related WorkFirst, let us dispel a possible misunderstanding. The part of this paper 
on
ernedwith logi
 is about the proof theory of S4, that is, the study of proof terms as aprogramming language, not about validity or provability. The reader interested in
ategori
al models of validity in the modal 
ase is referred to [48℄ and the referen
estherein. In this line, a well-known topologi
al interpretation of the � modalityof S4, due to Kuratowski, is as follows: interpret ea
h formula F as a subset ofsome topologi
al spa
e, and �F as the interior of F . (In general, any 
o
losureoperator works here.) Note that this interpretation 
ollapses �F with ��F , whileour interpretations of � will not. In fa
t no �pF 
an be 
ompared with no �qF inour interpretations unless p = q.
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ations, vol. ?(?), 2001 4It is easier to reason on proof terms than dire
tly on proofs. In parti
ular, it ismore 
onvenient to reason on Chur
h's �-
al
uls than on natural dedu
tion proofs.This is why we use Bierman and de Paiva's �S4 language [7℄ of proof terms forS4. There would have been many other suitable proposals, e.g., [41, 11, 35℄. Inparti
ular, [21℄ dispenses with boxes around terms to represent�-introdu
tion rules,by using operators with non-negative indi
es 
orresponding to dimensions. Theaugmented simpli
ial stru
ture of the language is apparent in the syntax of thislanguage; however �S4 turned out to be more 
onvenient te
hni
ally.S4 proof terms have been used for partial evaluation [46℄, run-time programgeneration [11℄, in higher-order abstra
t syntax [31℄, et
. The idea is that whereasF is a type of values, 2F is a type of delayed 
omputations of values of type F , orof terms denoting values of type F ; d evaluates these 
omputations or these termsto return their values, and s lifts any delayed 
omputation M to a doubly delayed
omputation whose value is M itself. This is similar to eval/quote in Lisp [32℄, orto pro
esses evolving through time, say, starting at t = 0 and homing in on theirvalues at t = 1, as argued in [22℄. This is also similar to the viewpoint of Brookesand Geva [9℄, where 
omonads (2;d; s) are enri
hed into so-
alled 
omputational
omonads, by adding a natural transformation 
 from the identity fun
tor to 2allowing to lift any value, not just any 
omputation, to a 
omputation; 
 must besu
h that d Æ 
F = idF and s Æ 
F = 
2F Æ 
F . In b�, su
h a 
 indu
es a 
ontra
tinghomotopy s�1q : Kq ! Kq+1 for every q > �1, by s�1q =̂2q+1(
K�1); these areusually used to build resolutions of 
hain 
omplexes. While our 
omonads need notbe 
omputational in this sense, the role of 
ontra
ting homotopies should be
ome
learer by pondering over Proposition 65 and the 
onstru
tion of Lemma 45.It is tempting to 
ompare the 
omputational 
omonads to E. Moggi's 
omputa-tional �-
al
ulus, i.e. CCCs with a strong monad. [6℄ is a ni
e introdu
tion to thelatter, and to their relation with Fairtlough and Mendler's propositional lax logi
.A

ording to Brookes and Geva, there is no spe
ial 
onne
tion between 
omputa-tional 
omonads and strong monads. However, in a sense they do express similar
on
erns in programming language theory. Moreover, as shown in [6℄, strong mon-ads are best understood as the existential dual � (\in some future") to � (\in allfutures"). Kobayashi [29℄ deals with a 
al
ulus 
ontaining both � and �. Pfenningand Davies [40℄ give an improved framework for 
ombining both � and �, andshow how lax logi
 is naturally embedded in it. While 
lassi
al negation providesa natural link between both modalities, in intuitionisti
 logi
 the link is more ten-uous. Following R. Gor�e, there is a more 
ogent, intuitionisti
ally valid 
onne
tionbetween an existential and a universal modality, provided the existential modalityis de�ned as a monad that is left-adjoint to �. In this sense, Moggi's strong monadshould be written as the tense logi
 modality � (\in some past"), so that �F � Gis provable if and only if F � �G is. This duality is re
e
ted in programming-language semanti
s, where �F is the type of 
omputations whose values are in F ,while �G is the type of values produ
ed by 
omputations in G. Geometri
ally, �Fbuilds a spa
e of 
ones over the spa
e F , and this may be de�ned in 
ategories oftopologi
al spa
es or of augmented simpli
ial sets (e.g., as a join from a one-elementspa
e, joins being taken as in [14℄); it turns out that the 
one modality is indeed
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ations, vol. ?(?), 2001 5a strong monad. However existentials, and therefore also �, are hard to deal within establishing equational 
ompleteness results, and this is why we won't 
onsiderthem in this paper.We hope that studies of the kind presented here will help understand 
onne
-tions between 
omputation, logi
 and geometry. The relation to other geometri
ways of viewing 
omputation, su
h as [24℄ on distributed 
omputation, is yet to be
lari�ed. Another interesting pie
e of work at the interse
tion of logi
 (here, linearlogi
) and simpli
ial geometry is [3, 4℄, whi
h provides sophisti
ated models forthe multipli
ative-exponential fragment of linear logi
 [17℄ based on aÆne simpli-
ial spa
es with an extra homologi
al 
onstraint. Note that there are strong linksbetween S4 and linear logi
, see e.g., [34℄.
3. Logi
s, the Curry-Howard Corresponden
e, and S43.1. Logi
sConsider any logi
, spe
i�ed as a set of dedu
tion rules. So we have got a notionof formula, plus a notion of dedu
tion, or proof. Those formulas that we 
an dedu
eare 
alled theorems. For example, in minimal propositional logi
, one of the smallestnon-trivial logi
s, the formulas are given by the grammar:F;G ::= AjF � Gwhere A ranges over propositional variables in some �xed set �, and � is impli
ation.(This logi
 is 
alled minimal be
ause removing the only operator, �, would leaveus with something too skinny to be 
alled a logi
 at all.) The dedu
tions in thestandard Hilbert system for intuitionisti
 minimal logi
 are given by the followingaxioms: F � G � F (1)(F � G � H) � (F � G) � F � H (2)where F , G, H range over all formulas, and � asso
iates to the right, that is, e.g.,F � G � H abbreviates F � (G � H); and the modus ponens rule:F � G F (MP )Gwhi
h allows one to dedu
e G from two proofs, one of F � G, the other of F . Nowthere is a third level, apart from formulas and proofs, namely proof simpli�
ations.Consider for example the following proof:(1)F � G � F ��� �1F (MP )G � F ��� �2G(MP )FThis may be simpli�ed to just the proof �1. The idea that proofs may be simpli�eduntil no simpli�
ation 
an be made any longer, obtaining equivalent normal proofs,was pioneered by Gerhard Gentzen [45℄ to give the �rst �nitist proof (in the sense



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 6of Hilbert) of the 
onsisten
y of �rst-order Peano arithmeti
. If the logi
al systemis presented in a proper way, as with Gentzen's sequent 
al
ulus, it is easy to seethat false has no normal proof (no rule 
an lead to a proof of false). So false has noproof, otherwise any proof � of false 
ould be simpli�ed to a normal proof of false,whi
h does not exist. Hilbert systems as the one above are not really suited to thetask, and we shall instead use natural dedu
tion systems [44℄ in Se
tion 3.3.3.2. The Curry-Howard Corresponden
eNote that there is another reading of the logi
. Consider any formula as being aset: F � G will denote the set of all total fun
tions from the set F to the set G. Thenproofs are inhabitants of these sets: interpret the one-step proof (1) as the fun
tiontaking x 2 F and returning the fun
tion that takes y 2 G and returns x, interpret(2) as the more 
omplex fun
tional that takes x 2 F � G � H, y 2 F � G, andz 2 F , and returns x(z)(y(z)); �nally, if �1 is a proof of F � G|a fun
tion fromF to G|and �2 is in F , then (MP ) builds �1(�2), an element of G. Synta
ti
ally,we build a programming language by de�ning terms:M;N;P ::= KjSjMNwhere K and S are 
onstants and MN denotes the appli
ation of M to N . (Thislanguage is 
alled 
ombinatory logi
.) We may restri
t to well-typed terms, wherethe typing rules are: K has any type F � G � F , S has any type (F � G � H) �(F � G) � F � H, and if M has type F � G and N has type F , then MN hastype G. This may be written using typing judgmentsM : F , whi
h assign ea
h termM a type F , using typing rules:K : F � G � F (3)S : (F � G � H) � (F � G) � F � H (4)M : F � G N : F (MP )MN : GNote the formal similarity with the proof rules (1), (2), and (MP). Any typingrule 
an be 
onverted to a proof, by forgetting terms. Conversely, any proof 
anbe 
onverted to a typing derivation by labeling judgments with suitable terms.Furthermore, given a typable term M , there is a unique so-
alled prin
ipal typingfrom whi
h all other typings 
an be re
overed (Hindley's Theorem). This 
onsti-tutes half of the so-
alled Curry-Howard 
orresponden
e between programs (terms)and proofs. Subs
ripting K and S with the types they are meant to have at ea
ho

urren
e in a term even makes this an isomorphism between typable terms andproofs.Let us introdu
e the se
ond half of the Curry-Howard 
orresponden
e: the proofsimpli�
ation steps give rise to program redu
tion rules ; here, the natural 
hoi
e isKMN !M , SMNP !MP (NP ). It turns out that these redu
tion rules give riseto a notion of 
omputation, where a term (a program) is redu
ed until a normal termis rea
hed. This redu
tion pro
ess is then exa
tly the proof simpli�
ation pro
essdes
ribed above.
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ations, vol. ?(?), 2001 73.3. Natural Dedu
tion and the Lambda-Cal
ulusThe language of Hilbert systems and 
ombinatory logi
 is not easy to work with,although this 
an be done [25℄. A more 
omfortable 
hoi
e is given by Chur
h's�-
al
ulus [2℄, the programming language asso
iated with minimal logi
 in naturaldedu
tion format [44℄. Its terms are given by the grammar:M;N;P ::= xj�x �M jMNwhere x ranges over variables, �x �M is �-abstra
tion (\the fun
tion that maps xto M", where M typi
ally depends on x). For 
onvenien
e, we write MN1N2 : : : Nkinstead of (: : : ((MN)N1)N2 : : :)Nk (appli
ation asso
iates to the left), and �x1; x2;: : : ; xk �M instead of �x1 � �x2 � : : : �xk �M .Typing, i.e., proofs, are des
ribed using sequents instead of mere formulae. Asequent is an expression of the form x1 : F1; : : : ; xn : Fn `M : F , meaning that Mhas type F under the assumptions that x1 has type F1, . . . , xn has type Fn. Thisis needed to type �-abstra
tions. In this paper, the 
ontext x1 : F1, . . . , xn : Fnwill be a list of bindings xi : Fi, where the xi's are distin
t. We shall usually write�, � for 
ontexts. The notation �; x : F then denotes x1 : F1; : : : ; xn : Fn; x : F ,provided x is not one of x1, . . . , xn. The typing rules are:(Ax) (1 6 i 6 n)x1 : F1; : : : ; xn : Fn ` xi : Fi�; x : F `M : G (� I)� ` �x �M : F � G � `M : F � G � ` N : F (� E)� `MN : GFinally, 
omputation, i.e., proof simpli�
ation, is des
ribed by the �-redu
tionrule (�x �M)N ! M [x := N ℄, where M [x := N ℄ denotes the (
apture-avoiding)substitution of N for x in M . We may also add the �-redu
tion rule �x �Mx!M ,provided x is not free in M . Although this is not ne
essary for proof normalization,�-redu
tion allows one to get an extensional notion of fun
tion, where two fun
tionsare equal provided they return equal results on equal arguments. (This also 
orre-sponds to redu
ing proofs of axiom sequents to proofs 
onsisting of just the (Ax)rule, proof-theoreti
ally.)3.4. Minimal Intuitionisti
 S4The topi
 of this paper is the intuitionisti
 modal logi
 S4. For simpli
ity, we
onsider minimal intuitionisti
 S4, whi
h 
aptures the 
ore of the logi
: formulae,a.k.a. types, are de�ned by: F ::= A j F � F j �F where A ranges over a �xed set� of base types. (While adding 
onjun
tions ^, and truth > do not pose any newproblems, it should be noted that adding disjun
tions _, falsehood ? or � wouldnot be as inno
uous for some of the theorems of this paper.)The usual semanti
s of (
lassi
al) S4 is its Kripke semanti
s. For any Kripkeframe (W ;D) (a preorder), and a valuation � mapping base types A 2 � to sets ofworlds (those intended to make A true), de�ne when a formula F holds at a worldw 2 W in �, abbreviated w; � j= F : w; � j= A if and only if w 2 �(A); w; � j= F � Gif and only if, if w; � j= F then w; � j= G; and w; � j= �F if and only for everyw0 D w, w0; � j= F . Think of �F as meaning \from now on, in every future F holds".



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 8The idea that the truth value of a formula F may depend on time is natural, e.g.in physi
s, where \the ele
tron has gone through the left slit" may hold at time tbut not at t0.In intuitionisti
 S4 we may re�ne the semanti
s of formulae to in
lude anotherpreordering > on worlds, a

ounting for intuitionisti
 for
ing. Intuitively, > may besome ordering on states of mind of a mathemati
ian, typi
ally the � ordering onsets of basi
 fa
ts that the mathemati
ian knows (the analogy is due to Brouwer).Then if the mathemati
ian knows F � G when he is in some state of mind w(abbreviated w j= F � G), and if he knows F , he should also know G. Further,knowing F � G in state of mind w also means that, on
e the mathemati
ian hasextended his state of mind to a larger w0, if this w0 allows him to dedu
e F , then heshould be able to dedu
e G in the w0 state of mind. The intuitionisti
 meaning ofF � G is therefore that w j= F � G if and only if, for every w0 > w, if w0 j= F thenw0 j= G. Knowing the negation of F in state of mind w not only means knowingthat F does not hold in w, but also that it 
annot hold in any state of mind w0 > w,i.e., any w0 extending w. One distinguishing feature of intuitionisti
 logi
 is that itmay be the 
ase that there are formulae F su
h that neither F nor its negation holdin some state of mind w|think of F as an unsolved 
onje
ture|, so the 
lassi
altautology F _ :F does not hold in general.The Kripke semanti
s of intuitionisti
 S4 is as follows.De�nition 1 (Kripke Semanti
s). An intuitionisti
 Kripke frame is a triple (W ;D;>), where D and > are preorderings on W su
h that > � D.A valuation � on W is a map from base types in � to upper sets of worlds in W;an upper set is any subset of W su
h that whenever w 2W and w0 > w, w0 2W .The semanti
s of S4 formulas is given by:w; � j= A i� w 2 �(A)w; � j= F � G i� for every w0 > w, if w0; � j= F then w0; � j= Gw; � j= �F i� for every w0 D w, w0; � j= FAn S4 formula F is valid, written j= F , if and only if w; � j= F in every frame(W ;D;>), for every w 2 W, for every valuation �.The resulting logi
 is 
alled IntS4 in [47℄, and the 
ondition relating > and Dthere is (> Æ D Æ >) =D. In the S4 
ase where D is a preorder, this is equivalent toour > � D.For all our analogy with states of mind of a mathemati
ian is worth, the 
ondition> � D intuitively states that you 
an only learn new basi
 fa
ts (in
rease w.r.t. >)while time passes (D), but time may pass without you learning any new fa
ts.We have mentioned the � modality in Se
tion 2. This would have the expe
tedsemanti
s: w; � j= �F if and only if for some w0 with w D w0, w0; � j= F . The othertwo modalities � (\in all pasts") and � (\in some future") are naturally de�nedin intuitionisti
 modal logi
 by introdu
ing a new binary relation E on W , whi
hneeds not be the 
onverse of D, letting w; � j= �F if and only if for every w0 E w,w0; � j= F , and w; � j= �F if and only if for every w0 with w E w0, w0; � j= F [47℄.The only 
onstraints on >, D and E are that, in addition to > � D, we should have
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ations, vol. ?(?), 2001 9> � E, E � (E\Do)Æ >, and D � (D\Eo)Æ >, where Ro denotes the 
onverse ofrelation R.3.5. Natural Dedu
tion for Intuitionisti
 S4In this paper, we shall not be so mu
h interested in validity of S4 formulas as ina
tual proofs of S4 formulas. So let us talk about proofs.We use �S4 as a language of proof terms for S4 [7℄. The raw terms are:M;N;P ::= x jMN j �x �M j dM j M � �where � is an expli
it substitution, that is, a substitution that appears as an expli
it
omponent of terms. A substitution � is any �nite mapping from variables xi toterms ti, 1 6 i 6 n, and is written fx1 := t1; : : : ; xn := tng; its domain dom � is theset fx1; : : : ; xng. (We omit the type subs
ript of variables whenever 
onvenient.)The yield yld � is de�ned as Sx2dom � fv(�(x)), mutually re
ursively with the set offree variables fv(M) of the term M : fv(x)=̂fxg, fv(MN)=̂ fv(M) [ fv(N), fv(�x �M)=̂ fv(M) n fxg, fv(dM)=̂ fv(M), fv( M � �)=̂ yld �. (We use =̂ for equality byde�nition.) Moreover, we assume that, in any term M � �, fv(M) � dom �; we alsoassume Barendregt's naming 
onvention: no variable o

urs both free and bound,or bound at two di�erent pla
es|bound variables are x in �x �M and all variablesin dom � in M � �.Our notations di�er from [7℄. There M � fx1 := N1; : : : ; xn := Nng is writtenbox M with N1; : : : ; Nn for x1; : : : ; xn. The new notation allows one, �rst, to ma-terialize the expli
it substitution more naturally, and se
ond the frame notationwill be put to good use to explain what simpli
es look like. Also, dM is writtenunbox M in [7℄; we use dM be
ause it is more 
on
ise and hints that some fa
eoperator is at work.Substitution appli
ationM� is de�ned by: x�=̂�(x) if x 2 dom �, x�=̂x otherwise;(MN)�=̂(M�)(N�); (�x�M)�=̂�x�(M�) provided x 62 dom �[yld �; (dM)�=̂d(M�);( M � �0)�=̂ M � (�0 � �), where substitution 
on
atenation �0 � � is de�ned as fx1 :=M1; : : : ; xn :=Mng � �=̂fx1 :=M1�; : : : ; xn :=Mn�g.Terms are equated modulo �-
onversion, the smallest 
ongruen
e � su
h that:�x �M � �y � (Mfx := yg)M � fx1 := N1; : : : ; xn := Nng �Mfx1 := y1; : : : ; xn := yng � fy1 := N1; : : : ; yn := Nngprovided y is not free in M in the �rst 
ase, and y1, . . . , yn are not free in M andare pairwise distin
t in the se
ond 
ase, with identi
al type subs
ripts as x1, . . . ,xn respe
tively.The d operator is a kind of \eval", or also of \
omma" operator in the lan-guage Lisp [32℄. The M; � 7! M � � operator is more 
omplex. Let's �rst lookat a spe
ial 
ase: for any term M su
h that fv(M) = fx1; : : : ; xng, let M beM � fx1 := x1; : : : ; xn := xng|or, more formally, Mfx1 := x01; : : : ; xn := x0ng �fx01 := x1; : : : ; x0n := xng. Then M behaves like \quote" M in Lisp, or more ex-
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tly, \ba
kquote" M ; and provided dom � = fv(M), M � � is exa
tly ( M )�: thisis a synta
ti
 
losure in the sense of [5℄, namely a quoted term M together with anenvironment � mapping free variables of M to their values.(Ax)�; x : F;� ` x : F� `M : F � G � ` N : F (� E)� `MN : G �; x : F `M : G (� I)� ` �x �M : F � G� `M : �F (�E)� ` dM : F 16i6nz }| {� ` Ni : �Fi x1 : �F1; : : : ; xn : �Fn `M : G (�I)� ` M � fx1 := N1; : : : ; xn := Nng : �GFigure 1: Typing �S4 terms
The typing rules [7℄, de�ning a natural dedu
tion system for minimal S4 are asin Figure 1, where �, �, . . . , are typing 
ontexts, i.e. lists of bindings x : F , wherex is a variable, F is a type, and no two bindings 
ontain the same variable in anygiven 
ontext. The ex
hange rule:�; x : F; y : G;� `M : H�; y : G; x : F;� `M : His easily seen to be admissible, so we 
an 
onsider typing 
ontexts as multisetsinstead of lists. In parti
ular, there is no 
hoi
e to be made as to the order of thevariables x1, . . . , xn in the right premise of rule (�I).
(�) (�x �M)N !Mfx := Ng (d) d( M � �)!M�(g
) M � (�; fx := Ng)! M � � provided x 62 fv(M)(
tr) M � (�; fx := N; y := Ng)! Mfy := xg � (�; fx := Ng)( � ) M � (�; fx := N � �0g)! Mfx := N g � (�; �0)(�) �x �Mx!M provided x 62 fv(M) (��) dx � fx := Ng ! NFigure 2: The redu
tion relation of �S4
De�ne the redu
tion relation! on �S4-terms as the smallest relation 
ompatiblewith term stru
ture (i.e., if M ! N then C[M ℄ ! C[N ℄, where C[P ℄ denotes anyterm with a distinguished o

urren
e of P ) de�ned in Figure 2 [7, 20℄. Terms thatmat
h the left-hand side of rules are 
alled redexes (for redu
tion expression). The
onvertibility relation � is the smallest 
ongruen
e extending !; in other words,� is the re
exive symmetri
 transitive 
losure of !. In addition, we write !+ thetransitive 
losure of !, and !� its re
exive transitive 
losure.
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ations, vol. ?(?), 2001 11Rule (d) is like Lisp's rule for evaluating quoted expressions: evaluating M , byd M , redu
es to M . Rule ( � ) 
an be seen either as an inlining rule, allowing oneto inline the de�nition of x as N inside the body M of the box M , or logi
allyas a box-under-box 
ommutation rule. (g
) is a garbage 
olle
tion rule, while (
tr)is a 
ontra
tion rule. We use a new notation in these rules: if � and �0 are twosubstitutions with disjoint domains, then �; �0 denotes the obvious union.The last two rules are so-
alled extensional equalities. Together with (g
), (��)allows us to dedu
e dx � � � x�, but not dM � � � M� for any term M : M hasto be a variable. For a dis
ussion of this, see [21℄.
3.6. Standard Properties: Subje
t Redu
tion, Con
uen
e, Strong Nor-malizationWe now prove standard properties of proof simpli�
ation 
al
uli.The following lemma is by a series of easy but tedious 
omputations; it says thatredu
tion preserves typings, alternatively that it rewrites proofs to proofs of thesame sequents.
Lemma 2 (Subje
t Redu
tion). If the typing judgment � ` M : F is derivableand M ! N then � ` N : F is derivable.
Proposition 3 (Con
uen
e). If M !� N1 and M !� N2, then there is P su
hthat N1 !� P and N2 !� P .
Proof. We 
losely follow [2℄. The plan of the proof is as follows. We �rst repla
e!�by another notion of redu
tion 1�!, whi
h will be strongly 
on
uent (if M 1�!M1and M 1�!M2, then there is P su
h that M1 1�!P and M2 1�!P ), hen
e 
on
uent.This will be proved by showing that a related 
al
ulus �S4� is terminating (all rewritesequen
es are �nite) and lo
ally 
on
uent (if M ! N1 and M ! N2, then thereis P su
h that N1 !� P and N2 !� P , where ! stands for the rewrite relationof �S4�), hen
e 
on
uent by Newman's Lemma. (This is the �nite developmentstheorem [2℄.) We shall 
on
lude by observing that !� 1�! �!�, where ! is therewrite relation of �S4, so that 
on
uen
e of 1�! implies that of !.De�ne a new 
al
ulus �S4� as follows. Compared to �S4, �S4� has an additionalterm 
onstru
tion (��x �M)N , and rule � is removed, and repla
ed by:(��) (��x �M)N !Mfx := NgIn parti
ular, (�x �M)N is not redu
ible in �S4�. A long and uninteresting series of
omputations shows that all 
riti
al pairs are joinable [13℄, hen
e �S4� is lo
ally 
on-
uent. To show that �S4� terminates, de�ne a notion of parameterized size of terms
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ations, vol. ?(?), 2001 12jM j(�)|parameterized by partial fun
tions � from variables to positive integers:jxj(�) =̂ �(x) jMN j(�) =̂ jM j(�) + jN j(�)j�x �M j(�) =̂ 1 + jM j(�[x 7! 1℄) j(��x �M)N j(�) =̂ 1 + jM j(�[x 7! jN j(�)℄)jdM j(�) =̂ 1 + jM j(�)��� M � fx1 := N1; : : : ; xn := Nng��� (�) =̂ 1 + jM j([x1 7! jN1j(�); : : : ;xn 7! jNnj(�)℄)+jN1j(�) + : : :+ jNnj(�)where the notation [x1 7! k1; : : : ; xn 7! kn℄ denotes the map sending xi to ki,1 6 i 6 n, and ��0 denotes the map that sends x to �0(x) if this is de�ned, and to�(x) otherwise.The following properties are easily proved by stru
tural indu
tion on M :1. If fv(M) � dom �, then jM j(�) is de�ned.2. jM j(�) is a positive integer.3. jMfx1 := N1; : : : ; xn := Nngj(�) = jM j(�[x1 7! jN1j(�); : : : ; xn 7! jNnj(�)℄).4. If �(x) > �0(x) for every x, then jM j(�) > jM j(�0). If moreover �(x) > �0(x)for some x 2 fv(M), then jM j(�) > jM j(�0).5. If � and �0 agree on fv(M), then jM j(�) = jM j(�0).Then we show that for every rule l! r of �S4�, for every � with domain 
ontainingfv(l), jlj(�) > jrj(�). This is by straightforward 
al
ulations.Now, using 4, this entailsthat jM j(�) > jN j(�) whenever M ! N in �S4�. So �S4� terminates, and byNewman's Lemma is 
on
uent.Let's say that the �S4�-term M 0 is obtained from M by adding stars if and onlyif M is obtained from M 0 by erasing all star signs, i.e., repla
ing ea
h subterm(��x � N)N 0 by (�x � N)N 0, re
ursively. (Note that we 
annot add stars on any �-abstra
tion, only on those that are immediately applied to some argument.) De�nethe 1�! rewrite relation on �S4 by M 1�!N if and only if we may add stars to M ,getting M 0, and M 0 !� N in �S4�. (Note that N is a �S4-term, so every star mustbe erased by the redu
tion.)We 
laim that 1�! is 
on
uent. Let indeed M 1�!M1, M 1�!M2. So we may addstars to M , getting M 01 and M 02 respe
tively, so that M 01 !� M1 and M 02 !� M2in �S4�. By adding stars in M at every position where a star was added in M 01 orin M 02, and 
orrespondingly adding 
orresponding stars in every term appearing onthe given rewrites fromM 01 toM1 and fromM 02 toM2, we get rewrites in �S4� fromM 0 to some �S4� terms N1 and N2 that are obtained from M1 and M2 respe
tivelyby adding stars. Sin
e the redu
tion relation of �S4� is terminating and 
on
uent,N1 and N2 have the same normal form P . Be
ause rule (��) does not apply to P ,P does not have any star, and is therefore a �S4-term. So M1 1�!P and M2 1�!P .This means that 1�! is strongly 
on
uent (M1 and M2 rewrite to P in exa
tly onestep [13℄), hen
e 
on
uent.It is now 
lear that !� 1�!: e.g., if M ! N by (�), add a star on the (�)-redexthat gets 
ontra
ted. Also, 1�! �!�, sin
e erasing all stars turns (��) into (�).
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ations, vol. ?(?), 2001 13So if M !� N1 and M !� N2, then M 1�!�N1 and M 1�!�N2 sin
e !� 1�!.Therefore for some P , N1 1�!�P and N2 1�!�P by 
on
uen
e of 1�!. So N1 !� Pand N2 !� P , sin
e 1�! �!�.Con
uen
e implies the important property that, if a term 
an be redu
ed to anormal term, then the latter is unique (
onsider the 
ase where both N1 and N2are normal, i.e., do not redu
e to any term).Another important property is that every typable term (proof) redu
es to a (ne
-essarily unique) normal term (proof). We a
tually show a bit more:Proposition 4 (Strong Normalization). If M is typable, then it is stronglynormalizing, i.e., every redu
tion sequen
e starting from M is �nite.Proof. By the redu
ibility method [18℄. Let SN be the set of strongly normalizingterms, and de�ne an interpretation of types as sets of terms as follows: for everybase type A, jjAjj=̂SN ;jjF � Gjj=̂fM 2 SN jwhenever M !� �x �M1 then for every N 2 jjF jj;M1fx :=Ng 2 jjGjjg;jj�F jj=̂fM 2 SN jwhenever M !� M1 � � then M1� 2 jjF jjg. Observe that:(CR1) jjF jj � SN for every type F ;(CR2) For every M 2 jjF jj, if M ! M 0 then M 0 2 jjF jj. This is by stru
turalindu
tion on F . This is 
lear when F is a base type. For impli
ations, assumeM 2 jjF � Gjj and M ! M 0; then M 0 2 SN , and if M 0 !� �x �M1, thensin
e M 2 jjF � Gjj, M !� �x �M1, so by de�nition M1fx := Ng 2 jjGjj forevery N 2 jjF jj; therefore M 0 2 jjF � Gjj. The 
ase of box types is provedsimilarly.(CR3) For every neutral term M , if M 0 2 jjF jj for every M 0 with M ! M 0,then M 2 jjF jj. (Call a term neutral if and only if it is not of the form�x �M or M � �.) This is again by stru
tural indu
tion on F . This is 
learwhen F is a base type. For impli
ations, assume that every M 0 su
h thatM ! M 0 is in jjF � Gjj, and show that M 2 jjF � Gjj. Clearly M 2 SN ,sin
e every redu
tion starting from M must be empty or go through someM 0 2 jjF � Gjj � SN by (CR1). So assume that M !� �x � M1. Sin
eM is neutral, the given redu
tion is non-empty, so there is an M 0 su
h thatM !M 0 !� �x �M1. By assumption M 0 2 jjF � Gjj, so for every N 2 jjF jj,M1fx := Ng 2 jjGjj. It follows that M 2 jjF � Gjj. The 
ase of box types issimilar.Next we show that:1. If M 2 jjF � Gjj and N 2 jjF jj, then MN 2 jjGjj. By (CR1), M and Nare in SN , so we prove this by indu
tion on the pair (M;N) ordered by !,lexi
ographi
ally. Note that MN is neutral, and may only rewrite in one stepto M 0N where M ! M 0, or to MN 0 where N ! N 0, or to M1fx := Ng by(�) (if M = �x �M1). In the �rst two 
ases, M 0 2 jjF � Gjj, resp. N 0 2 jjF jjby (CR2), so we may apply the indu
tion hypothesis. In the third 
ase, this
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ations, vol. ?(?), 2001 14is by de�nition of jjF � Gjj. In ea
h 
ase we get a term in jjGjj, so by (CR3)MN 2 jjGjj.2. If Mfx := Ng 2 jjGjj for every N 2 jjF jj, then �x � M 2 jjF � Gjj. Toshow this, we show the 
onverse of 1: if for every N 2 jjF jj, MN 2 jjGjj,then M 2 jjF � Gjj. Indeed, �rst M 2 SN : take any variable x; x is injjF jj by (CR3), so Mx 2 jjGjj by assumption, so Mx 2 SN by (CR1), hen
eM 2 SN . Se
ond, assume that M !� �x � M1, then for every N 2 jjF jj,MN !� M1fx := Ng 2 jjGjj by (CR2). So M 2 jjF � Gjj.Using this, assume that Mfx := Ng 2 jjGjj for every N 2 jjF jj, and showthat �x �M 2 jjF � Gjj. It is enough to show that (�x �M)N 2 jjGjj forevery N 2 jjF jj. We do this by indu
tion on (M;N) ordered by !, whi
h iswell-founded: indeed, N 2 jjF jj � SN by (CR1), and M = Mfx := xg 2jjGjj � SN by (CR1), sin
e x 2 jjF jj by (CR3). Sin
e (�x �M)N is neutral,apply (CR3): (�x �M)N may rewrite to (�x �M 0)N with M !M 0 (this is injjGjj by (CR2) and the indu
tion hypothesis), or to (�x �M)N 0 with N ! N 0(similar), or to Mfx := Ng by (�) (in jjGjj by assumption), or to M 0N by(�) where M =M 0x, x not free in M 0 (then M 0N =Mfx := Ng, whi
h is injjGjj by assumption).3. If M 2 jj�F jj, then dM 2 jjF jj. This is by indu
tion on M ordered by !,whi
h is well-founded sin
e by (CR1) M 2 SN . Now dM may rewrite eitherto dM 0 with M ! M 0 (then apply the indu
tion hypothesis, noting thatM 0 2 jj�F jj by (CR2), so dM 0 2 jjF jj), or to M1�, provided M = M1 � �(then M1� 2 jjF jj by de�nition). Sin
e dM is neutral, by (CR3) dM 2 jjF jj.4. IfM� 2 jjF jj and � maps ea
h variable x 2 dom � to some strongly normalizingterm, then M � � 2 jj�F jj. First we show the 
onverse of 3: if dM 2 jjF jjthen M 2 jj�F jj. First sin
e dM 2 jjF jj � SN by (CR1), M 2 SN . Itremains to show that whenever M !� M1 � � then M1� 2 jjF jj. Howeverthen dM !� M1� must be in jjF jj by (CR2).Knowing this, let M� be in jjF jj and � map ea
h variable x 2 dom � to somestrongly normalizing term. Let us show that M � � 2 jj�F jj. It is enough toshow that d M � � 2 jjF jj, using (CR3) sin
e this term is neutral. Letting �be fx1 := N1; : : : ; xn := Nng, we show this by indu
tion on, �rst, N1; : : : ; Nnordered by the multiset extension [12℄ of ! [., where . is the immediatesuperterm relation (it is well-known that as soon as Ni is in the well-foundedpart of !, it is also in the well-founded part of ! [.; the multiset extensionallows one to repla
e any element Ni of the multiset by any �nite numberof smaller elements, and is well-founded on all multisets of elements takenfrom the well-founded part of the underlying ordering); and se
ond on M�,lexi
ographi
ally. Now d M � � may rewrite in one step to:� M� by (d); this is in jjF jj by assumption.� dN1 by (��), where M = dx1 and n = 1. Then dN1 = M� is in jjF jj byassumption.� d M 0 � � where M ! M 0. By (CR2) M 0� 2 jjF jj, so we may apply the
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tion hypothesis.� d M ��0 where �0 = fx1 := N1; : : : ; xi := N 0i ; : : : ; xn := Nng and Ni ! N 0i .Sin
e N 0i 2 SN , we may apply the indu
tion hypothesis.� d M � �0 where � = �0; fx := Ng and x is not free in M by (g
). This isby the indu
tion hypothesis. The same argument applies for (
tr).� d Mfx := N g �(�1; �0) where � = �1; fx := N ��0g by ( � ). We wish toapply the indu
tion hypothesis. For this, we have to 
he
k that Mfx :=N g(�1; �0) is in jjF jj. ButM� is in jjF jj and equalsM(�1; fx := N ��0g.The latter is equal or rewrites by (g
) toM(�1; fx := ( N )�0g) =Mfx :=N g(�1; �0), so the latter is in jjF jj by (CR2).We now 
he
k that, given any typing derivation � of x1 : F1; : : : ; xn : Fn `M : F ,for every N1 2 jjF1jj, . . . , Nn 2 jjFnjj, Mfx1 := N1; : : : ; xn := Nng 2 jjF jj. Thisis by stru
tural indu
tion on �. The (Ax) 
as is obvious, while the other 
ases aredealt with by using items 1{4 above. Sin
e xi 2 jjFijj by (CR3), it follows thatM 2 jjF jj. By (CR1), M 2 SN .So ea
h proof (typed term) has a unique normal form.3.7. The Shape of Normal Forms, �-Long Normal FormsOne way of des
ribing normal forms for typed terms is by the typing system BNof Figure 3.
(AxE)�; x : F;� `E x : F � `E M : F � G � `I N : F (� EE)� `E MN : G� `E M : F (Flip)� `I M : F � `E M : �F (�EE)� `E dM : F

�; x : F `I M : G (� II)� `I �x �M : F � G 16i6nz }| {� `E Ni : �Fi x1 : �F1; : : : ; xn : �Fn`I M : G (�II)� `I M � fx1 := N1; : : : ; xn := Nng : �G(fv(M) = fx1; : : : ; xng)Figure 3: Typing beta-normal forms: System BN
Lemma 5. Call a term beta-normal if and only if it 
ontains no (�), (d), (g
),( � ) redex (i.e., no redex ex
ept possibly (
tr), (�) or (��) redexes).If � `M : F and M is beta-normal, then � `I M : F . Moreover, if M is neutral,i.e., not starting with a � or a box, then � `E M .Conversely, if � `I M : F or � `E M : F , then � `M : F andM is beta-normal.
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tural indu
tion on the given derivation of � ` M : F . The 
asesM a variable, and M of the form �x � M1 are trivial. If M = M1M2, with � `M1 : G � H and � ` M2 : G, then M1 must be neutral, otherwise by typing M1would start with a �, and thenM would be a (�)-redex. So by indu
tion hypothesis� `E M1 : G � H. Sin
e by indu
tion hypothesis � `I M2 : G, it follows by rule(� EE) that � `E M : H. The 
ase where M = dM1 is similar. Finally, when M isof the form M1 � �, with � = fx1 : N1; : : : ; xn : Nng, � ` Ni : �Fi (1 6 i 6 n), andx1 : �F1; : : : ; xn : �Fn ` M1 : F , then by indu
tion hypothesis x1 : �F1; : : : ; xn :�Fn `I M1 : F . Moreover, sin
eM is not a (g
) redex, fv(M) = fx1; : : : ; xng. Also,every Ni must be neutral, otherwise by typing they would start with a box, whi
h isforbidden be
auseM is not a ( � ) redex, so by indu
tion hypothesis � `E Ni : �Fi.It follows that rule (�II) applies, therefore � `I M : �F .Conversely: if � `I M : F or � `E M : F , then it is obvious that � ` M : F :erase all E and I subs
ripts, and remove all instan
es of (Flip). It remains to showthat M is beta-normal. Consider any subterm of M . If it is of the form M1M2,then its type must have been derived using the (� EE) rule, whi
h implies thatM1 is typed as in � `E M1 : F � G; but no rule in BN (Figure 3) would allowone to derive su
h a judgment if M1 began with �; so M1M2 is not a (�)-redex.Similarly, no subterm of M 
an be a (d) redex. The side-
onditions on rule (�II)entail that no subterm of M is a (g
) redex, while the fa
t that Ni : �Fi must havebeen derived using a `E judgment entails that no Ni starts with a box, hen
e thatno subterm of M is a ( � ) redex. So M is beta-normal.A more 
onvenient form than normal forms is the �-long normal form, imitatingthat of [27℄ in the non-modal 
ase. In the S4 
ase, �-long normal forms are slightlymore 
omplex, but 
an be des
ribed as follows, in
luding an additional linearity
onstraint on boxes.De�nition 6 (�-long normal form). Call a term M linear if and only if everyfree variable of M o

urs exa
tly on
e in M . Formally, de�ne the notion of beinglinear in W , where W is a �nite set of variables, as follows. Every variable is linearin W , �x �M is linear in W provided M is linear in W n fxg, MN is linear in Wprovided M and N are and fv(M) \ fv(N) \W = ;, �M is linear in W providedM is, M � fx1 := N1; : : : ; xn := Nng is linear in W provided ea
h Ni, 1 6 i 6 n,is linear in W , and fv(Ni)\ fv(Nj)\W = ; for every 1 6 i 6= j 6 n. A term M islinear provided it is linear in fv(M).Call (Flip0) the rule (Flip) restri
ted to the 
ase where F is in the set � of basetypes, and (�I0) the rule (�II) restri
ted to the 
ase where M is linear. Call BN0the typing system BN where all instan
es of (Flip) are instan
es of (Flip0), andall instan
es of (�II) are instan
es of (�I0).A term M is said to be �-long normal of type F in � if and only if we 
an derive� `I M : F in system BN0.Lemma 7 (Weakening). For every BN derivation of � `� M : F (� 2 fI; Eg),for every 
ontext �, there is a BN derivation of �;� `� M : F .
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ations, vol. ?(?), 2001 17Proof. By stru
tural indu
tion on the given derivation. This is mostly obvious,provided we assume all bound variables have been renamed so as to be distin
tfrom the ones in �.Lemma 8. For every M su
h that � `M : F , M has an �-long normal form �[M ℄.That is, there is a term �[M ℄ su
h that M � �[M ℄ and � ` �[M ℄ : F .Proof. First by Proposition 4 and Lemma 5, we may assume that � `I M : F . Theidea is then, �rst, to rewrite every instan
e of (Flip) on non-base types F usingonly instan
es of (Flip) on smaller types F , until all we get is instan
es of (Flip0).This is done using the following two rules:
� `E M : F � G (Flip)� `I M : F � G �! �; x : F `E M : F � G (AxE)�; x : F `E x : F (Flip)�; x : F `I x : F (� EE)�; x : F `E Mx : G (Flip)�; x : F `I Mx : G (� II)� `I �x �Mx : F � G

(5)

� `E M : �F (Flip)� `I M : �F �! � `E M : �F
(AxE)x : �F `E x : �F (�EE)x : �F `E dx : F (Flip)x : �F `I dx : F (�II)� `I dx � fx :=Mg : �F

(6)
where in the right-hand side of the �rst rule, the derivation of �; x : F `E M :F � G is obtained from the one of � `E M : F � G by weakening (Lemma 7).This terminates, be
ause the sum of the sizes of formulae on the right-hand sidesof judgments in (Flip) de
reases (de�ne the size jF j of a formula F by jAj=̂1,jF � Gj=̂jF j+ jGj+ 1, j�F j=̂jF j+ 1).On the other hand, we make every instan
e of (�II) one of (�I0) by linearizingthe term M . That is, for ea
h free variable xi in M , 1 6 i 6 n, with ki > 1 distin
to

urren
es in M , 
reate ki fresh variables xi1; : : : ; xiki , letM 0 be M where the jtho

urren
e of xi is repla
ed by xij , for every 1 6 i 6 n, 1 6 j 6 ki, and rewrite thederivation: 16i6nz }| {� `E Ni : �Fi x1 : �F1; : : : ; xn : �Fn `M : F (�II)� ` M � fx1 := N1; : : : ; xn : Nng : �F (7)
into: 16i6n;16j6kiz }| {� `E Ni : �Fi (xij : �Fi)16i6n;16j6ki `M 0 : F (�I0)� ` M 0 � f(xij := Ni)16i6n;16j6kig : �F (8)



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 18Lemma 9. Let � ` M : F . Then M has at most one �-long normal form of typeF in �.Proof. Let M 0 be an �-long normal form of M . M 0 is beta-normal by 
onstru
tion.Let R� be the rewrite system 
onsisting of rules (�) and (��). It is 
lear thatR� terminates and rewrites beta-normal terms to beta-normal terms. Similarly therewrite system R
tr 
onsisting of the sole rule (
tr) terminates and rewrites R�-normal beta-normal terms to R�-normal beta-normal terms. Let M 00 be any R�-normal form of M 0, and M 000 be any R
tr-normal form of M 00. Then M 000 is R
tr-normal, R�-normal and beta-normal, hen
e normal.Sin
eM 0 is an �-long normal form ofM ,M �M 0, soM �M 000. By Proposition 3and sin
eM 000 is normal,M !� M 000. Summing up,M !� M 000�R
tr  M 00�R�  M 0,where !R denotes rewriting by R.Observe now that the rewrite system R�1
tr on derivations de�ned by the trans-formation M1fy := xg � (�; fx := Ng)! M1 � (�; fx := N; y := Ng) (where bothx and y are free in M1) is lo
ally 
on
uent. Moreover, whenever M1 is well-typedand beta-normal, and rewrites to M2 by R
tr, then M2 rewrites to M1 by R�1
tr .Finally, R�1
tr terminates: for any term M1, let �(M1) be Px2fv(M1)(n(x;M1) � 1)where n(x;M1) is the number of o

urren
es of x in M1; by indu
tion on �(M1)followed lexi
ographi
ally by the multiset of the terms x�, x 2 dom � ordered by!R�1
tr , M1 � � is R�1
tr -terminating as soon as ea
h x� is, x 2 dom �; it follows bystru
tural indu
tion on terms that every term is R�1
tr -terminating.Similarly, the rewrite system R�1� on derivations de�ned by (5) and (6) is ter-minating (as already noti
ed in Lemma 8), lo
ally 
on
uent, and whenever M1 iswell-typed and beta-normal, and rewrites to M2 by R�, then M2 rewrites to M1 byR�1�So if M 0 is any �-long normal form of M , then M !� M 000 !�R�1
tr M 00 !�R�1� M 0.In general, if M 01 and M 02 are two �-long normal forms of M , we get M !�M 000 !�R�1
tr M 001 !�R�1� M 01 and M !� M 000 !�R�1
tr M 002 !�R�1� M 02. Sin
e R�1
tr is
on
uent and M 001 and M 002 are R�1
tr-normal, M 001 =M 002 . Sin
e R�1� is 
on
uent andM 01 and M 02 are �-long normal, hen
e R�1� -normal, M 01 =M 02.Lemmas 8 and 9 entail:Proposition 10 (�-long normalization). For every term M su
h that � `M : Fis derivable, M has a unique �-long normal form of type F in �, whi
h we write�[M ℄. In parti
ular, whenever � ` M : F and � ` M 0 : F , M � M 0 if and only if�[M ℄ = �[M 0℄.The value of �-long normal forms is that substituting terms Ni of a 
ertain formfor variables in any �-long normal form yields an �-long normal form again:Lemma 11. If x1 : F1; : : : ; xn : Fn;� `� M : F (� 2 fI; Eg) and � `E Ni : Fi insystem BN0 for every i, 1 6 i 6 n, then �;� `� Mfx1 := N1; : : : ; xn := Nng : Fin system BN0.



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 19Proof. By stru
tural indu
tion on the given derivation of x1 : F1; : : : ; xn : Fn;� `�M : F in BN0. If this was derived by (AxE), then � = E; if M = xi for somei, then F = Fi, Mfx1 := N1; : : : ; xn := Nng = Ni and we may indeed dedu
e�;� `E Ni : F , by weakening from � `E Ni : F (Lemma 7); otherwise let Mbe variable x, then Mfx1 := N1; : : : ; xn := Nng = x, and we get �;� `E x : Fby (AxE). If the last rule is (� EE), (�EE) or (Flip0), this is by the indu
tionhypothesis, straightforwardly. If the last rule is (� II), then � = I, M is of the form�x �M1, F is of the form G � H, and by indu
tion hypothesis we have been able toderive �;�; x : G `I M1fx1 := N1; : : : ; xn := Nng : H, from whi
h we get �;� `IMfx1 := N1; : : : ; xn := Nng : G � H by (� II). Finally, if the last rule is (�I0),then � = I, F is of the form �G, M is of the form M1 � fy1 := P1; : : : ; yk := Pkg,fv(M1) = fy1; : : : ; ykg, M1 is linear, and the typing derivation ends in:16j6kz }| {x1 : F1; : : : ; xn : Fn;� `E Pj : �Gj y1 : �G1; : : : ; yk : �Gk `I M1 : G (�I0)x1 : F1; : : : ; xn : Fn;� `I M1 � fy1 := P1; : : : ; yk := Pkg : �GBy indu
tion hypothesis, we have got a derivation in BN0 of �;� `E Pjfx1 :=N1; : : : ; xn := Nng : �Gj . Together with the derivation above of y1 : �G1; : : : ; yk :�Gk `I M1 : G, and sin
e fv(M1) = fy1; : : : ; ykg, M1 is linear, we may apply (�I0)and derive �;� `I M1 � f y1 := P1fx1 := N1; : : : ; xn := Nng;: : : ;yn := Pnfx1 := N1; : : : ; xn := Nngg : �GBut this is pre
isely �;� `I Mfx1 := N1; : : : ; xn := Nng : �G.Lemma 12. If M is �-long normal of type �F in �, then M is of the form M1 ��.Moreover, �[dM ℄ =M1�.Proof. The �rst part is obvious: � `I M : �F in system BN0, but only rule(�I0) 
an lead to this. Also, letting � be fx1 := N1; : : : ; xn := Nng, we havex1 : �F1; : : : ; xn : �Fn `I M1 : F in BN0, and � `E Ni : �Fi in BN0 for ea
h i,1 6 i 6 n. By Lemma 11, � `I M1� : F inBN0. Sin
e dM �M1�, by Proposition 10�[dM ℄ =M1�.The 
ru
ial thing in Lemma 12 is not so mu
h that dM �M1�, whi
h is obvious.Rather, it is the fa
t that on
e we have redu
ed d( M1 � �) to M1� by (d), we havealready rea
hed its �-long normal form.Similarly, we obtain:Lemma 13. Let sM=̂ x � fx :=Mg. If M=̂ M1 � � is �-long normal of type �Fin �, then �[sM ℄ = M1 � �.Proof. First sM = x � fx := M1 � �g � M1 ��. Then sin
e M is �-long normal,letting � be fx1 := N1; : : : ; xn := Nng, we have x1 : �F1; : : : ; xn : �Fn `I M1 : F
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ations, vol. ?(?), 2001 20in BN0, and � `E Ni : �Fi in BN0 for ea
h i, 1 6 i 6 n. So we 
an produ
e thefollowing BN0 derivation:
16i6nz }| {���� `E Ni : �Fi

16i6nz }| {(AxE)x1 : �F1; : : : ; xn : �Fn`E xi : �Fi
���x1 : �F1; : : : ; xn : �Fn`I M1 : F (�I0)x1 : �F1; : : : ; xn : �Fn `I M1 : �F (�I0)� `I M1 � � : ��Fso M1 � � is �-long normal of type ��F in �. The 
laim then follows by Propo-sition 10.

4. The Augmented Simpli
ial Stru
ture of �S4We de�ne an augmented simpli
ial set 
onsisting of typed �S4-terms. Re
all that:De�nition 14 (A.s. set, a.s. map). An augmented simpli
ial set K is a familyof sets Kq, q > �1, of q-simpli
es, a.k.a. simpli
es of dimension q, with fa
e maps�iq : Kq ! Kq�1 and degenera
y maps siq : Kq ! Kq+1, 0 6 i 6 q, su
h that:(i) �iq�1 Æ �jq = �j�1q�1 Æ �iq (ii) siq+1 Æ sj�1q = sjq+1 Æ siq (iii) �iq+1 Æ sjq = sj�1q�1 Æ �iq(iv) �iq+1 Æ siq = id (v) �i+1q+1 Æ siq = id (vi) siq�1 Æ �jq = �j+1q+1 Æ siqwhere 0 6 i 6 q in (iv), (v), and 0 6 i < j 6 q in the others.An augmented simpli
ial map f : K ! L is a family of maps fq : Kq ! Lq,q > �1, su
h that �iq Æ fq = fq�1 Æ �iq and siq Æ fq = fq+1 Æ siq, 0 6 i 6 q.Subs
ripts start at �1, whi
h is standard and allows one to have q mat
h thegeometri
 dimension. We sometimes abbreviate \augmented simpli
ial" as \a.s." inthe sequel. Also, when we run a risk of 
onfusion, we write �iKq for �iq, and siKq forsiq.The 
ategory b� of augmented simpli
ial sets as obje
ts, and augmented simpli
ialmaps as morphisms (see [33℄, VII.5), 
an also be presented as follows. Let � bethe 
ategory whose obje
ts are �nite ordinals [q℄=̂f0; 1; : : : ; qg, q > �1, and whosemorphisms are monotoni
 (i.e., non-de
reasing) maps. This 
ategory is generatedby morphisms [q�1℄ Æiq�![q℄ (mapping j < i to j and j > i to j+1) and [q+1℄ �iq�![q℄(mapping j 6 i to j and j > i to j � 1), and relations that are most su

in
tlydes
ribed as (i){(vi) where � is repla
ed by Æ, s by �, and 
omposition order isreversed. Then b� is the 
ategory of fun
tors from the opposite 
ategory �o to the
ategory Set of sets.In general, bC denotes the 
ategory of fun
tors from Co to Set, a.k.a. presheavesover C. bC is always an elementary topos [30℄, hen
e is a 
artesian-
losed 
ategory(CCC ). The terminal obje
t 1 of b� is su
h that 1q is a singleton f�g for every q >�1. The produ
tK�L is su
h that (K � L)q=̂Kq�Lq, �i(K�L)q(u; v)=̂(�iKqu; �iLqv)and si(K�L)q(u; v)=̂(siKqu; siLqv): i.e., produ
t is 
omponent-wise.
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ations, vol. ?(?), 2001 21The stru
ture of exponentials, i.e., internal homs Hom�̂(K;L) is given by gen-eral 
onstru
tions [30℄, whi
h will be largely irrelevant here. For now, let us justsay that we have got a.s. appli
ation maps App : Homb�(K;L) � K ! L, andan abstra
tion operator � on a.s. maps f : K � L ! M , so that �f is an a.s.map from K to Homb�(L;M), satisfying 
ertain equations to be spe
i�ed below.Furthermore, (�1)-simpli
es of Homb�(K;L) are just simpli
ial maps from K toL, while 0-simpli
es are homotopies between maps, and q-simpli
es for q > 0 arehigher-dimensional homotopies.In general, in any CCC C|not just b�|, let ! denote the unique morphismX !�!1. For 
artesian produ
ts, we have a pair Xhf;gi�!Y � Z for every X f�!Yand X g�!Z, and proje
tions X1 � X2 �i�!Xi, i 2 f1; 2g. We also have internalhom obje
ts (exponentials) HomC(X;Y ), appli
ation HomC(X;Y )�XApp�!Y , andabstra
tion X �f�!HomC(Y; Z) for every X � Y f�!Z. These obey the following
ategori
al 
ombinator equations [10℄, where we omit types (obje
ts) for the sakeof 
on
iseness:(a) id Æ f = f (b) f Æ id = f (
) f Æ (g Æ h) = (f Æ g) Æ h(d) 8f : X ! 1 � f =! (e) �1 Æ hf; gi = f (f) �2 Æ hf; gi = f(g) h�1; �2i = id (h) hf; gi Æ h = hf Æ h; g Æ hi(k) �f Æ h = �(f Æ hh Æ �1; �2i) (l) App Æ h�f; gi (m) �(App Æ hf Æ �1; �2i) = f= f Æ hid; giFor reasons of 
onvenien
e, we shall abbreviate hf Æ �1; g Æ �2i as f � g. Then, thefollowing are derived equations:(g0) id� id = id (h0) (f � g) Æ (f 0 � g0) = (f Æ f 0)� (g Æ g0)(k0) �f Æ h = �(f Æ (h� id))(l0) App Æ h�f Æ h; gi = f Æ hh; gi (l00) App Æ (�f � id) = f (m0) �(App Æ (f � id)) = f
4.1. The Augmented Simpli
ial Sets S4 [� ` F ℄We observe that the S4 modality allows us to exhibit an augmented simpli
ialstru
ture. We shall see later on (Se
tion 5.2) that this arises from a 
omonad throughthe use of 
ertain resolution fun
tors. However, for now we prefer to remain synta
ti
and therefore relatively 
on
rete.De�nition 15 (S4 [� ` F ℄). For every 
ontext �, for every type F , let [� ` F ℄ bethe set of all equivalen
e 
lasses of �S4-terms M su
h that � ` M : F is derivable,modulo �.For every q > �1, let S4 [� ` F ℄q be [� ` �q+1F ℄, and let S4 [� ` F ℄ be the family(S4 [� ` F ℄q)q>�1.For every fun
tion f from [� ` F1℄ � : : : � [� ` Fn℄ to [� ` G℄, de�ne �f asthe fun
tion from [� ` �F1℄ � : : : � [� ` �Fn℄ to [� ` �G℄ that maps the tuple(M1; : : : ;Mk) to f(dx1; : : : ; dxk) � fx1 :=M1; : : : ; xk :=Mkg.Say that f is substitutive whenever f(M1; : : : ;Mk)� � f(M1�; : : : ;Mk�).Finally, let �iq be the fun
tion from S4 [� ` F ℄q to S4 [� ` F ℄q�1, 0 6 i 6 q, de�nedby �iqM=̂(�id)M ; and let siq be the fun
tion from S4 [� ` F ℄q to S4 [� ` F ℄q+1, 0 6i 6 q, de�ned by siqM=̂(�is)M , where sM=̂ x � fx :=Mg.



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 22Lemma 16. The following hold: 1. �id = id. 2. if f is substitutive, then �f Æ�g =�(f Æ g). 3. for every f , �f is substitutive. 4. �iq and siq are substitutive.Proof. 1. �id(M) = dx � fx :=Mg �M (by (��)), so �id = id.2. For every fun
tions f and g, provided f is substitutive, then�f(�g(M)) = f(dx) � fx := g(dy) � fy :=Mgg� f(dx)fx := g(dy) g � fy :=Mg (by ( � ))� f(d g(dy) ) � fy :=Mg (sin
e f is substitutive)� f(g(dy)) � fy :=Mg (by (d))So �f Æ�g = �(f Æ g). 3. is obvious, and 4. follows from 3.Proposition 17. For every � and F , the triple (S4 [� ` F ℄; (�iq)06i6q; (siq)06i6q) isan augmented simpli
ial set.Proof. Be
ause of Lemma 16, it is enough to 
he
k (i){(vi) in the 
ase i = 0, as thegeneral 
ase then follows immediately by indu
tion on i:(i) �0q�1(�jqM) = d(��j�1q�1M) = d �j�1q�1(dx) � fx :=Mg � �j�1q�1(dM) (by (d))= �j�1q�1(�0qM).(ii) s0q+1(sj�1q M) = y � fy := sj�1q Mg, while sjq+1(s0qM) = �sj�1q (s0qM)= sj�1q (dy) � fy := s0qMg = sj�1q (dy) � fy := x � fx :=Mgg� sj�1q (d x ) � fx :=Mg (by ( � )) � sj�1q x � fx :=Mg (by (d)).If j = 1, then s0q+1(sj�1q M) = y � fy := x � fx :=Mgg � x � fx :=Mg(by ( � )) = s0qx � fx :=Mg, and this is pre
isely sjq+1(s0qM).If j > 1, then it obtains s0q+1(sj�1q M) = y � fy := sj�1q Mg= y � fy := �sj�2q�1Mg = y � fy := sj�2q�1(dx) � fx :=Mgg� sj�2q�1(dx) � fx :=Mg (by ( � )) = �sj�2q�1x � fx :=Mg= sj�1q x � fx :=Mg, whi
h is exa
tly sjq+1(s0qM).(iii) �0q+1(sjqM) = d(�sj�1q�1M) = d sj�1q�1(dx) � fx :=Mg � sj�1q�1(dM) (by (d))= sj�1q�1(�0qM).(iv) �0q+1(s0qM) = d( x � fx :=Mg) �M by (d).(v) �1q+1(s0qM) = ��0q (s0qM) = d(dx) �fx := y � fy :=Mgg � d(d y ) �fy :=Mg(by ( � )) � dy � fy :=Mg (by (d)) �M (by (��)).



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 23(vi) s0q�1(�jqM) = s0q�1(��j�1q�1M) = x � fx := �j�1q�1(dy) � fy :=Mgg� �j�1q�1(dy) � fy :=Mg (by ( � )) = �jqy � fy :=Mg, while on the otherhand �j+1q+1(s0qM) = ��jq( y � fy :=Mg) = �jq(dx) � fx := y � fy :=Mgg� �jq(d y ) � fy :=Mg (by ( � )) � �jqy � fy :=Mg (by (d)).
By Lemma 12, the �-long normal form of any term of type �q+1F in � 
anbe written in a unique way : : : M0 � �q � �q�1 : : : � �0. Fix a variable x0, and let�q+1 be fx0 7!M0g. Then this is also : : : x0�q+1 � �q � �q�1 : : : � �0. Therefore q-simpli
es in S4 [� ` F ℄ are basi
ally sequen
es of q+2 substitutions, with additionaltyping and linearity 
onditions and 
onditions on the domains of substitutions. Letus 
ompute fa
es and degenera
ies as they a
t on �-long normal forms. For short,
all the �-long normal form of a q-simplexM in S4 [� ` F ℄ the unique �-long normalform of type �q+1F in � of M .First the following lemma will help us 
ompute �-long normal forms of �f appliedto arguments in �-long normal form themselves.Lemma 18. Let f be any fun
tion from [� ` F1℄ � : : : � [� ` Fn℄ to [� ` G℄. Wesay that f is linearity-preserving if and only if for every �-long normal form M1 oftype F1 in �, . . . , for every �-long normal form Mn of type Fn in �, if M1, . . . , Mnare linear, then the �-long normal form of f(M1; : : : ;Mn) of type G in � is linear,too. By abuse, write f(M1; : : : ;Mn) this �-long normal form again.Say that f is non-
ollapsing if and only if, for every �-long normal forms M1 oftype F1 in �, . . . , Mn of type Fn in �, then fv(f(M1; : : : ;Mn)) = fv(M1) [ : : : [fv(Mn).Let M1 � �1, . . . , Mn � �n be �-long normal forms of respe
tive types �F1,. . . , �Fn in �. Assume without loss of generality that �1, . . . , �n have pairwisedisjoint domains. If f is substitutive, linearity-preserving and non-
ollapsing, thenthe �-long normal form of type G in � of �f( M1 � �1; : : : ; Mn � �n) is exa
tlyf(M1; : : : ;Mn) � (�1; : : : ; �n).Proof. �f( M1 � �1; : : : ; Mn � �n)= f(dx1; : : : ; dxn) � fx1 := M1 � �1; : : : ; xn := Mn � �ng� f(dx1; : : : ; dxn)fx1 := M1 ; : : : ; xn := Mn g � (�1; : : : ; �n) (by ( � ))� f(d M1 ; : : : ; d Mn ) � (�1; : : : ; �n) (sin
e f is substitutive) � f(M1; : : : ;Mn) �(�1; : : : ; �n) (by (d)). It remains to show that the latter is �-long normal of type�G in �, whi
h will allow us to use Proposition 10. We only have to 
he
k that
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ations, vol. ?(?), 2001 24fv(f(M1; : : : ;Mn)) = dom �1 [ : : : [ dom �n and that f(M1; : : : ;Mn) is linear. Theformer is be
ause f is non-
ollapsing, and fv(Mi) = dom �i, 1 6 i 6 n. The latteris be
ause f is linearity-preserving, and ea
h Mi is linear. Indeed, fv(Mi) = dom �iand Mi is linear be
ause Mi � �i is �-long normal.
Proposition 19. Let M 2 S4 [� ` F ℄q, of �-long form : : : x0�q+1 � �q � �q�1 : : : ��0. Then the �-long form of �iqM is:

: : : : : : x0�q+1 � �q � �q�1 : : : � �i+2 � (�i+1 � �i) � �i�1 : : : � �0 (9)
and the �-long form of siqM is:

: : : : : : x0�q+1 � �q � �q�1 : : : � �i+1 � id � �i : : : � �0 (10)
where id is the identity substitution on dom �i.Proof. By indu
tion on i, simultaneously with the fa
t that �iq and siq are substi-tutive, linearity-preserving and non-
ollapsing. The indu
tive 
ase is by Lemma 18.In the base 
ase, if i = 0, then (9) is by Lemma 12, and (10) is by Lemma 13.The geometry of S4 [� ` F ℄ is therefore very 
lose to that of the nerve of a 
ategorywhose obje
ts are 
ontexts �, and whose morphisms � ��!� are substitutions � su
hthat, letting � be y1 : G1; : : : ; ym : Gm, � is of the form fy1 :=M1; : : : ; ym :=Mmgwhere � ` Mi : Gi is derivable for ea
h i, 1 6 i 6 m. Identities are the identitysubstitutions, 
omposition is substitution 
on
atenation. (It is not quite a nerve,be
ause of the added 
onditions on substitutions.) The 
onne
tion with nerves willbe made pre
ise in Theorem 29 below.4.2. The Geometry of S4 [� ` F ℄In Proposition 19, note that substitutions are taken as is, in parti
ular not modulo�. This hints at the fa
t that S4 [� ` F ℄ will in general not be a Kan 
omplex: re
allthat a nerve of a small 
ategory C is Kan if and only if C is a groupoid, i.e., if andonly if all morphisms in C are isomorphisms. In the 
ategory of substitutions above,the only isomorphisms are renamings fx1 := y1; : : : ; xn := yng, where y1; : : : ; yn arepairwise distin
t variables.Proposition 20. S4 [� ` F ℄ is not Kan in general.Proof. Being Kan would imply in parti
ular that given any two 1-simpli
esM0 andM1 with �01M0 = �01M1, there should be a 2-simplex M su
h that �02M = M0
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ations, vol. ?(?), 2001 25and �12M = M1. Write the �-long normal forms of M0 as x0�2 � �1 � �0, of M1as x0�02 � �01 � �00. The 
ondition �01M0 = �01M1 means that x0�2 � (�1 � �0) =x0�02 � (�01 � �00). In parti
ular, up to a renaming of the variables free in x0�02:�2 = �02; �1 � �0 = �01 � �00 (11)If M exists, then M is of the form x0#3 � #2 � #1 � #0, and up to renamingsof bound variables, �02M =M0 entails:#3 = �2; #2 = �1; #1 � #0 = �0 (12)and �12M =M1 entails: #3 = �02; #2 � #1 = �01; #0 = �00 (13)It follows that �01 must be an instan
e of �1, in parti
ular. (An instan
e of a substi-tution � is a substitution of the form � � �0.) But (11) does not guarantee this. Forexample, take �2=̂�02=̂fx0 := dx0g, �01=̂fx0 := x1g, �1=̂fx0 := dx1g, �0=̂fx1 := x1g,�00=̂fx1 := dx1g. It is easily 
he
ked that M0 and M1 are in S4 [� ` F ℄1, i.e., theyare of type �2F in �, for any formula F , where �=̂x1 : �2F .This settles the 
ase, at least when � 
ontains at least one formula of the form�2F . When � is empty, it is easy to see that S4 [� ` F ℄ is empty ex
ept possibly indimension �1, so this is trivially Kan|but the geometry of su
h simpli
ial sets isuninteresting.The following notion will be useful in studying the geometry of S4 [� ` F ℄:De�nition 21 (Contiguity). Let K be an augmented simpli
ial set. The q-simp-lex x is one-step 
ontiguous to the q-simplex y, in short x_ y, if and only if thereis a (q + 1)-simplex z in K, and two indi
es i; j with 0 6 i < j 6 q + 1 su
h that�jq+1z = x and �iq+1z = y, and x 6= y.The q-simplex x is 
ontiguous to y if and only if x_� y, and stri
tly 
ontiguousif and only if x _+ y. We say that x and y are 
ontiguous if and only if x℄ y,where ℄ is the re
exive symmetri
 transitive 
losure of _.Contiguity is usually presented a bit di�erently. In parti
ular, it is usually notrequired that j > i in one-step 
ontiguity. Then _� is an equivalen
e relation.However we shall need the �ner notion of _ in the sequel.The following lemma, for example, is unusual:Lemma 22. The relation _ is well-founded.Proof. De�ne the following measure �(M) for q-simpli
es M in S4 [� ` F ℄q. When-everM has �-long normal form : : : x0�q+1 � �q : : : ��0, let �(M) be the (q+2)-tuple(j�0j; : : : ; j�qj; j�q+1j), ordered lexi
ographi
ally from right to left, where j�j is thesize of �, de�ned in any obvious way.
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ations, vol. ?(?), 2001 26LetM and M 0 be two q-simpli
es in S4 [� ` F ℄, and assume thatM _M 0. Thenthere is a (q + 1)-simplex N , say:: : : x0�q+2 � �q+1 : : : � �1 � �0and i < j su
h that �jq+1N =M , �iq+1N =M 0. That is:
M = : : : : : : : : : x0�q+2 � �q+1 : : : � (�j+1 � �j) � �j�1 : : : � �i+1 � �i : : : � �0
M 0 = : : : : : : : : : x0�q+2 � �q+1 : : : � �j+1 � �j : : : � �i+2 � (�i+1 � �i) : : : � �0

Clearly �(M) > �(M 0). We 
laim that �(M) > �(M 0). Sin
e the lexi
ographi
ordering on sizes is well-founded, this will establish the result.Assume on the 
ontrary that �(M) = �(M 0). Then, j�j+1 � �j j = j�j+1j, so up toa renaming of bound variables, �j+1 � �j = �j+1, so �j = id. Then j�j j = j�j�1j, . . . ,j�i+2j = j�i+1j, whi
h imply that �j�1, . . . , �i+1 must map variables to variables.By the linearity 
onstraints on �-long normal forms, they must be one-to-one. Soup to renaming of bound variables, �j�1 = : : : = �i+1 = id. But then M = M 0,
ontradi
ting M _M 0.Corollary 23. The relation _+ is a stri
t ordering.Proof. If it were re
exive, then we would have M _+ M for some M , hen
e anin�nite de
reasing 
hain M _+ M _+ M _+ : : :De�nition 24 (Verti
es, Component). Let K be any augmented simpli
ial set.Given any q-simplex x of K, q > 0, the verti
es of x are those 0-simpli
es that areiterated fa
es of x. The ith vertex of x, 0 6 i 6 q, is giqx=̂�01 : : : �i�1i �i+1i+1 : : : �qqx.The 
omponent �0x is �00 : : : �ii : : : �qqx.It is well-known that ea
h q-simplex has exa
tly q+1 verti
es, and these are g0qx,. . . , gqqx. Moreover, these verti
es are 
ontiguous:Lemma 25. Let K be any augmented simpli
ial set. Given any q-simplex x of K,q > 0, g0qx_� g1qx_� : : :_� gqqxProof. To show that giqx _� gi+1q x, let y be the 1-simplex �02 : : : �i�1i+1�i+2i+2 : : : �qqx.Then �01y = gi+1q x and �11y = giqx, so giqx_= gi+1q x, where _= is _ [ =.Observe that there is no need to take_+ instead of _ in the 
ase of 0-simpli
esin �S4:
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ations, vol. ?(?), 2001 27Lemma 26. The relation _ is transitive on 0-simpli
es of S4 [� ` F ℄.Proof. Note that, if M and M 0 are two 0-simpli
es, then M _ M 0 means that forsome 1-simplex M1, �11M1 =M and �01M1 =M 0.So assume that M _ M 0 _ M 00. There is a 1-simplex N � �1 � �2 su
h thatM = N�1 � �2 and M 0 = N � (�1 � �2). There is also a 1-simplex N 0 � �01 � �02su
h that M 0 = N 0�01 � �02 and M 00 = N 0 � (�01 � �02). Comparing both forms for M 0,we must have, up to renaming of bound variables, N = N 0�01 and �02 = �1 � �2. SoM2=̂ N 0 � �01 � �1 � �2 is a valid 2-simplex. Take M1=̂�12M2 = N 0 � (�0 � �1) � �2.Then �11M1 =M and �01M1 =M 00, so M _= M 00. By Corollary 23, M _M 00.The following lemma shows that, basi
ally, if two simpli
es are 
ontiguous, thenthey are so in a unique way:Lemma 27 (Two-fa
e Lemma). Let M , M 0 be two q-simpli
es of S4 [� ` F ℄,q > 0. Then for any 0 6 i < j 6 q + 1, there is at most one (q + 1)-simplex N ofS4 [� ` F ℄ su
h that �jqN =M and �iqN =M 0.Proof. Assume N exists, and write it as:: : : x0#q+2 � #q+1 : : : � #1 � #0Also, write: M = : : : x0�q+1 � �q : : : � �1 � �0
M 0 = : : : x0�0q+1 � �0q : : : � �01 � �00Sin
e �jqN = M , up to renaming of bound variables, �0 = #0, . . . , �j�1 = #j�1,�j = #j+1 � #j , �j+1 = #j+2, . . . , �q+1 = #q+2. And sin
e �iqN = M 0, up torenaming of bound variables, �00 = #0, . . . , �0i�1 = #i�1, �0i = #i+1 � #i, �0i+1 = #i+2,. . . , �0q+1 = #q+2.In parti
ular, #0 = �0, . . . , #j�1 = �j�1, #i+2 = �0i+1, . . . , #q+2 = �0q+1. So # isdetermined uniquely as soon as j > i + 1. If j = i + 1, this determines # uniquely,ex
ept possibly for #j . Now we use the additional equations �j = #j+1 � #j and�0i+1 = #i+2. The latter means that �0j = #j+1. Sin
e every variable of dom#j is freein some term in the range of #j+1, this determines #j uniquely.In the 
ase of S4 [� ` F ℄, Lemma 25 is the only 
ondition on verti
es that needsto be satis�ed for them to be verti
es of a q-simplex:Proposition 28. Let M0, M1, . . . , Mq be q+1 0-simpli
es of S4 [� ` F ℄. If M0 _�M1 _� : : : _� Mq, then there is a unique q-simplex M su
h that giqM = Mi,0 6 i 6 q.
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ations, vol. ?(?), 2001 28Proof. By Lemma 26, M0 _= M1 _= : : :_= Mq.We now show uniqueness by indu
tion on q > 0. If q = 0, this is obvious.Otherwise, by indu
tion there is at most one (q � 1)-simplex M0 with verti
esM1 _= : : : _= Mq, and at most one (q � 1)-simplex Mq with verti
es M0 _=: : : _= Mq�1. If there is any q-simplex M with verti
es M0, M1, . . . , Mq, then�0qM =M0 and �qqM =Mq, so there is at most one su
h M by Lemma 27.Existen
e: write Mi as Ni � �i for ea
h i, 0 6 i 6 q. Sin
e for ea
h i < q,Mi _= Mi+1, there are (unique) 1-simpli
es N 0i � #i1 �#i0 su
h that, up to renamingof bound variables, Ni = N 0i#i1, �i = #i0, Ni+1 = N 0i , �i+1 = #i1 � #i0. Note thatNi = Ni+1#i1, and #i+10 = #i1 � #i0. So de�ne:M=̂ : : : : : : Nq � #q�11 : : : � #i�11 : : : � #01 � #00
In parti
ular, g0qM = Nq#q�11 : : : #i�11 : : : #01 � #00 = Nq�1#q�21 : : : #01 � #00 = : : : =N0 � #00 =M0. And for every i > 0, giqM = Nq#q�11 : : : #i1 � (#i�11 � : : : � #01 � #00)= Ni � (#i�11 � : : : � #11 � #01 � #00) = Ni � (#i�11 � : : : � #11 � #10) = : : : = Ni � #i0 =Mi.To sum up, the non-augmented part of S4 [� ` F ℄ 
an be 
hara
terized as aparti
ularly simple nerve:Theorem 29 (Nerve Theorem). Let C[� ` F ℄ be the partial order 
onsisting ofthe 0-simpli
es of S4 [� ` F ℄, ordered by 
ontiguity _�. Then the (non-augmented)simpli
ial set (S4 [� ` F ℄q)q2N is (isomorphi
 to) the nerve N(C[� ` F ℄).Proof. Re
all that the nerve of a 
ategory C has diagrams:A0 f1 � A1 f2 � : : : fq�1� Aq�1 fq � Aqas q-simpli
es, where f1, f2, . . . , fq are morphisms in C, and q > 0. The ith fa
e isobtained by removing Ai from the sequen
e, 
omposing the neighboring arrows if0 < i < q, and dropping them if i = 0 or i = q. The ith degenera
y is obtained bydupli
ating Ai, adding an identity morphism.By Lemma 25 and Proposition 28, q-simpli
es M are in bije
tion with orderedsequen
es of 0-simpli
es M0 _� M1 _� : : :_� Mq. Moreover, for every j, 0 6 j 6q � 1, the jth vertex of �iqM is:gjq�iqM = �01 : : : �j�1j �j+1j+1 : : : �q�1q�1�iqM = � gjqM if j < igj+1q M if j > iThat is, the verti
es of �iqM are those of M ex
ept giqM . Similarly, for every j,0 6 j 6 q + 1, the jth vertex of siqM is:

gjqsiqM = �01 : : : �j�1j �j+1j+1 : : : �q+1q+1siqM = 8<: gjqM if j 6 igiqM if j = i+ 1gj�1q M if j > i+ 1
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ations, vol. ?(?), 2001 29That is, the verti
es of siqM are those of M in sequen
e, with giqM o

urring twi
e.
In other words, (S4 [� ` F ℄q)q2N is an oriented simpli
ial 
omplex. Re
all thatan oriented simpli
ial 
omplex is a family of linearly ordered sequen
es of so-
alledpoints, 
ontaining all one-element sequen
es, and su
h that any subsequen
e of anelement of the family is still in the family. In fa
t, it is the full oriented simpli
ial
omplex, 
ontaining all linearly ordered sequen
es of points.It is futile to study the 
lassi
al notions of loop homotopy in su
h an orientedsimpli
ial 
omplex. Indeed, all loops are trivial: if the 1-simplex M is a loop, i.e.,�01M = �11M is some point N , then its sequen
e of verti
es is N _� N , so M isa degenerate 1-simplex. Homotopies of loops, and in fa
t the natural extension ofhomotopies between 1-simpli
es, is trivial, too: let M;M 0 be two 1-simpli
es with�01M = �01M 0 = M0 and �11M = �11M 0 = M1; if there is a homotopy 2-simplexP 
onne
ting them, then its fa
es are M , M 0 plus some degenerate 1-simplex, sothe sequen
e of verti
es of P must be M1 _� M0 _� M0 or M1 _� M1 _� M0,from whi
h it follows that the homotopy is one of the two degenera
ies of M =M 0.In short, two 1-simpli
es are homotopi
 in the 
lassi
al sense if and only if theyare equal, and all homotopies are degenerate. However, studying homotopies ofpaths (not just loops) 
ertainly remains interesting. In parti
ular, the geometry ofpreorders and latti
es through their order 
omplexes is a ri
h domain [8℄.4.3. ComponentsThis 
loses the 
ase for non-negative dimensions. In dimension �1, re
all thatthere are two extremal ways to build an augmentation of a simpli
ial set (see e.g.,[14℄). One, exempli�ed by the nerve 
onstru
tion for augmented simpli
ial sets,builds the augmentation of the simpli
ial set K, K�1, as a one-element set (anempty set if K is empty), and �00 is the unique fun
tion K0 ! K�1. The otherbuilds K�1 as the set of 
onne
ted 
omponents of K0, that is, as the set of ℄-equivalen
e 
lasses of points. It turns out that the latter is how the augmentationis built in S4 [� ` F ℄. (Ex
ept that there might also be (�1)-simpli
es that arethe 
omponent of no q-simplex for any q > 0.) In other words, 
omponents areexa
tly path 
onne
ted 
omponents (plus isolated (�1)-dimensional simpli
es). Thisis shown in Proposition 31 below. First, we observe:Proposition 30 (Latti
e of points). Let M0 be a (�1)-simplex of S4 [� ` F ℄.The set C(M0) of 0-simpli
esM su
h that �00M =M0, equipped with the ordering_�, is empty or is a �nite latti
e.Proof. Every su
h M 
an be written in a unique way N � �, with N� =M0. But,up to the names of free variables in N , there are only �nitely many su
h N 's and�'s. So C(M0) is �nite.In the rest of the proof, �x a typing of M0. This way, ea
h subterm of M0 getsa unique type. This will allow us to reason by indu
tion on M0|in general, onterms|instead on a BN0 derivation of � `I M0 : F .
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ations, vol. ?(?), 2001 30Note that N � � _� N 0 � �0 if and only if N � � _= N 0 � �0 (by Lemma 26) ifand only if for some N0 � #1 � #0, N = N0#1, � = #0, N 0 = N0, �0 = #1 � #0 (upto renaming of bound variables), if and only if N = N 0#1 for some substitution #1.In other words, if and only if N is an instan
e of N 0.Then every pair of points M1, M2 of C(M0) has a supremum M . That is, M _�M1, M _� M2 and for every M 0 su
h that M 0 _� M1 and M 0 _� M2, M _� M 0.Write M1 as N1 � �1, M2 as N2 � �2, with N1�1 = N2�2. Then, if M exists, Mis a 
ommon instan
e of N1 and N2. It is easy to see that there is a least 
ommoninstan
e N1^N2 of N1 and N2, i.e., one su
h that every other instan
e of N1 and N2is an instan
e of N1 ^N2. More generally, given any �nite set W of variables (usedto 
olle
t �-bound variables), 
all an instan
e of N away from W any term N� su
hthat dom �\W = ;. Then if there is a 
ommon instan
e of N1 and N2 away fromW ,then there is a least one N1^W N2, where N1 and N2 are linear, and it is 
omputedas in Figure 4. Then de�ne N1 ^N2 as N1 ^; N2. Sin
e N1� = N2�2 =M0, there isx1 ^W N2 =̂ N2 (x1 62W )N1 ^W x2 =̂ N1 (x2 62W )(N1N 01) ^W (N2N 02) =̂ (N1 ^W N2)(N 01 ^W N 02)(�x �N1) ^W (�x �N2) =̂ �x � (N1 ^W[fxg N2)dN1 ^W dN2 =̂ d(N1 ^W N2)N � fx1 := N11; : : : ; xn := Nn1g ^W N � fx1 := N12; : : : ; xn := Nn2g=̂ N � fx1 := N11 ^W N12; : : : ;xn := Nn1 ^W Nn2gFigure 4: Least 
ommon instan
esa unique substitution � with dom � = fv(N1^N2), and the free variables of N1^N2being free variables of N1 or N2, have boxed types. Therefore M=̂ N1 ^N2 � � is awell-typed term, and M _� M1 and M _� M2, sin
e N1 ^N2 is both an instan
eof N1 and an instan
e of N2. Moreover, by 
onstru
tion this is the least one, so Mis the supremum of M1 and M2. (This is uni�
ation [28℄. The key here is that webasi
ally only need uni�
ation modulo an empty theory, instead of the theory ofthe relation �.) We write M as M1 tM2.Symmetri
ally, every pair of points M1, M2 of C(M0) has an in�mum M . Thatis, M1 _� M , M2 _� M and for every M 0 su
h that M1 _� M 0 and M2 _� M 0,M 0 _� M . Write again M1 as N1 � �1, M2 as N2 � �2, with N1�1 = N2�2.Calling a generalization of a term N (away fromW ) any term having N as instan
e(away from W ), we may 
ompute a greatest 
ommon generalization N1 _W N2away from W of N1 and N2 as in Figure 5, where N1�1 = N2�2. As above, lettingN1 _N2=̂N1 _;N2, there is a unique substitution � su
h that fv(N1 _N2) = dom �and (N1 _ N2)� = M0, and M=̂ N1 _N2 � � is a well-typed term, from whi
h we
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ations, vol. ?(?), 2001 31x1 _W N2 =̂ x1 (x1 62W )N1 _W x2 =̂ x2 (x2 62W )(N1N 01) _W (N2N 02) =̂ (N1 _W N2)(N 01 _W N 02)(�x �N1) _W (�x �N2) =̂ �x � (N1 _W[fxg N2)dN1 _W dN2 =̂ d(N1 _W N2)N � fx1 := N11; : : : ; xn := Nn1g _W N � fx1 := N12; : : : ; xn := Nn2g=̂ N � fx1 := N11 _W N12; : : : ;xn := Nn1 _W Nn2gFigure 5: Greatest 
ommon generalizations

on
lude that M is indeed the in�mum of M1 and M2. Write M as M1 uM2.It remains to show that, if C(M0) is not empty, then it has a least element ? anda greatest element >. This is obvious, as ? 
an be de�ned as the (�nite) in�mum ofall elements of C(M0), and > as the (�nite) supremum of all elements of C(M0).Proposition 31. Given any two 0-simpli
es M1 and M2 of S4 [� ` F ℄, M1 ℄M2if and only if �00M1 = �00M2.Proof. Clearly, if M1 _= M2, i.e. if �11N =M1 and �01N =M2 for some 1-simplexN , then �00M1 = �00�11N = �00�01N = �00M2. So if M1 ℄M2, then �00M1 = �00M2.Conversely, assume �00M1 = �00M2, and name M0 this (�1)-simplex. By Propo-sition 30, there is an element M1 tM2 in C(M0), su
h that M1 tM2 _� M1 andM1 tM2 _� M2. In parti
ular M1 ℄M2.In other words, non-empty 
omponents C(M0) 
oin
ide with path-
onne
ted
omponents.This generalizes to higher dimensions:Proposition 32. For any two q-simpli
es M1 and M2 of S4 [� ` F ℄, M1 ℄M2 ifand only if �0M1 = �0M2.Proof. Re
all that �0M denotes the 
omponent of M (De�nition 24).IfM1 _= M2, then there is a (q+1)-simplexN and j > i su
h thatM1 = �jq+1N ,M2 = �iq+1N . So �0M1 = �0N = �0M2.Conversely, assume �0M1 = �0M2 = M0. So every vertex of M1 and M2 is inC(M0). By the Nerve Theorem 29, we equate q-simpli
es with ordered sequen
esof q + 1 verti
es. Then noti
e that the sequen
e N0 _= N1 _= : : : _= Ni _=: : : _= Nq is 
ontiguous to N0 _= N1 _= : : : _= N 0i _= : : : _= Nq as soon asNi _= N 0i . Indeed the former is the (i + 1)st fa
e, and the latter is the ith fa
eof the sequen
e N0 _= N1 _= : : : _= Ni _= N 0i _= : : : _= Nq. Iterating,we obtain that the sequen
e N0 _= N1 _= : : : _= Nq is 
ontiguous to N 00 _=N 01 _= : : : _= N 0q as soon as Ni _� N 0i for every i, 0 6 i 6 q. Re
all that
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ations, vol. ?(?), 2001 32every vertex of M1 and M2 is in C(M0). Using Proposition 30, M1, viewed as thesequen
e g0qM1 _� g1qM1 _� : : : _� gqqM1, is 
ontiguous to (g0qM1 u g0qM2) _�(g1qM1 u g1qM2)_� : : :_� (gqqM1 u gqqM2). Similarly for M2. Sin
e M1 and M2 are
ontiguous to the same q-simplex, M1 ℄M2.4.4. Planes and Retra
tionsNext, we show that 
ertains subspa
es of S4 [� ` F ℄ are retra
ts of the wholespa
e, under some mild 
onditions.De�nition 33 (Planes). Call a type boxed if and only if it is of the form �F .Call � boxed if and only if it maps variables to boxed types.Let � be a 
ontext, and �=̂y1 : �G1; : : : ; yp : �Gp be a boxed sub
ontext of �.The plane �? of S4 [� ` F ℄ is the set of 0-simpli
es of S4 [� ` F ℄ having and �-longnormal form of the form N � � su
h thatfor every y 2 dom � � if yi 2 fv(y�) then y� = yi (14)for every i, 1 6 i 6 p.(Note that the types of variables yj , 1 6 j 6 p, have to start with � for thisde�nition to make sense. To be fully formal, we should mention � and F in thenotation for �?. However, � and F will be 
lear from 
ontext.) From the point ofview of Gentzen-style sequents, a term in the given plane 
orresponds to a proofthat ends in a �-introdu
tion rule followed by series of 
uts on formulae o

urringon the left of the �-introdu
tion rule, none of whi
h being any of the �Gis in �.By extension, using Theorem 29 and Proposition 31, we de�ne q-simpli
es of �?as 
ontiguous sequen
es of points M0 _� M1 _� : : : _� Mq of �? for q > 0, andas 
omponents of points of �? if q = �1.It is not hard to see that �? = S4 [� ` F ℄ if � is empty. On the other hand,if � = �, then the points of �? are of the form N , with 
omponent N . In this
ase, any 
omponent N of the plane �? 
ontains exa
tly one point, namely N . Itfollows that in this 
ase �? is a dis
rete 
olle
tion of points.Lemma 34. For any boxed sub
ontext � of �, �? is a sub-a.s. set of �.Proof. Clearly every q-simplex of �? is a q-simplex of S4 [� ` F ℄. That fa
es anddegenera
ies of q-simpli
es of �? are still in �? is by 
onstru
tion.Lemma 35. Let � be any boxed sub
ontext of �, and M0 2 S4 [� ` F ℄�1. For anytwo 0-simpli
es M1 and M2 of C(M0):1. if M1 _� M2 and M2 2 �? then M1 2 �?.2. if M1 and M2 are in �? then so are M1 uM2 and M1 tM2.Proof. 1. Let M1=̂ N1 � �1 be in C(M0), and M2=̂ N2 � �2 be in C(M0) andin �?. So for every z 2 dom �2 su
h that yi, 1 6 i 6 p, is free in z�2,z�2 = yi. Sin
e M1 _� M2, not only is N1 an instan
e of N2, but there is alsoa substitution # su
h that �2 = #��1, dom# = dom �2 = fv(N2) and fv(N2#) =dom �1. Assume that yi is free in y�1 for some y 2 dom �1 = fv(N2#). So y
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urs free in some z#, z 2 fv(N2). In parti
ular, yi is free in z#�1 = z�2.Therefore z�2 = yi, re
alling that M2 2 �?. In other words, z#�1 = yi. Itfollows by standard size 
onsiderations that z# is a variable. Sin
e y o

ursfree in z#, it obtains z# = y. So y�1 = yi.2. Let M1=̂ N1 � �1 and M2=̂ N2 � �2 in �?. For simpli
ity, assume that �
ontains exa
tly one variable y1. This entails no loss of generality, as in general�? is the interse
tion of all (yi : Fi)?, yi 2 dom�.That M1 tM2 is in �? follows from 1, sin
e M1 tM2 _� M1.On the other hand M1 uM2 is of the form N1 _N2 � � where � is the uniquesubstitution with domain fv(N1 _N2) su
h that (N1 _N2)� =M0. In general,we may 
ompute � as �;;M0(N1; N2), where �W;M0(N1; N2) is the unique substi-tution with domain fv(N1_W N2)nW su
h that (N1_W N2)�W;M0(N1; N2) =M0, provided N1 _W N2 exists and N1 and N2 are linear and have M0 as
ommon instan
e. This parallels the 
omputation of N1 _W N2:�W;M0(x1; N2)=̂fx1 :=M0g (x1 62W )�W;M0(N1; x2)=̂fx2 :=M0g (x2 62W )�W;M0M 00(N1N 01; N2N 02)=̂�W;M0(N1; N2) [ �W;M 00(N 01; N 02)�W;�x�M0(�x �N1; �x �N2)=̂�W[fxg;M0(N1; N2)�W;dM0(dN1; dN2)=̂�W;M0(N1; N2)�W; N �fx1:=M1;:::;xn:=Mng � N � fx1 := N11; : : : ; xn := Nn1g;: : :N � fx1 := N12; : : : ; xn := Nn2g�=̂Snj=1 �W;Mj (Nj1; Nj2)Noti
e that unions of substitutions are well-de�ned be
ause we assume N1 andN2 are linear terms away from W (i.e., no two distin
t subterms share anyfree variable ex
ept possibly for variables in W ).Now, generalize the 
laim as follows. Assume that the 
ommon instan
e M0of N1 and N2 away from W is M0 = N1�1 = N2�2 with dom �1 = fv(N1),dom �2 = fv(N2). Assume also that for every variable z 2 dom �i su
h that y1is free in z�i then y1 = z�i, for every i 2 f1; 2g. Then an easy indu
tion onterms shows that for every variable y 2 fv(N1_WN2)nW su
h that y1 is free iny�W;M0(N1; N2), then y�W;M0(N1; N2) = y1. The 
ru
ial 
ases are the �rst twoof the de�nition, whi
h are symmetri
. In parti
ular in the �rst 
ase, assumeN1 = x1 62 W . By assumption x1�1 = N2�2 = M0; then �W;M0(x1; N2) =fx1 := M0g is �1 restri
ted to x1, therefore indeed y�W;M0(N1; N2) = y1,whatever y may be.The 
laim follows by taking W = ;.Proposition 36 (Proje
tion). If � is boxed, then for any � � �, there is anaugmented simpli
ial map ��?, proje
tion onto �?, from S4 [� ` F ℄ to its sub-a.s.set �?, whi
h 
oin
ides with the identity on �?.



Homology, Homotopy and Appli
ations, vol. ?(?), 2001 34Proof. Let us �rst de�ne ��? on 0-simpli
es. Using Proposition 30, de�ne ��?( N ��) as the in�mum dS of the set S of elements M 2 �? su
h that M _� N ��. Observe that, sin
e � is boxed, N� is well-typed, hen
e is a valid 0-simplex.Moreover, it is 
lear that N� 2 �?, and N� _� N � �. So S is not empty,therefore dS exists and is a 0-simplex of S4 [� ` F ℄. By Lemma 35 any �nite non-empty in�mum of elements of �? is in �?. By Proposition 30 S4 [� ` F ℄ is �nite,so S is a �nite non-empty in�mum of elements of �?. So ��?( N � �) = dS is in�?.If N �� is already in �?, then it is in S. Sin
eM _� N �� for everyM in S by
onstru
tion, N �� is the minimal element of S, hen
e N �� = dS = ��?( N ��).So ��? indeed 
oin
ides with the identity on �?.To show that ��? extends to an a.s. map from S4 [� ` F ℄ to �?, it remains toshow that ��? preserves 
omponents (obvious) and 
ontiguity (for dimensions > 1).As far as the latter is 
on
erned, let M1 _� M2 be 0-simpli
es in S4 [� ` F ℄. Sin
eM1 _� M2, fM 2 �?jM _� M1g � fM 2 �?jM _� M2g, so dfM 2 �?jM _�M1g_� dfM 2 �?jM _� M2g. That is, ��?(M1)_� ��?(M2).The proje
tion 
onstru
tion 
an be used to show a 
onne
tion between the syn-ta
ti
 fun
tion spa
e S4 [� ` F � G℄ and Homb�(S4 [� ` F ℄;S4 [� ` G℄). The �rstdire
tion is easy:De�nition 37 (Synta
ti
 appli
ation ?). The synta
ti
 appli
ation map ? fromS4 [� ` F � G℄�S4 [� ` F ℄ to S4 [� ` G℄ (written in�x) is de�ned by M?�1N=̂MN ,?q=̂M�q+1?�1.Lemma 38. For every substitutive fun
tion f from [� ` F1℄ � : : : � [� ` Fn℄ to[� ` F ℄, the family of fun
tions (�q+1f)q>�1 is an a.s. map from S4 [� ` F1℄� : : :�S4 [� ` Fn℄ to S4 [� ` F ℄.Proof. Write fq for �q+1f . Re
all (Lemma 16) that, as soon as f is substitutive,then �f Æ�g = �(f Æ g).Let M1 2 S4 [� ` F1℄q, . . . , Mn 2 S4 [� ` Fn℄q. For any i with 0 6 i 6 q,�iq(fq(M1; : : : ;Mn)) = �id(�q+1f(M1; : : : ;Mn)) = �i(d Æ �q+1�if)(M1; : : : ;Mn).So �iq Æ fq = �i(d Æ�q+1�if). Butd(�q+1�if(N1; : : : ; Nn)) = d �q�if(dx1; : : : ; dxn) � fx1 := N1; : : : ; xn := Nng� �q�if(dx1; : : : ; dxn)fx1 := N1; : : : ; xn := Nng= �q�if(dN1; : : : ; dNn) (sin
e f is substitutive)so d Æ�q+1�if = �q�if Æ d. Therefore �iq Æ fq = �i(d Æ�q+1�if) = �i(�q�if Æ d) =�qf Æ�id = fq�1 Æ �iq (using the fa
t that �q�if is substitutive).Similarly, we 
laim that s0q(�k+1f(N1; : : : ; Nn)) � �k+2f(s0qN1; : : : ; s0qNn). Itwill follow that siq Æ fq = fq+1 Æ siq. The 
laim is proved by indu
tion on k > 0. If
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ations, vol. ?(?), 2001 35k = 0, thens0q(�f(N1; : : : ; Nn)) = x � fx := f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nngg� f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nngwhile�2f(s0qN1; : : : ; s0qNn)= �f(dx1; : : : ; dxn) � fx1 := s0qN1; : : : ; xn := s0qNng= f(dz1; : : : ; dzn) � fz1 := dx1; : : : ; zn := dxngfx1 := y1 � fy1 := N1g; : : : ; xn := yn � fyn := Nngg� f(dz1; : : : ; dzn) � fz1 := d y1 ; : : : ; zn := d yn g � fy1 := N1; : : : ; yn := Nng� f(dz1; : : : ; dzn) � fz1 := y1; : : : ; zn := yng � fy1 := N1; : : : ; yn := Nng= f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nng (by �-renaming)In the indu
tive 
ase, s0q(�k+1f(N1; : : : ; Nn)) = s0q(�(�kf)(N1; : : : ; Nn))� �2(�kf)(s0qN1; : : : ; s0qNn) (by the above, repla
ing f by �kf) = �k+2f(s0qN1;: : : ; s0qNn), as desired.Corollary 39. The synta
ti
 appli
ation map ? is an a.s. map.The following shows how we may 
ompute ?:Lemma 40. Let M 2 S4 [� ` F � G℄q, N 2 S4 [� ` F ℄q be �-long normal:M=̂ : : : M1 � �q : : : � �1 � �0
N=̂ : : : N1 � �0q : : : � �01 � �00Then, provided dom �i \ dom �0i = ; for every i, 0 6 i 6 q,M ?q N � : : : M1N1 � (�q; �0q) : : : � (�1; �01) � (�0; �00)Proof. This is 
lear if q = �1. If q = 0, M ?0 N = M1N1 � (�0; �00) by Lemma 18.Otherwise, this follows by the q = 0 
ase, using Theorem 29.From Corollary 39, it follows that appli
ation is uniquely determined by its valueson 
omponents (simpli
es of dimension �1) and points (dimension 0). It also followsthat �(?) is an a.s. map from S4 [� ` F � G℄ to Homb�(S4 [� ` F ℄;S4 [� ` G℄).
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ations, vol. ?(?), 2001 36There is a kind of 
onverse to synta
ti
 appli
ation. Intuitively, in the �-
al
ulus(the non-modal 
ase), not only 
an you apply a term M to a term N , you 
an alsobuild �x �M from M : this term �x �M is su
h that, on
e applied to N , you getMfx := Ng. We 
an do almost the same thing here, ex
ept M has to be in someplane for this to work.Proposition 41. For any 0-simplex P in any a.s. set, de�ne (P )q by(P )�1=̂�00P (P )0=̂P (P )q+1=̂s(P )q (q > 0)Say that a q-simplex M of S4 [�; x : �F ` G℄ is abstra
table on x if and only if�0M 
an be written as M0fy := dxg for some term M0 su
h that �; y : F `M0 : Gis typable (in parti
ular, x is not free in M0), and M is in the plane (x : �F )? ofS4 [�; x : �F ` G℄.Then there is an a.s. map from the sub-a.s. set of terms M in S4 [�; x : �F ` G℄that are abstra
table on x to terms �xq �M , su
h that (�xq �M) ?q (x)q �M .Proof. Note that in synta
ti
 a.s. sets as studied here, we may de�ne (P )q moresyntheti
ally as : : : dP : : : , where dP is en
losed in q + 1 boxes.Case q = 0. Let us de�ne �xq �M when q = 0. Write the �-long normal formof M as M1 � �. Sin
e M is in (x : �F )?, for every free variable z of M1 su
hthat x is free in z�, z� = x. Let x1, . . . , xk be those free variables of M1 su
hthat x1� = : : : = xk� = x. The restri
tion �� of � to the remaining variables mapsvariables to terms where x is not free.Moreover, by assumption M1� = M0fy := dxg, so x only o

urs as dire
t argu-ment of d inM1�. By the de�nition of x1, . . . , xk, there is a termM2, obtained fromM1 by repla
ing ea
h dxi by y, su
h that M2�� = M0. Moreover, by 
onstru
tionM2 is �-long normal of type G under �; y : F , so:�x0 �M=̂ �y �M2 � �� (15)is a 0-simplex of the desired type. This is also �-long normal sin
e fv(�y �M2) =fv(M2) n fyg = (fv(M1) n fx1; : : : ; xkg [ fyg) n fyg = fv(M1) n fx1; : : : ; xkg =dom � n fx1; : : : ; xkg = dom ��, and �y �M2 is linear sin
e every free variable in M2ex
ept possibly y o

urs exa
tly on
e.We 
he
k that (�x0 �M) ?0 (x)0 �M :(�x0 �M) ?0 (x)0 = dz(dz0) � fz := �x0 �M; z0 := (x)0g� d �y �M2 (d dx ) � (��; fx := xg) (by ( 2 ))� (�y �M2)(dx) � (��; fx := xg) (by (d))� M2fy := dxg � (��; fx := xg) (by (�))� M1 � (��; fx1 := x; : : : ; xk := xg) (by (
tr))= M1 � � =M
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ations, vol. ?(?), 2001 37General Case. To extend �xq �M to q = �1, use Proposition 31. To extendthis to q > 1, 
he
k that M 7! �x0 �M is _�-monotoni
 and use Theorem 29.Assume indeed M _= M 0 are 0-simpli
es, where M=̂ M1 � � and M 0=̂ M 01 � �0.Then there is a 1-simplex N � #1 �#0 su
h that N#1 =M1, #0 = �, and N =M 01,#1 �#0 = �0. In other words, there is a 1-simplex M 01 � #1 �� su
h thatM 01#1 =M1and #1 � � = �0.Sin
e M is in (x : �F )?, let x1, . . . , xk be the free variables of M1 su
h thatxi� = x, 1 6 i 6 k, as above. Similarly, let x01, . . . , x0k0 be the free variables of M 01su
h that x0i0�0 = x, 1 6 i0 6 k0.Observe that for every i0 with 1 6 i0 6 k0, x0i0#1 is su
h that (x0i0#1)� = x0i0#1� =x0i0�0 = x, so: (a) x0i0#1 is some xi, 1 6 i 6 k. Conversely, if xi is free in somez0#1, z0 2 dom#1, then x is free in z0#1� = z0�0, so z0 is some x0i0 . In brief: (b) ifxi 2 fv(z0#1), z0 2 dom#1, then z0 = x0i0 for some i0. So we may write #1 as thedisjoint union of the restri
tion #�1 of #1 to dom#1 n fx01; : : : ; x0k0g with a one-to-one(by (b)) substitution mapping ea
h x0i0 to some xi (by (a)). In parti
ular, k0 = kand without loss of generality, we may assume x0i#1 = xi for every i, 1 6 i 6 k.Moreover, by (b) no xi is free in any z0#�1, z0 2 dom#�1.Let �� be the restri
tion of � to fv(M1)nfx1; : : : ; xkg, �0� be that of �0 to fv(M 01)nfx01; : : : ; x0kg. Let M2 be obtained from M1 by repla
ing ea
h dxi by y, and M 02 beobtained from M 01 by repla
ing ea
h dx0i by y. Finally, letP =̂ �y �M 02 � #�1 � ��We �rst 
laim that P is a valid 1-simplex. Indeed, �y �M 02 is linear; fv(�y �M 02) =fv(M 02) n fyg = fv(M 01) n fx01; : : : ; x0kg = dom#1 n fx01; : : : ; x0kg = dom#�1; �y �M 02 �#�1 is linear, sin
e M 01 � #1 is; and fv( �y �M 02 � #�1) = Sz02fv(�y�M 02) fv(z0#�1) =Sz02fv(M 01)nfx01;:::;x0kg fv(z0#�1) = Sz02fv(M 01) fv(z0#1) n fx1; : : : ; xkg (sin
e #1 is #�1 ℄fx01 := x1; : : : ; x0k := xkg and no xi is free in any z0#�1) = fv( M 01 �#1)nfx1; : : : ; xkg= dom � n fx1; : : : ; xkg = dom ��.We then 
laim that �11P = �x0 �M and �01P = �x0 �M 0.For the �rst 
laim, noti
e thatM 02#�1 is obtained fromM 01#�1 by repla
ing ea
h dx0iby y, so M 02#1 is obtained fromM 01#1 by repla
ing ea
h dxi by y. Sin
eM 01#1 =M1and M2 is obtained by repla
ing ea
h dxi in M1 by y, it follows that M 02#1 = M2.Therefore �11P = (�y �M 02)#�1 � �� = �y �M 02#1 � �� = �y �M2 � �� = �x0 �M .For the se
ond 
laim, sin
e #1 � � = �0 and #1 = #�1 ℄ fx01 := x1; : : : ; x0k := xkg,� = �� ℄ fx1 := x; : : : ; xk := xg, �0 = �0� ℄ fx01 := x; : : : ; x0k := xg, and no xi isfree in any z0#�1, z0 2 dom#�1, it follows that #�1 � �� ℄ fx1 := x; : : : ; xk := xg =�0� ℄ fx1 := x; : : : ; xk := xg, when
e #�1 � �� = �0�. So �01P = �y �M 02 � (#�1 � ��) =�y �M 02 � �0� = �x0 �M 0.Therefore M _= M 0. It follows that M 7! �x0 �M is indeed _�-monotoni
,hen
e extends to a unique a.s. map in every dimension.
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an be shown that �(?)q is inje
tive for every q, and we leave this to the reader.But we 
an say more, at the pri
e of 
onsidering slightly looser a.s. sets:De�nition 42 (S4 [F ℄). Let (S4 [F ℄)q, q > �1, be the set of all �-equivalen
e 
lassesof �S4-terms M su
h that � ` M : �q+1F is derivable for some boxed 
ontext �.This gives rise to an a.s. set S4 [F ℄=̂(S4 [�℄F; (�iq)06i6q; (siq)06i6q)Then, the ? map extends naturally to an a.s. map, written �, from S4 [F � G℄�S4 [F ℄ to S4 [G℄.Note that we have de�ned simpli
es as typable �S4-terms, not typing derivations.The di�eren
e 
an be illustrated as follows: the variable x for instan
e is one �S4-term, while all typing derivations of �; x : F ` x : F by (Ax) when � varies are alldistin
t. This will be made 
learer, using 
ategori
al language, in Proposition 65.The inje
tivity of �(�) yields an embedding of S4 [F � G℄ into Homb�(S4 [F ℄;S4 [G℄). We shall show that this 
an be turned into the in
lusion part of a strongretra
tion of Homb�(S4 [F ℄;S4 [G℄) onto S4 [F � G℄. First, we note some generalresults:De�nition 43 (Hull). Let K be an a.s. set, and A � K�1. The hull A is the a.s.subset of K whose q-simpli
es are all q-simpli
es x of K su
h that �0x 2 A.This inherits fa
e and degenera
y operators from K. Every a.s. set splits as asum of hulls:Proposition 44. Every a.s. set K splits as a sum `x2K�1 fxg. In parti
ular, forevery A � K�1, K = Aq (K�1 nA).The following lemma is the �rst one where the 
hange from S4 [� ` F ℄ to S4 [F ℄is required:Lemma 45. Let A be any subset of S4 [F ℄�1, and assume that there is a 0-simplexP in A.Then there is a strong retra
tion rA of S4 [F ℄ onto A. In other words, rA is ana.s. map su
h that, for every M 2 A, rA(M) =M .Proof. For any q-simplex M of S4 [F ℄, then either M is in �A�q and we let rA(M)be M , or M is in �S4 [F ℄�1 nA�q by Proposition 44, and we let rA(M) be (P )q 2S4 [F ℄q. Note that rA(M) is always in the hull of A.Clearly, for every M 2 A, rA(M) = M . It remains to show that rA is a.s.If M is in �A�q, and 0 6 i 6 q, then �iqM is in �A�q�1, so �iq(rA(M)) = �iqM =rA(�iqM). OtherwiseM is in �S4 [F ℄�1 nA�q, so �iqM is in �S4 [F ℄�1 nA�q�1, there-fore �iq(rA(M)) = �iq(P )q � (P )q�1 = rA(�iqM). Similarly for siq.Proposition 46. S4 [F � G℄ is a strong retra
t of Im�(�)�1.More pre
isely, there is an a.s. map R1F�G from Im�(�)�1 to S4 [F � G℄ su
hthat R1F�G Æ �(�) = idS4 [F�G℄.
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ontext �, �x some variable �� outside the domain of �.Let f be any q-simplex of Im�(�)�1. That is, �rst, f 2 Homb�(S4 [F ℄;S4 [G℄)q,and �0f = �(�)�1(M) for some term M and some boxed 
ontext � su
h that� `I M : F � G is derivable in BN0. Sin
e M is �-long normal of type F � G, Mmust be of the form �y �M1, with �; y : F `I M1 : G derivable in BN0. To sum up:�(�)�1(�y �M1) = �0f (16)Now Appq(f; (��)q) is a q-simplex of S4 [G℄. Its 
omponent is �0(Appq(f; (��)q)),whi
h equals App�1(�0f; d��) = App�1(�(�)�1(�y � M1); d��) (by (16)) = (�y �M1) ?q�1 d�� (by the 
ombinator equations, in parti
ular (l)) = (�y �M1)(d��) �M1fy := d��g.As far as typing is 
on
erned, sin
e �; y : F `I M1 : G is derivable in BN0,�; �� : �F `M1fy := d��g is, too. So �0(Appq(f; (��)q)) is in S4 [�; �� : �F ` G℄�1,from whi
h it follows that Appq(f; (��)q) is in S4 [�; �� : �F ` G℄q.Using Proposition 36, let M 0=̂�(��:�F )?(Appq(f; (��)q)). This is an element ofS4 [�; �� : �F ` G℄q. Sin
e proje
tion is a.s., it preserves 
omponents, so �0(M 0) =�0(Appq(f; (��)q)) = M1fy := d��g. By 
onstru
tion M 0 is in (�� : �F )?, soM 0 = �(��:�F )?(Appq(f; (��)q)) is abstra
table on ��. We may therefore use Propo-sition 41, and let: R1F�G(f)=̂�q�� � �(��:�F )?(Appq(f; (��)q)) (17)This is 
learly a.s., as a 
omposition of a.s. maps.Che
k that R1F�G is a left inverse to �(�). It is enough to 
he
k this in dimension0, by Theorem 29 and Proposition 31, sin
e R1F�G is a.s. So let f be any 0-simplexin Im(�(�)0), i.e., f = �(�)0(P ) with P 2 S4 [F � G℄0. Write P in a unique way asthe �-long normal form �y � P1 � �. Then:R1F�G(f) = �0�� � �(��:�F )?(App0(f; (��)0))= �0�� � �(��:�F )?(P �0 (��)0)= �0�� � �(��:�F )?( P1fy := d��g � �)= �0�� � P1fy := d��g � � (sin
e P1fy := d��g � � is in (�� : �F )?)= �y � P1 � � (by (15))= Pwhere for readability we have not 
onverted P1fy := d��g � � to its �-long normalform (P1fy := d��g is in general not linear in ��).Combining Lemma 45 with A=̂ Im(�(�)�1) and Proposition 46, we get:Corollary 47 (Strong Fun
tional Retra
tion). S4 [F � G℄ is a strong retra
tof the a.s. set Homb�(S4 [F ℄;S4 [G℄): there is an augmented simpli
ial map RF�Gfrom Homb�(S4 [F ℄;S4 [G℄) to S4 [F � G℄ su
h that RF�G Æ �(�) = idS4 [F�G℄.
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ations, vol. ?(?), 2001 40Proof. Take RF�G as R1F�GÆrIm(�(�)�1). Lemma 45 applies be
ause there is indeeda 0-simplex in Im(�(�)�1), e.g., �(�)0(x), where x : �(F � G) ` x : �(F � G), sox 2 S4 [x : �(F � G) ` F � G℄0 � S4 [F � G℄0.5. Augmented Simpli
ial and Other ModelsThere is a natural interpretation of (non-modal) types and typed �-terms inthe 
ategory Set of sets and total fun
tions. Interpret base types as sets, interpretF � G as the set of all total fun
tions from F to G. Then �-terms, or more pre
iselyderivations of x1 : F1; : : : ; xn : Fn ` M : F , are interpreted as total fun
tionsfrom F1 � : : : � Fn to F . The variable xi gets interpreted as the ith proje
tion,appli
ation of M to N is interpreted as the fun
tion mapping g 2 F1 � : : :� Fn toM(g)(N(g)), and abstra
tion �x �M : F � G is interpreted as the fun
tion mappingg 2 F1 � : : : � Fn to the fun
tion mapping x 2 F to M(g; x) (
urrying). This isarguably the intended semanti
s of �-terms.In parti
ular, if M and N are 
onvertible �-terms by the (�) and (�) rules(they are ��-equivalent), then they have the same interpretation. However, thisinterpretation is far from being onto: note that there are only 
ountably many �-terms, while as soon as some base type A gets interpreted as any in�nite set, A � Awill not be 
ountable, while (A � A) � A will neither be 
ountable nor even of the
ardinality of the powerset of N .Nonetheless, it 
an be proved that this interpretation is equationally 
omplete:Theorem 48 ([16℄). If the two typed �-terms M and N , of the same type F , havethe same set-theoreti
 interpretation for every 
hoi
e of the interpretation of basetypes, then M and N are ��-equivalent.In fa
t, there is even a �xed set-theoreti
 interpretation su
h that, if M and Nhave the same value in this interpretation, then they are ��-equivalent. Extendingthis result will be the topi
 of Se
tion 5.3 and subsequent ones.5.1. The (�;d; s) Comonad on b�, and Stri
t CS4 CategoriesIn the S4 
ase, given the fa
t that S4 [� ` F ℄ is an augmented simpli
ial set, it isnatural to investigate the extension of the above 
onstru
tions to intuitionisti
 S4on the one hand and the 
ategory of augmented simpli
ial sets on the other hand.In general, intuitionisti
 S4 proofs 
an be interpreted in any CCC with a monoidal
omonad. While the CCC stru
ture of b�, a

ounting for the non-modal part of S4proofs, was re
alled in Se
tion 4, the monoidal 
omonad we use is:De�nition 49 (� Comonad in b�). For every a.s. set K, let �K denote thea.s. set su
h that (�K)q=̂Kq+1, �i(�K)q=̂�i+1Kq+1, si(�K)q =̂si+1Kq+1. For any a.s. mapf : K ! L, let �f : �K ! �L be su
h that (�f)q=̂fq+1. Let d : �K ! K ands : �K ! �2K be the a.s. maps su
h that (d)q=̂�0Kq+1 and (s)q=̂s0Kq+1 respe
tively,q > �1.CCCs with a monoidal 
omonad have already been argued to be the proper
ategori
al models of intuitionisti
 S4 [7℄. While Bierman and de Paiva only show
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ations, vol. ?(?), 2001 41that (�), (�), and (d) are sound, it is easy to 
he
k that the other equalities (g
),(
tr), ( � ) and (��) are also sound.It is easy to 
he
k that the monoidal 
omonad of De�nition 49 satis�es �1 = 1,�(K �L) = �K ��L (up to natural isomorphisms that we will not make expli
it,for readability purposes), and the following so-
alled stri
t monoidal 
omonad equa-tions hold:(n) �id = id (o) �(f Æ g) = �f Æ�g (p) d Æ�f = f Æ d (q) s Æ�f = �2f Æ s(r) ��1 = �1 (s) d Æ s = id (t) �d Æ s = id (u) �s Æ s = s Æ s(v) ��2 = �2 (w) �hf; gi = h�f;�gi (x) d Æ hf; gi = hd Æ f;d Æ gi(y) s Æ hf; gi = hs Æ f; s Æ giDe�nition 50 (Stri
t CS4 Category). A stri
t CS4 
ategory is any 
artesian-
losed 
ategory C together with a stri
t monoidal 
omonad (�;d; s).Stri
t CS4 
ategories are the 
ategories in whi
h we 
an interpret typed �S4-terms. Bierman and de Paiva 
onsidered non-stri
t CS4 
ategories [7℄. We shallonly need the stri
t variant; this will make our exposition simpler. In parti
ular b�with the 
omonad of De�nition 49 is a stri
t CS4 
ategory.The � fun
tor on b� is related to Duskin and Illusie's d�e
alage fun
tor � [43℄.Standardly, d�e
alage is dual to �. For every a.s. set K, the 
onverse �K of K isobtained by letting ( �K)q=̂Kq, �i�Kq=̂�q�iKq , si�Kq=̂sq�iKq . That is, �K is obtained from Kby reversing the order of fa
es. Then �K is the 
onverse of � �K. If �K in a sensemeans \in every future, K", then it is natural to think of �K as \in every past,K". As announ
ed in Se
tion 2, we shall leave the task of investigating su
h othermodalities to a future paper.5.1.1. Topologi
al ModelsThere are many other interesting stri
t CS4 Categories. Of interest in topology in the
ategory CGHaus of 
ompa
tly generated topologi
al spa
es, a.k.a., Kelley spa
es([33℄ VII.8). (It is tempting to use the 
ategory Top of topologi
al spa
es, howeverTop is not a CCC. It has sometimes been argued that CGHaus was the right
ategory to do topology in.) Re
all that a Kelley spa
e is a Hausdor� topologi
alspa
e X whose 
losed subsets are exa
tly those subsets A whose interse
tion withevery 
ompa
t subspa
e of X is 
losed in X. CGHaus has Kelley spa
es as obje
tsand 
ontinuous fun
tions as morphisms. Moreover, for every Hausdor� spa
e X,there is a smallest topology 
ontaining that of X that makes it Kelley. The resultingKelley spa
e K(X) is the kelley�
ation of X, and is obtained by adding as 
losedsets every A � X whose interse
tion with every 
ompa
t subspa
e of X is 
losed inX. The terminal obje
t 1 in CGHaus is the one-point topologi
al spa
e, while theprodu
t of X and Y is the kelley�
ation of the produ
t of X and Y as topologi
alspa
es, and the internal hom HomCGHaus(X;Y ) is the spa
e of all 
ontinuousfun
tions from X to Y with the 
ompa
t-open topology. We may equip CGHauswith a stru
ture of stri
t CS4 
ategory as follows:De�nition 51 (� Comonad in CGHaus). For every topologi
al spa
e X, the
o
one �X over X is the disjoint sum `x02X �x0X, where the �x0X is the spa
e
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ontinuous fun
tions � from [0; 1℄ to X su
h that �(0) = x0, with the 
ompa
t-open topology.For every 
ontinuous fun
tion f : X ! Y , let �f : �X ! �Y be the fun
tionmapping ea
h � 2 �X to f Æ � 2 �Y .The 
ounit d maps every � 2 �X to �(1) 2 X.The 
omultipli
ation s maps every � 2 �X to the map t 7! (t0 7! �(tt0)) in�2X.This 
omonad is in fa
t related to the d�e
alage fun
tor, through singular simplexand geometri
 realization fun
tors.In terms of pro
esses, we may think of � 2 �X as some pro
ess that starts attime 0 and will produ
e a value at time 1. The 
ounit d is the operator that extra
tsthe �nal value of the pro
ess � as argument.We have 
alled this a 
o
one 
omonad be
ause it 
an be shown that the � fun
toradmits the familiar 
one fun
tor as a left adjoint. This 
one fun
tor in additionde�nes a strong monad, and is the topologi
al 
ounterpart of the � modality oftense logi
s, meaning \in some past" in Kripke semanti
s. A.s. sets also admit su
ha 
one monad, left adjoint to � (see e.g., [14℄).Proposition 52. The 
onstru
tion (�;d; s) of De�nition 51 is a stri
t monoidal
omonad on CGHaus, making it a stri
t CS4 
ategory.Proof. First show that �x0X is Kelley. Sin
e [0; 1℄ is 
ompa
t, it is 
ompa
tlygenerated, therefore the spa
e of 
ontinuous fun
tions from [0; 1℄ to X is Kelley:this is HomCGHaus([0; 1℄; X). (In general HomCGHaus(Y;X) is the kelley�
ationof the spa
e of 
ontinuous fun
tions from Y to X, not the spa
e itself.) Sin
e fx0gis 
losed in X, and the proje
tion � 7! �(0) is 
ontinuous, �x0X is 
losed inHomCGHaus([0; 1℄; X). As a 
losed subset of a Kelley spa
e, �x0X is then Kelley,too. Sin
e every 
oprodu
t of Kelley spa
es is also Kelley, it follows that �X isKelley.Next we must show that �f is 
ontinuous whenever f : X ! Y is. We �rst showthe auxiliary:Claim A. For every fun
tion f : X ! �Y , f is 
ontinuous if and only if, for every
onne
ted 
omponent C of X:(i) for every x; y 2 C, f(x)(0) = f(y)(0), and(ii) the restri
tion fjC of f to C is 
ontinuous from C to HomCGHaus([0; 1℄; Y ).Only if: sin
e C is 
onne
ted, f(C) is 
onne
ted. But ea
h �x0X is both open and
losed in �X by 
onstru
tion, so f(C) � �x0X for some x0 2 X. By de�nitionof �x0X, this means that f(x)(0) = x0 for every x 2 C, when
e (i). On the otherhand, sin
e f is 
ontinuous, fjC is also 
ontinuous from C to �x0X for the x0 above.Sin
e every subset of �x0X that is 
losed in HomCGHaus([0; 1℄; Y ) is also 
losedin �x0X by de�nition, (ii) holds. (We use the fa
t that f is 
ontinuous if and onlyif the inverse image of every 
losed set is 
losed.)If: let x0 be f(x)(0) for some (and therefore all, by (i)) x 2 C. Then f(C) ��x0X. By (ii), and sin
e every 
losed subset of�x0X is 
losed inHomCGHaus([0; 1℄;Y ), fjC is 
ontinuous from C to �x0X, hen
e to �X. For every open O of �X,
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ations, vol. ?(?), 2001 43f�1(O) is the union of f�1jC (O) when C ranges over the 
onne
ted 
omponents of X,and is therefore open. So f is indeed 
ontinuous from X to �Y . Claim A is proved.Now let f : X ! Y be 
ontinuous. Let C be a 
onne
ted 
omponent of �X.Sin
e every �x0X is both open and 
losed in �X, C is in
luded in some �x0X. Sofor every �; � 2 C, �f(�)(0) = f(�(0)) = f(x0) = f(�(0)) = �f(�)(0), therefore(i) holds. Moreover fjC is trivially 
ontinuous from C to HomCGHaus([0; 1℄; Y ),sin
e f Æ is a 
ontinuous operation (this is the morphism �(f ÆApp) in CGHaus,whi
h is a CCC). So Claim A applies, and �f is 
ontinuous.Let us now show that d : �X ! X is 
ontinuous. Let F be any 
losed subsetof X, then d�1(F ) = f� 2 �Xj�(1) 2 Fg = Sx02Xf� 2 �x0Xj�(1) 2 Fg =Sx02Xf� 2 HomCGHaus([0; 1℄; X)j�(0) = x0 ^ �(1) 2 Fg. Sin
e the fun
tionsfrom HomCGHaus([0; 1℄; X) to X mapping � to �(0) and �(1) respe
tively are
ontinuous, ea
h f� 2 HomCGHaus([0; 1℄; X)j�(0) = x0 ^ �(1) 2 Fg is 
losed inHomCGHaus([0; 1℄; X); hen
e in �x0X. Sin
e a set is 
losed in a sum spa
e if andonly if its interse
tion with every summand is 
losed in the summand, d�1(F ) is
losed.Let us show that s : �X ! �2X is 
ontinuous. Let C be any 
onne
ted 
ompo-nent of �X. In parti
ular C � �x0X for some x0. So for every � 2 C, �(0) = x0,therefore s(�)(0) is the map t0 7! �(0t0), i.e., the 
onstant map t0 7! x0. As thisis independent of �, (i) holds. On the other hand, let F be any 
losed subset ofHomCGHaus([0; 1℄;�X). Then, letting f0 be the 
onstant map t0 7! x0, s�1jC (F ) =s�1jC (F \�f0�X) = s�1jC (F \�f0�x0X) is 
losed in HomCGHaus([0; 1℄; X). Indeed�f0�x0X is 
losed inHomCGHaus([0; 1℄;HomCGHaus([0; 1℄; X)), and sjC is 
ontin-uous from HomCGHaus([0; 1℄; X) to HomCGHaus([0; 1℄;HomCGHaus([0; 1℄; X)),as a 
omposition of 
ontinuous maps. So s�1jC (F ) is also 
losed in C, hen
e (ii)holds. By Claim A s is 
ontinuous.We now 
laim that � is stri
t monoidal. (In passing, this is obvious if you a

eptour previous 
laim that � has a left adjoint, the 
one fun
tor �, sin
e right adjointspreserve limits.) The terminal obje
t ! in CGHaus is any singleton f�g; �f�g isthe spa
e of all paths from � to � in f�g, and is therefore also a singleton set. Onthe other hand, produ
ts are slightly harder to deal with. Let X � Y denote theprodu
t of X and Y as topologi
al spa
es; then X � Y is K(X � Y ). We 
laim thatthe pair of fun
tions: F : �(X � Y )! �X ��Y
 7! (�1 Æ 
; �2 Æ 
)G : �X ��Y ! �(X � Y )(�; �) 7! (t 7! (�(t); �(t)))de�nes a natural isomorphism between �(X � Y ) and �X and �Y . That they areinverse of ea
h other is 
lear, it remains to show that they are 
ontinuous. For F ,sin
e � is a produ
t in CGHaus, it is enough to show that 
 7! �1 Æ
 is 
ontinuousfrom �(X � Y ) to �X, and similarly for 
 7! �2 Æ 
. Apply Claim A: let C be any
onne
ted 
omponent of �(X � Y ). Sin
e ea
h �(x0;y0)(X � Y ) is both open and
losed in �(X�Y ), C is in
luded in some �(x0;y0)(X�Y ) for some x0 2 X, y0 2 Y .
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 7! �1 Æ
 maps any 
 2 C to some path whose value at 0 is x0, and is thereforeindependent of 
: (i) holds. And (ii) is obvious, so F is 
ontinuous. For G, this issubtler, and we require to prove the following �rst:Claim B. Every 
onne
ted 
omponent C of X � Y is a subset of some produ
tA � B, where A is a 
onne
ted 
omponent of X and B a 
onne
ted 
omponent ofY . Indeed, every 
onne
ted 
omponent of X, resp. Y , is both open and 
losed in X,resp. Y . So every produ
t A � B is both open and 
losed in X � Y , when A and Bare 
onne
ted 
omponents. Sin
e the topology of X �Y is �ner than that of X �Y ,A � B is also both open and 
losed in X � Y . Let S be the set of pairs (A;B) of
onne
ted 
omponents su
h that C \ (A �B) 6= ;. Note that the union of all A �Bfor (A;B) 2 S 
overs C. Sin
e C \ (A � B) is both open and 
losed in S and C is
onne
ted, there 
an be at most one pair A;B of 
onne
ted 
omponents su
h thatC \ (A �B) 6= ;. It follows that C � A �B. Claim B is proved.To show that G is 
ontinuous, apply Claim A. For every 
onne
ted 
omponent Cof �X��Y , using Claim B, C is in
luded in some produ
t of 
onne
ted 
omponentsof �X and �Y respe
tively. In parti
ular C � �x0X � �y0Y for some x0 2 X,y0 2 Y . It follows that for every (�; �) 2 C, G(�; �)(0) = (�(0); �(0)) = (x0; y0)is independent of � and �. So (i) holds. Also, (ii) holds trivially. Therefore G is
ontinuous.It remains to 
he
k equations (n){(y), whi
h are easy and left to the reader.It is instru
ting to see that if X is a spa
e of points, �X is a spa
e of paths,then �2X is a spa
e of singular 2-simpli
es, and in general �qX will be a spa
e ofsingular q-simpli
es.Let's examine �2X �rst. This is a spa
e of paths �, su
h that ea
h �(t), t 2 [0; 1℄is itself a path, so � is a kind of square, up to deformation. However, � is 
ontinuousand [0; 1℄ is 
onne
ted, so the range of � is 
onne
ted as well. But the range of � is asubset of �X, whi
h is the dire
t sum of spa
es �x0X, x0 2 X. In any dire
t sum oftopologi
al spa
es, every summand is both open and 
losed, hen
e every 
onne
tedsubspa
e is in fa
t a subspa
e of some summand. In our 
ase, this means that therange of � is a subset of some �x0X. In other words, �(t)(0) = x0 for every t, sothe range of � assumes the shape of a triangle, up to deformation: see Figure 6.Note that this phenomenon is entirely due to the strange topology we take on�X, whi
h separates 
ompletely paths � that do not have the same �(0). Had wejust taken �X to be the set of paths in X with the 
ompa
t-open topology, �qXwould have been a set of 
ubes, not simpli
es.In general, de�ne XSingq(X), for q > �1, as the set of all extended singularq-simpli
es in X:De�nition 53 (Extended Singular Simpli
es, XSing). For every q > �1,the extended singular q-simpli
es are the 
ontinuous maps from �+q to F , where�+q=̂f(t0; : : : ; tq) j t0 > 0; : : : ; tq > 0; t0 + : : : + tq 6 1g is the standard extendedq-simplex.�+�1 is the singleton 
ontaining only the empty tuple (). Otherwise, �+q isa polyhedron whose verti
es are (0; : : : ; 0) �rst, and se
ond the points e0, . . . , eq,
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Figure 6: Extended singular simpli
es
where ei=̂(t0; : : : ; tq) with ti = 1 and tj = 0 for all j 6= i. This is analogous tothe more usual notion of standard q-simpli
es �q, for q > 0, whi
h are the sub-polyhedra with verti
es e0, . . . , eq, namely �q=̂f(t0; : : : ; tq) j t0 > 0; : : : ; tq >0; t0+ : : :+ tq = 1g. The singular q-simpli
es of X are the 
ontinuous maps from �qto X. See Figure 7 for an illustration of what the standard simpli
es, and standardextended simpli
es, look like.
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Figure 7: Standard and extended simpli
es
The topology on XSingq(X) is given as follows. When q = �1, XSingq(X) isisomorphi
 to X. Otherwise, XSingq(X) is viewed as the topologi
al sum of allspa
es XSing
q (X)=̂ff 2 HomCGHaus(�+q; X) j fj�q = 
g, when 
 ranges overall singular q-simpli
es of X. We let the interested reader 
he
k that XSingq(X) isin fa
t homeomorphi
 to �qX.Note that (extended) simpli
es over a spa
e of fun
tions X ! Y also have anelegant geometri
 interpretation. While X ! Y is a set of 
ontinuous fun
tions,�(X ! Y ) is a set of 
ontinuous paths from fun
tions f to fun
tions g in X ! Y ,so �(X ! Y ) is a set of homotopies between 
ontinuous fun
tions from X to Y .The elements of �q(X ! Y ), q > 1, are then known as higher-order homotopies:�2(X ! Y ) is the set of homotopies between homotopies, et
. This is a 
lassi
al
onstru
tion in algebrai
 topology [36℄.
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ations, vol. ?(?), 2001 46In terms of proof theory, there is a translation of intuitionisti
 proofs to S4 proofswhi
h repla
es every base type A by �A and every impli
ation by a 
orrespondingboxed impli
ation. At the level of proof terms, this yields the SKInT 
al
ulus of[19℄, whi
h interprets (slightly more than) Plotkin's 
all-by-value �-
al
ulus [42℄.The present 
onstru
tions give rise to a model in terms of paths (elements of basetypes) and homotopies (impli
ations) for SKInT. This is left to the reader.5.1.2. Models in Categories of Orders, Cpos, and CategoriesMore 
ogent to 
omputer s
ien
e are models of the �-
al
ulus based on 
ompletepartial orders. Here, too, we may de�ne stri
t monoidal 
omonads as follows. Firstre
all thatOrd, the 
ategory whose obje
ts are partial orders and whose morphismsare monotoni
 fun
tions, is a CCC. Similarly, Cat, the 
ategory of small 
ategories,is a CCC. The 
ategory Cpo of 
omplete partial orders (
pos) has 
pos as obje
tsand 
ontinuous fun
tions as morphisms. Re
all that a 
po is any partial order inwhi
h every in�nite in
reasing 
hain x0 6 x1 6 : : : 6 xi 6 has a least upper bound.(We don't require our 
pos to be pointed, i.e., to have a least element.) A fun
tion is
ontinuous provided it preserves all least upper bounds; in parti
ular, a 
ontinuousfun
tion is monotoni
. Again, Cpo is a CCC. A variant is the 
ategory DCpo ofdire
ted 
pos, where it is instead required that all dire
ted subsets have a least upperbound; a dire
ted subset E is one where any two elements in E have a least upperbound in E. Continuous fun
tions are then required to preserve least upper boundsof all dire
ted sets. Again, DCpo is a CCC.De�nition 54 (� Comonad in Ord, Cpo, DCpo). For every partial order(X;6), let �X be the set of all pairs (x0; x1) of elements of X su
h that x0 6 x1,ordered by (x0; x1) 6 (y0; y1) if and only if x0 = y0 (not x0 6 y0) and x1 6 y1. Forevery monotoni
 fun
tion f : X ! Y (resp. 
ontinuous), let �f map (x0; x1) to(f(x0); f(x1)).The 
ounit d : �X ! X maps (x0; x1) to x1.The 
omultipli
ation s : �X ! �2X maps (x0; x1) to ((x0; x0); (x0; x1)).It is easily 
he
ked that this de�nes a stri
t monoidal 
omonad on Ord, Cpo,DCpo. As for the topologi
al 
ase, we may give a syntheti
 des
ription of �qX:this is isomorphi
 to the partial order (resp. 
po, resp. d
po) of all 
hains x�1 6x0 6 x1 6 : : : 6 xq of elements of X, ordered by:(x�1; x0; : : : ; xq) 6 (x0�1; x00; : : : ; x0q)if and only if x�1 = x0�1, x0 = x00, . . . , xq�1 = x0q�1, and xq 6 x0q. Just like iterating� in the topologi
al 
ase allowed us to retrieve a form of of singular simplex fun
tor,we retrieve a form of nerve fun
tor.In passing, we invite the reader to 
he
k that there is also a 
one monad � inOrd, Cpo and DCpo: �X is X with a new bottom element added below every
onne
ted 
omponent of X. (Conne
ted 
omponents are the equivalen
e 
lasses ofthe symmetri
 
losure of 6.) The unit X ! �X is the natural in
lusion of orders.The multipli
ation �2X ! �X squashes the two additional bottoms of �2X to theone 
oming from �X. Again, this is a strong monad left adjoint to �.
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he
k that similar 
onstru
tions work in Cat: forevery small 
ategory C, let �C be the 
ategory of all morphisms of C; morphismsfrom X ! X0 to X ! X1 are all 
ommuting triangles:X
X0g � X1�In short, �C is the 
oprodu
t of all 
osli
es over C. The 
ounit is given by: d is thefun
tor mapping X ! X0 to X0, and the diagram above to the morphism X0 ! X1in C. Comultipli
ation maps every obje
t X ! X0 in C to the obvious 
ommutingtriangle X !! X0, and morphisms as given by the triangle above to 
ommutingtetrahedra: X � X2
X0g �

�
X1
f

�
5.2. Interpreting S4 Proofs into CCCs with Monoidal ComonadsFix an arbitrary stri
t CS4 
ategory C, 
alling its stri
t monoidal 
omonad(�;d; s). Our prime example is b�, but we do not restri
t to it here. We reusethe CCC notations of Se
tion 4 and the stri
t monoidal 
omonad notations of Se
-tion 5.1, together with equations (a){(m) and (n){(y).Extend the set-theoreti
 interpretation of �-terms to an interpretation of formu-las as obje
ts in C, and of terms as morphisms in C; this interpretation is shownin Figure 8. This is parameterized by an environment � mapping ea
h base typeA 2 � to some obje
t �(A). Our notations mat
h standard meaning fun
tions indenotational semanti
s.We letX1�: : :�Xn=̂(: : : (1�X1)�: : :�Xn�1)�Xn, and hf1; : : : ; fni=̂hh: : : h!; f1i: : : ; fn�1i; fni. We a
tually make an abuse of language by 
onsidering that this isan interpretation of typed �S4-terms instead of of typing derivations.If � is x1 : F1; : : : ; xn : Fn, we also let C J�K � be the produ
t C JF1K � � : : : �C JFnK �.Lemma 55 (Soundness). The interpretation of Figure 8 is sound in every stri
tCS4 
ategory C: if � `M : F is derivable, then C JMK � is a morphism from C J�K �to C JF K �; and if M � N then C JMK � = C JNK �.Proof. The typing part is immediate. For the equality part, standard arguments[10℄ show that: C J� `Mfx1 := N1; : : : ; xn := Nng : F K � (18)= C Jx1 : F1; : : : ; xn : Fn `M : F K �ÆhC J� ` N1 : F1K �; : : : ; C J� ` Nn : FnK �i
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ations, vol. ?(?), 2001 48C JAK �=̂�(A) C JF � GK �=̂HomC(C JF K �; C JGK �) C J�F K �=̂�C JF K�C J� ` xi : FiK � =̂ �2 n�iz }| {Æ�1 Æ : : : Æ �1 where �=̂x1 : F1; : : : ; xn : FnC J� `MN : GK � =̂ App Æ hC J� `M : F � GK �; C J� ` N : F K �iC J� ` �x �M : F � GK � =̂ �(C J�; x : F `M : GK �)C J� ` dM : F K � =̂ d Æ C J� `M : �F K �C r� ` M � � : �Gz � =̂ �C J� `M : GK � Æ sÆhC J� ` N1 : �F1K �; : : : ; C J� ` Nn : �FnK �iwhere �=̂x1 : �F1; : : : ; xn : �Fn;�=̂fx1 := N1; : : : ; xn := NngFigure 8: Interpreting S4 proof terms
where the indi
ated sequents are derivable; and that:C J�; x : F `M : GK � = C J� `M : GK � Æ �1if x is not free in M . By standard but tedious 
al
uluations, we then 
he
k that ifM ! N then C JMK � = C JNK �, whi
h entails the se
ond 
laim.If we are allowed to vary the stri
t CS4 
ategory C, then there are 
onverses toLemma 55. The idea is that we 
an always de�ne a synta
ti
 
ategory C as follows:De�nition 56 (S4� Category). Let S4� be the 
ategory whose obje
ts are 
ontextsmapping variables to types built on the set � of base types, and whose morphismsare: �=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmwhere � is a substitution su
h that � `Mj : Gj for every j, 1 6 j 6 m, modulo �.The identity on � is the identity substitution id�=̂fx1 := x1; : : : ; xn := xng, and
omposition � Æ �0 is substitution 
on
atenation � � �0.This is a CCC with a stri
t monoidal 
omonad. The terminal obje
t 1 is theempty 
ontext, and the unique morphism � !�!1 is the empty substitution. Tode�ne produ
ts, noti
e that 
ontexts are isomorphi
 up to renaming of variables.In other words, x1 : F1; : : : ; xn : Fn is isomorphi
 to x01 : F1; : : : ; x0n : Fn. Thisallows us to only de�ne � � �0 when � and �0 have disjoint domains. Then � � �0is the 
on
atenation �;�0 of 
ontexts, and for any � ��!� and � ��!�0, h�; �0i is themorphism (�; �0). Proje
tions are restri
tions:�� �0 �1=̂fx1 := x1; : : : ; xn := xng � ��� �0 �2=̂fx01 := x01; : : : ; x0n0 := x0n0g � �0Given that � = x1 : F1; : : : ; xn : Fn and �0 = x01 : F 01; : : : ; x0n0 : F 0n0 , the internalhom obje
t HomS4�(�;�0) is the 
ontext z1 : F1 � : : : � Fn � F 01; : : : ; zn0 :
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ations, vol. ?(?), 2001 49F1 � : : : � Fn � F 0n0 . Appli
ation HomS4�(�;�0)� �App�!�0 is built from synta
ti
appli
ation, as fx01 := z1x1 : : : xn; : : : ; x0n0 := zn0x1 : : : xng, while abstra
tion is builtfrom �-abstra
tion as follows. For every �� � ��!�0, where � and �0 are as above,and �=̂y1 : G1; : : : ; ym : Gm,
� f z1 := �x1; : : : ; xn � x01�;: : : ;zn0 := �x1; : : : ; xn � x0n0� g � HomS4�(�;�0)This only uses the non-modal part of S4, and in parti
ular only the 
omputationrules (�) and (�).The stri
t monoidal 
omonad (�;d; s) on S4� is de�ned using the S4 � modal-ity: on obje
ts, �(x1 : F1; : : : ; xn : Fn) is de�ned as x1 : �F1; : : : ; xn : �Fn; onmorphisms, for any � as given in De�nition 56, �� is:�� ��=̂fy1 := �M1; : : : ; ym := �Mmg � ��where �M is Mfx1 := dx1; : : : ; xn := dxng for any M su
h that � ` M : G isderivable. The 
ounit d is:�� d=̂fx1 := dx1; : : : ; xn := dxng� �while 
omultipli
ation is:�� s=̂fx1 := sx1; : : : ; xn := sxng� �2�Re
all that sM is x � fx :=Mg.It trivially follows:

Proposition 57 (Existential Completeness). Let � map every base type A 2 �to the 
ontext z : A. If there is a morphism from S4� J�K � to S4� JF K � in S4� thenF is provable from �, i.e., there is a �S4-term M su
h that � `M : F is derivable.
Proposition 58 (Evaluation Fun
tor). For every stri
t CS4 
ategory C, andevery � : � ! C, C J K � extends � to a representation of stri
t CS4 
ategories S4�to C.
Proof. For every morphism�=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg � y1 : G1; : : : ; ym : Gmde�ne C J�K � as hC J� `M1 : G1K �; : : : ; C J� `Mm : GmK �i. This is fun
torial: in-deed C Jid�K � = h�2 Æ �m�11 ; : : : ; �2 Æ �1; �2i = id, and C J K � preserves 
ompositionby (18). This preserves 
artesian produ
ts by 
onstru
tion.
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ations, vol. ?(?), 2001 50This preserves �. Indeed,C J�� ` �M : �F K �= C r�� ` Mfx1 := dx1; : : : ; xn := dxng : �Fz �= �C J� `Mfx1 := dx1; : : : ; xn := dxng : F K �Æs Æ h�2 Æ �m�11 ; : : : ; �2 Æ �1; s Æ �2i= �C J� `Mfx1 := dx1; : : : ; xn := dxng : F K � Æ s= � �C J� `M : F K � Æ hd Æ �2 Æ �m�11 ; : : : ;d Æ �2 Æ �1;d Æ �2i� Æ s= �(C J� `M : F K � Æ d) Æ s= �C J� `M : F K � Æ�d Æ s = �C J� `M : F K � (by (t))So: C J��K � = hC J�� ` �M1 : �G1K �; : : : ; C J�� ` �MmK �i= h�C J� `M1 : G1K �; : : : ;�C J� `Mm : GmK �i= �C J�K � (by (w))C J K � preserves d:C JdK � = hC J�� ` dx1 : F1K �; : : : ; C J�� ` dxn : FnK �i= hd Æ �2 Æ �n�11 ; : : : ;d Æ �2 Æ �1;d Æ �2i= d Æ h�2 Æ �n�11 ; : : : ; �2 Æ �1; �2i = dC J K � preserves s. Indeed,C q� ` sM : �2Fy � = C q� ` x � fx :=Mg : �2Fy �= �C Jx : �F ` x : �F K � Æ s Æ C J� `M : �F K �= �id Æ s Æ C J� `M : �F K �= s Æ C J� `M : �F K �So: C JsK � = hs Æ �2 Æ �n�11 ; : : : ; s Æ �2 Æ �1; s Æ �2i= s Æ h�2 Æ �n�11 ; : : : ; �2 Æ �1; �2i = sThe fun
tor C J K � also preserves internal homs, appli
ation App and abstra
tion�. This is standard, tedious and uninstru
tive, hen
e omitted.Proposition 59 (Free Stri
t CS4 Category). S4� is the free stri
t CS4 
ategoryon �.More pre
isely, for every set � of base types, seen as a dis
rete 
ategory, let� denote the natural in
lusion fun
tor of � into S4�. Then for every stri
t CS4
ategory C, for every fun
tor � : �! C, there is a unique fun
tor � that makes the
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ommute: � � � S4�
C�g � �

Furthermore, � is exa
tly the C J K � fun
tor as de�ned in Figure 8.Proof. Uniqueness: assume � exists, we shall show that it is uniquely determined.On obje
ts, � must map every formula F to C JF K �, and in general every 
ontext �to C J�K �. On morphisms, sin
e � must preserve produ
ts, � is uniquely determinedby the images of morphisms in S4� of the form�=̂x1 : F1; : : : ; xn : Fn fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmwith m = 1. In this 
ase, equate the morphism with the judgment � ` M1 : G1.Then � is uniquely determined by its values on typed �S4-terms. (For readability,we make an abuse of language by equating terms with their typing derivations.)Sin
e � must preserve � and s, we must have:�� Mfx1 := dx1; : : : ; xn := dxng � = ��(M)� � x � fx :=Mg� = s Æ �(M)Sin
e, using ( 2 ), (d), and possibly (g
):M � fx1 := N1; : : : ; xn := Nng� � Mfx1 := dx1; : : : ; xn := dxng � fx1 := y1 � fy1 := N1g; : : : ;xn := yn � fyn := Nnggit follows that:�� M � fx1 := N1; : : : ; xn := Nng� = ��(M) Æ s Æ h�(N1); : : : ;�(Nn)iSimilarly, sin
e � must preserve d, we must have �(dM) = dÆ�(M). We re
ognizethe 
lauses for C J K � for boxes and d terms given in Figure 8. The 
ase of internalhoms, appli
ation and abstra
tion are equally easy and standard, when
e � mustbe C J K �.Existen
e: taking �=̂C J K �, this is by Lemma 55 and Proposition 58.Corollary 60. Let � denote the 
anoni
al in
lusion � � S4�, mapping ea
h basetype A to A, seen as a formula. Then S4� J� `M : F K (�) �M .Proof. Apply Proposition 59 with C=̂S4�, �=̂(�).Corollary 60 immediately implies:Proposition 61 (Equational Completeness). Let M , N be two �S4-terms su
hthat � `M : F and � ` N : F are derivable.If S4� J� `M : F K (�) = S4� J� ` N : F K (�), then M � N .
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ations, vol. ?(?), 2001 52While S4� is 
hara
terized as the free stri
t CS4 
ategory, we end this se
tion byelu
idating the 
onstru
tion of the augmented simpli
ial set S4 [F ℄ of De�nition 42from a 
ategori
al point of view. First, we note:Lemma 62. There is a fun
tor S4 [ ℄ mapping every formula F to S4 [F ℄, and moregenerally every 
ontext �=̂x1 : F1; : : : ; xn : Fn to S4 [�℄=̂S4 [F1℄� : : :� S4 [Fn℄, andevery morphism�=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmto the morphism S4 [�℄ in b� whi
h, as an augmented simpli
ial map, sends (N1; : : : ;Nn) 2 S4 [�℄q to (�q+1M1'; : : : ;�q+1Mm'), where '=̂fx1 := N1; : : : ; xn := Nng.Moreover, S4 [ ℄ is faithful, preserves all �nite produ
ts and the given 
omonadsin the sour
e and target 
ategories.Proof. That it is a fun
tor follows from equations (n) and (o). It 
learly preserves all�nite produ
ts and maps the synta
ti
 
omonad (�;d; s) to the d�e
alage 
omonad,as an easy 
he
k shows. Finally, it is faithful: in the de�nition of S4 [�℄ above, weretrieve � uniquely from S4 [�℄ by looking at the image of the tuple (x1; : : : ; xn) byS4 [�℄�1.We 
an give an even more abstra
t des
ription of S4 [ ℄ as follows, whi
h is essen-tially a way of generalizing the familiar hom-set fun
tor HomC( ; ) to the augmentedsimpli
ial 
ase. In this way, we shall see that it is related to the standard resolutionof any 
omonad ([33℄, VII, 6):De�nition 63 (Resolution Fun
tor Res). Let (C;�;d; s) be any stri
t CS4 
at-egory. There is a resolution fun
tor ResC : Co�C ! b� whi
h maps every pair A;Bof obje
ts in C to the augmented simpli
ial set ((HomC(A;�q+1B))q>�1; �iq=̂(�id Æ); siq=̂(�is Æ )), and every pair of morphisms A0 f�!A, B g�!B0 to the a.s. mapResC(f; g) given in dimension q > �1 by ResC(f; g)q(a)=̂�q+1g Æ a Æ f for everya 2 HomC(A;�q+1B).For instan
e, ResS4�(1; F ) is the augmented simpli
ial set of ground �S4-terms oftype �q+1F , q > �1. (A term is ground provided it has no free variable.) Howeverwe have seen in Lemma 45 that this would not be enough for our purposes. Theminimal augmented simpli
ial set that seems to work is as follows:De�nition 64 (Contra
ting Resolution Fun
tor CRes). Let (C;�;d; s) be asmall stri
t CS4 
ategory. Then the 
ontra
ting resolution fun
tor CResC : C ! b�is the 
olimit Lim�! (�(ResC) Æ �) in the 
ategory HomCat(C; b�) of fun
tors from Cto b�.This de�nition makes sense, provided we take � as meaning abstra
tion in Cat:while CResC is a fun
tor from Co � C to b�, �(CResC) is a fun
tor from Co toHomCat(C; b�); sin
e � is an endofun
tor in C, it also de�nes an endofun
torin Co. Finally, the indi
ated 
olimit exists be
ause HomCat(C; b�) = HomCat(C;HomCat(�o;Set)) �= HomCat(C � �o;Set) is a 
ategory of presheaves, hen
e a
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e is small 
o
omplete; and C, therefore also Co is small. So the 
olimitindeed exists.Geometri
ally, the idea is that instead of taking resolutions from a one-pointspa
e 1 (as in ResC(1; )), we take all resolutions from enough spa
es with a 
on-tra
ting homotopy, properly amalgamated. Re
all that a 
ontra
ting homotopy onan augmented simpli
ial set K=̂(Kq)q>�1 is an a.s. map from K to �K that is aright inverse to d in b�. More 
on
retely, this is a family of maps s�1q : Kq ! Kq+1,q > �1, su
h that s�1q+1 Æsjq = sj+1q+1 Æs�1q and s�1q�1 Æ�jq = �j+1q+1 Æs�1q , for all 0 6 j 6 q,and �0q+1 Æ s�1q = id. (This is exa
tly what is needed to build the more standard no-tion of 
ontra
ting homotopy in simpli
ial homology.) Then a trivial way of ensuringthat ResC(A;B) has a 
ontra
ting homotopy is to take A of the form �A0: indeed,for any f 2 ResC(�A0; B)q = HomC(�A0;�q+1B), we may then de�ne s�1q (f) as�f Æ s.Proof-theoreti
ally, when C is S4�, s�1q (M) is the term M . This is the manifes-tation of the (�I) rule. At the level of programs, this is Lisp's quote operator.Proposition 65. For every 
ontext �, the a.s. set S4 [�℄ is exa
tly CResS4�(�).Proof. We deal with the 
ase where � is of the form z : F for a single formula F ,for readability purposes. The general 
ase is similar.Colimits in fun
tor 
ategories are taken pointwise, so CResS4�(F ) is the 
olimit ofthe fun
tor that maps every 
ontext � to the a.s. set ResS4�(��; F ) of all �S4-termsM su
h that �� ` M : �q+1F , modulo �. On the one hand, S4 [F ℄ is the apex ofa 
o
one 
onsisting of morphisms ResS4�(��; F ) �! S4 [F ℄ that map ea
h typingderivation of �� ` M : �q+1F to the term M itself. On the other hand, we 
laimthat S4 [F ℄ is universal among all su
h apexes. Let indeed K be any a.s. set su
hthat there are morphisms ResS4�(��; F ) f��!K, where � ranges over 
ontexts; andsu
h that these morphisms de�ne a 
o
one: whenever � ��!�0 is a morphism in S4�,for every q > �1, (��0 M�!F ) 2 ResS4�(��0; F )q, f�0(��0 M�!F ) = f�(��M ����! F ).Taking for � all substitutions mapping variables to variables, and noti
ing that forany variable x, �x = dx � x, it follows that f� depends only on M , not on��0 M�!F : this de�nes the unique morphism from S4 [F ℄ to K. Therefore S4 [F ℄ is a
olimit of the desired fun
tor. By the uniqueness of 
olimits (up to isomorphism),the result obtains.5.3. A Review of Logi
al RelationsWhile the C J K interpretation is 
omplete when we are allowed to take S4� forC, we are interested in taking more geometri
al 
ategories for C, in parti
ular b� orCGHaus.Let us �rst review the standard way of proving Friedman's Theorem 48 ([37℄,Chapter 8) using logi
al relations. We shall then dis
uss why this proof 
annot bereplayed dire
tly in our 
ase, and do appropriate modi�
ations.Friedman's result is for the non-modal part of �S4, the �-
al
ulus with ��-equality, interpreted in Set. Let us spell out the relevant part of the interpreta-tion of Figure 8 in detail. Given a map from base types A 2 � to sets �(A),
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ations, vol. ?(?), 2001 54let Set JF � GK � be the set of all fun
tions from Set JF K � to Set JGK �. ThenSet J�K �, where �=̂x1 : F1; : : : ; xn : Fn, is a mapping from ea
h variable xi toSet JFiK �: this is a �-environment ". The interpretation in Set then maps everytyping derivation of a �-term M of type F in �, and every �-environment " to anelement Set J� `M : F K �" (for short, Set JMK �") of Set JF K �: Set JxK �" is "(x),Set JMNK �" is Set JMK �" applied to Set JNK �", and Set J� ` �x �M : F � GK �"is the fun
tion that maps ea
h v 2 Set JF K � to Set JMK �("[x 7! v℄).Let Set[F ℄ be de�ned as the set of all �-terms of type F , modulo ��-
onversion.We get an interpretation of �-terms in the free CCC over � by mapping every termM to Set[M ℄�=̂M�, where the �-environment � is just a substitution.A logi
al relation is a family of binary relations RF indexed by formulae F ,between Set[F ℄ and Set JF K �, su
h thatM RF�G f if and only ifMN RG f(a) foreveryM and a su
h that N RF a. (In general, logi
al relations are relations indexedby types between Henkin models, or between CCCs. We spe
ialize the notion to ourproblem at hand.) The fundamental lemma of logi
al relations (the Basi
 Lemmaof [37℄) states that, when " is a �-environment (�=̂x1 : F1; : : : ; xn : Fn) and � asubstitution mapping ea
h xi to a term of type Fi, whenever xi� RFi "(xi) for ea
hi, then Set[M ℄� RF Set JMK �" for any term M of type F in �. In other words, assoon as environments are related through the logi
al relation, then so are the valuesof any term in both models.To show that Set J K � is equationally 
omplete, it is enough to show that we 
anbuild a fun
tional logi
al relation, i.e., one su
h that for every a 2 Set JF K �, thereis at most one M 2 Set[F ℄ (up to �) su
h that M RF a. Note that any logi
alrelation is uniquely determined by the relations RA with A 2 �. The tri
k is to
hoose RA so that not only RA but every RF is fun
tional. It turns out that askingthat RF be fun
tional only does not 
arry through, and we must require RF to befun
tional and onto: for everyM 2 Set[F ℄, there must be at least one a 2 Set JF K �su
h that M RF a. Under these assumptions, RF�G is then fun
tional and onto assoon as RF and RG are. First, it is fun
tional: 
hoose f 2 Set JF � GK �, a fun
tionfrom Set JF K � to Set JGK �, then every term M su
h that M RF�G f must besu
h that for every N RF a, MN RG f(a). Using the Axiom of Choi
e and thefa
t that RF is onto, we may de�ne a fun
tion iF : Set[F ℄ ! Set JF K � su
h thatN RF iF (N). ThenM must be su
h that for every N ,MN RG f(iF (N)). Sin
e RGis fun
tional, we may de�ne a proje
tion pG : Set JF K �! Set[F ℄ su
h that P RG aimplies P = pG(a) (when there is no P su
h that P RG a, pG(a) is arbitrary). SoM must be su
h that for every N , MN = pG(f(iF (N))). This determines MNuniquely, hen
e M too, provided it exists. So RF�G is fun
tional. To show that itis onto, map M 2 Set[F � G℄ to the fun
tion f 2 Set JF � GK � mapping a toiG(M pF (a)).This is essentially the line of proof that we shall follow. However, in our 
aseSet is repla
ed by b�, where the Axiom of Choi
e is invalid: if p : K ! L is an epiin b�, there is no a.s. map i : L ! K in general su
h that p Æ i = id. The samehappens in CGHaus (although the Axiom of Choi
e allows us to pi
k a fun
tioni that is left-inverse to p, there may be no su
h 
ontinuous left-inverse). Thereforewe have to build iF and pF expli
itly by indu
tion on formulae. The important
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ations, vol. ?(?), 2001 55property that needs to be preserved for ea
h formula F is what we shall 
all theBounding Lemma: if a = iF (M) then M RF a, and if M RF a then M = pF (a).Retra
ing the argument above, we �nd that this requires us to de�ne iF�G(M)as the fun
tion mapping a to iG(M pF (a)), however the obvious de�nition forpF�G: pF�G(f)=̂�x � pG(f(iF (x))) is wrong. This is be
ause this is in
ompatiblewith �-renaming in general, and therefore does not map fun
tions to �-
lasses of �-terms. Indeed, 
ompatibility with �-renaming imposes that �x �pG(f(iF (x))) = �y �pG(f(iF (x)))fx := yg, but there is no reason why pG Æf Æ iF should be substitutive.The solution is to de�ne pF�G by pF�G(f)=̂RF�G(N 7! pG(f(iF (N)))), whereRF�G is a retra
tion of the set of fun
tions from Set[F ℄ to Set[G℄ onto the synta
ti
fun
tion spa
e Set[F � G℄|retra
tion meaning that RF�G(N 7! MN) should bethe term M exa
tly. This is exa
tly what we have taken the pain of 
onstru
ting inthe augmented simpli
ial 
ase in Corollary 47.One �nal note before we embark on a
tually proving the theorem. The rightnotion of logi
al relation here is one of Kripke logi
al relation, a more 
omplexnotion than ordinary logi
al relations. Moreover, 
ontrarily to more usual 
ases, theset of worlds we use for this Kripke logi
al relation 
annot just be a preorder: it hasto be a 
ategory, in fa
t the augmented simpli
ial 
ategory �. Con
retely, we haveto use families of relations RFq indexed by both formulae F and dimensions q > �1,su
h that:(a.s.) for every a; a0, if a RFq a0 then, for every i, 0 6 i 6 q, �iqa RFq�1 �iqa0 andsiqa RFq+1 siqa0;(� logi
al) for every a; a0, a R�Fq a0 if and only if a RFq+1 a0.(� logi
al) for every f; f 0, f RF�Gq f 0 if and only if for every monotoni
 fun
tion� : [p℄! [q℄, for every a; a0 su
h that a RFp a0,�p+1App(�̂(f); a) RGp �p+1App(�̂(f 0); a0)where �̂ is de�ned in the unique way so that bÆiq = �iq, 
�iq = siq, bid = id, and\� Æ �0 = b�0 Æ b�.The latter 
ondition is parti
ularly unwieldy. We prefer to use a more 
ategori
alnotion, whi
h will fa
tor out all irrelevant details. It turns out that logi
al relationsand Kripke logi
al relations are spe
ial 
ases of subs
ones [38, 1℄: these are theright notion here.5.4. Subs
onesGiven any two 
ategories C and D having all �nite 
artesian produ
ts, and su
hthat D has all pullba
ks, given any fun
tor F : C ! D that preserves all �nite
artesian produ
ts, the subs
one D�\F [38℄ has as obje
ts all triples (d; 
;m) whered is an obje
t of D, 
 is an obje
t of C, andd � m � F(
)is moni
 in D. If we did not insist on su
h morphisms being moni
, we would getthe s
one D # F, a spe
ial 
omma 
ategory.
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ations, vol. ?(?), 2001 56Let C be any stri
t CS4 
ategory. Given any set � of base types, and a mappingthat assigns ea
h base type an obje
t in C (this 
an be seen as a fun
tor from �, seenas the trivial 
ategory with elements of � as obje
ts and only identity morphisms):� � � Cthere is a unique representation of stri
t CS4 
ategories C J K � from the free stri
tCS4 
ategory S4� on � to C: � � � S4�
C�g � C J K �where � denotes the 
anoni
al in
lusion fun
tor from � to S4�.If, in the diagram above, we repla
e C by a subs
one 
ategory D�\F, we get adiagram: � � � S4�

D�\F~�g � (D�\ F) J K ~� (19)
for ea
h given ~�, and where (D�\F) J K ~� is uniquely determined as a representationof stri
t CS4 
ategories: this will be the right notion of Kripke logi
al relation.It is well-known ([38℄, Proposition 4.2) that, provided that C and D are 
artesian-
losed, and D has equalizers (i.e., D is �nitely 
omplete), and provided F preserves�nite produ
ts, then D�\F is a CCC, and the forgetful fun
tor U : D�\F �! C, whi
hmaps every obje
t (d; 
;m) to 
, is a representation of CCCs. We make expli
it the
onstru
tion of terminal obje
ts, produ
ts and internal homs in D�\F:5.4.0.1. Terminal obje
t. This is (1D;1C ; id).5.4.0.2. Binary produ
ts. The produ
t of (d; 
;m) with (d0; 
0;m0) is (d�d0; 
�
0;m�m0).5.4.0.3. Internal homs. We build (d00; 
00;m00) = HomD�\F((d; 
;m); (d0; 
0;m0))as follows. First, 
00=̂HomC(
; 
0).Then, we build two morphisms. We build the �rst one from:F(HomC(
; 
0))� d id�m� F(HomC(
; 
0))� F(
) F(App) � F(
0)by 
urrying, getting:F(HomC(
; 
0)) �(F(App) Æ (id�m)) � HomD(d;F(
0)) (20)The se
ond one is built from:HomD(d; d0)� d App � d0 � m0 � F(
0)
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ations, vol. ?(?), 2001 57again by 
urrying:HomD(d; d0) �(m0 ÆApp) � HomD(d;F(
0)) (21)We 
laim that this morphism is moni
. Indeed, 
onsider two morphisms f , g su
hthat �(m0 ÆApp)Æf = �(m0 ÆApp)Æg. Applying AppÆ ( � id) on the left-hand side,we get App Æ ((�(m0 ÆApp) Æ f)� id) = App Æ (�(m0 ÆApp Æ (f � id))� id) (by (k0))= m0 ÆApp Æ (f � id) (by (l00)). Applying to both sides of the equation, we thereforeget m0 ÆAppÆ (f� id) = m0 ÆAppÆ (g� id), therefore AppÆ (f� id) = AppÆ (g� id),be
ause m0 is moni
. Applying � on both sides, the left-hand side simpli�es to fand the right-hand side to g by (m0), therefore f = g. So �(m0 Æ App) is indeedmoni
.We now build (d00; 
00;m00) by the following pullba
k diagram:d00 � m00 � F(HomC(
; 
0))
HomD(d; d0)sg � �(m0 ÆApp)(21) � HomD(d;F(
0))�(F(App) Æ (id�m)) (20)g

where the upper morphism m00 is moni
 be
ause pullba
ks preserve moni
s.Appli
ation in the subs
one is given by the pair of morphisms AppÆ (s� id) fromd00 � d to d0 and App from 
00 � 
 to 
0.Conversely, given any morphism (u; v) in the subs
one from (d0; 
0;m0)�(d; 
;m)to (d0; 
0;m0), we build its 
urried morphism from (d0; 
0;m0) to (d00; 
00;m00) asfollows. Re
all that sin
e (u; v) is a morphism, the following square 
ommutes:d0 � d � m0 �m� F(
0)� F(
)
d0ug � m0 � F(
0)F(v)g

The 
urried version of the morphism (u; v) is then (û;�(v)), where û is given asthe unique morphism that makes the following diagram 
ommute:d0 m0 � F(
0)
d00 m00 �

û � F(
00)F(�(v))g
HomD(d; d0)sg �(m0 ÆApp)�

�(u)
� HomD(d;F(
0))�(F(App) Æ (id�m))g
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ations, vol. ?(?), 2001 58where the bottom pullba
k diagram is given by the de�nition of internal homs in thesubs
one. (The outer diagram 
ommutes: �(m0 ÆApp)Æ�(u) = �(m0 ÆAppÆ(�(u)�id)) [by (k0)℄ = �(m0 Æ u) [by (l00)℄ = �(F(v) Æ (m0�m)) sin
e (u; v) is a morphism,while �(F(App)Æ(id�m))ÆF(�(v))Æm0 = �(F(App)Æ(id�m)Æ((F(�(v))Æm0)�id))[by (k0)℄ = �(F(App)Æ(F(�(v))�id)Æ(m0�m)) = �(F(AppÆ(�(v)�id))Æ(m0�m))[be
ause F is a fun
tor that preserves produ
ts℄ = �(F(v) Æ (m0 �m)) [by (l00)℄.)5.4.0.4. Comonad (�;d; s). Whereas there is at most one CCC stru
ture on anygiven 
ategory, there are in general many 
hoi
es for a stri
t monoidal 
omonad. Astandard 
hoi
e for de�ning a 
omonad on D�\F based on a given 
omonad (�;d; s)on D works by de�ning �(d; 
;m) as (d0;�
;m0), where d0 and m0 are given by thepullba
k diagram: d0 m0� F(�
)
dg � m � F(
)F(d)g

This would not work for our purposes: intuitively, if (d; 
;m) represents a relationRF , de�ning R�F this way as (d0;�
;m0) would mean repla
ing the (� logi
al)
ondition by: for every a; a0, a R�Fq a0 if and only if �0qa RFq �0qa0. However withthis de�nition R�F would be too large, and the se
ond impli
ation M RF a =)M = pF (a) of the Bounding Lemma would not hold in general.Instead, we noti
e that there is a simpler solution as soon as not only F preserves�, d and s (we shall say that F preserves the 
omonad (�;d; s)) but also � preservesmoni
s. Then letting �(d; 
;m) be (�d;�
;�m) de�nes an obje
t in the subs
one.Indeed, �m is a morphism from �d to �F(
) = F(�
), and is moni
 sin
e m is and� preserves moni
s. This is what will work here.Proposition 66. Assume that C and D are stri
t CS4 
ategories and that F : C ! Dpreserves �nite produ
ts and the given 
omonads; assume also that D is �nitely
omplete and that � preserves moni
s.Then the subs
one D�\F is a stri
t CS4 
ategory when equipped with the 
omonad(�;d; s) de�ned by: on obje
ts, �(d; 
;m)=̂(�d;�
;�m); on morphisms, �(u; v)=̂(�u;�v); d=̂(d;d); s=̂(s; s).Moreover, the forgetful fun
tor U : D�\F �! C mapping every obje
t (d; 
;m) inthe subs
one to 
 and every morphism (u; v) to v is a representation of stri
t CS4
ategories.Proof. Straightforward veri�
ation.5.5. The Basi
 LemmaGiven any fun
tor � ~��!D�\F, we get a fun
tor from � to C by 
omposition withU . By the freeness of S4�, there are unique fun
tors C J K � (where �=̂U Æ ~�) and(D�\F) J K ~� whi
h make the upper left and upper right triangles in the following
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ations, vol. ?(?), 2001 59diagram (whi
h is a diagram in the 
ategory Cat of 
ategories) 
ommute:� � � S4��

D�\F
~�
g U �� (D�\ F) J K ~�

C
C J K �
g�

Sin
e U is a representation of stri
t CS4 
ategories, U Æ (D�\F) J K ~�, too, thereforeby the uniqueness of the C J K � arrow on the right as a representation of stri
t CS4
ategories, we get:Lemma 67 (Basi
 Lemma). U Æ (D�\F) J K ~� = C J K (U Æ ~�)5.6. The Bounding LemmaNow we 
onsider the 
ase where C is of the form C1 �D, and F=̂F1 
 id, whereF1 : C1 ! D is a fun
tor that preserves all �nite produ
ts and the (�;d; s) 
omonad.(Whenever F1 : C1 ! D, F2 : C2 ! D, we let F1
F2 be the fun
tor mapping C1; C2to F1(C1)� F2(C2).)Typi
ally, C1 will be S4�, F1=̂CResS4� , D=̂b�.We shall prove:Lemma 68 (Bounding Lemma). Let C1 and D be stri
t CS4 
ategories, F1 :C1 ! D preserve �nite produ
ts and the given 
omonads. Assume also that D is�nitely 
omplete and that � preserves moni
s in D. Fix �1 : � ! C1. Assume�nally that for every formulae F and G, HomD(F1(C1 JF K �1);F1(C1 JGK �1)) re-tra
ts strongly onto F1(C1 JF � GK �1), meaning that there is a family of morphismsRF�G in D su
h that the following diagram 
ommutes:HomD(F1(C1 JF K �1);F1(C1 JGK �1)) ��(F1(App)) F1(C1 JF � GK �1)
HomD(F1(C1 JF K �1);F1(C1 JGK �1))idg RF�G � F1(C1 JF � GK �1)idg (22)

Let �2 : � ! D be F1 Æ �1, and ~� : � ! D�\(F1 
 id) map every A 2 � to(�2(A); (�1(A); �2(A)); hid; idi).For every formula F , write (D�\(F1 
 id)) JF K ~� as (DF ; (C1 JF K �1;D JF K �2);hm0F ;m00F i).Then there are families of morphisms iF and pF in D, and moni
s h1F and h2F
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ations, vol. ?(?), 2001 60that make the following diagrams 
ommute for ea
h formula F :F1(C1 JF K �1)
F1(C1 JF K �1) �h1F�

id �
DFm

0Ff
� h2F� D JF K �2
� pF

D JF K �2m00Fg � idiF �
(23)

Proof. We �rst build iF and pF for ea
h formula F so that pF Æ iF = id. This isindeed required for the result to hold, sin
e Diagram 23 implies pF Æ h2F Æ h1F = idand id Æ h2F Æ h1F = iF .When F is a base type A 2 �, de�ne iA and pA in D so that the followingdiagrams 
ommute: �2(A) = F1(�1(A)) � iA F1(�1(A))
�2(A)idg pA � �2(A) = F1(�1(A))idg

by just taking iA and pA to be id.When F = �G, let i�G=̂�iG, p�G=̂�pG, so p�G Æ i�G = �pG Æ�iG = �(pG ÆiG) = �id = id. This makes sense be
ause F1, hen
e also F1(C1 J K �1) and D J K �2,preserve �.When F is of the form G � H, we build iF and pF in the unique type-
onsistentway. I.e., we have the following diagram:D JHK �2 � iH F1(C1 JHK �1)
HomD(F1(C1 JGK �1);F1(C1 JHK �1))�D JGK �2 id� pG� HomD(F1(C1 JGK �1);F1(C1 JHK �1))�F1(C1 JGK �1)

Appf
using iH and pG from the indu
tion hypothesis. Apply � to the resulting 
ompositemorphism, and 
ompose with �(F1(App)); this yields iG�H , de�ned as:D JG � HK �2 ��(iH ÆAppÆ(id� pG)) HomD(F1(C1 JGK �1);F1(C1 JHK �1)) ��(F1(App)) F1(C1 JG � HK �1)Similarly, we de�ne a morphism pG�H from D JG � HK �2 to F1(C1 JG � HK �1) asthe 
omposite:D JG � HK �2 �(pH ÆAppÆ(id� iG))� HomD(F1(C1 JGK �1);F1(C1 JHK �1)) RG�H � F1(C1 JG � HK �1)
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ations, vol. ?(?), 2001 61Superposing both diagrams, together with (22), we get:D JG � HK �2 ��(iH ÆAppÆ(id� pG)) HomD(F1(C1 JF K �1);F1(C1 JGK �1)) ��(F1(App)) F1(C1 JF � GK �1)
D JG � HK �2idg �(pH ÆAppÆ(id� iG))� HomD(F1(C1 JF K �1);F1(C1 JGK �1))

idg RF�G � F1(C1 JF � GK �1)idg
where iG�H is the top line, pG�H is the bottom line, the right square 
ommutesby (22), and the left square 
ommutes, as 
al
ulation shows(left to the reader; hint:use pH Æ iH = id, pG Æ iG = id).So pG�H Æ iG�H = id.We now build h1F and h2F . Note that as soon as Diagram 23 
ommutes, h1F and h2Fwill automati
ally be moni
. Indeed, sin
e pF ÆiF = id, iF is moni
; as iF = m00F Æh1F ,h1F will be moni
, too. Similarly, sin
e hm0F ;m00F i is a moni
 (be
ause it is part ofthe de�nition of an obje
t in the subs
one), and hm0F ;m00F i = hpF ; idi Æ h2F , h2F willbe a moni
, too.Also, that h1F and h2F are moni
 will imply that ~h1F =̂(h1F ; id) and ~h2F =̂(h2F ; id)will be moni
 in (D�\(F1 
 id)) JF K ~�. Therefore, that Diagram 23 is 
ommutativeis equivalent to showing the existen
e of the following diagram in D�\(F1 
 id):~IF �(h1F ; id)� (D�\(F1 
 id)) JF K ~� �(h2F ; id)� ~PFwhere ~IF =̂(F1(C1 JF K �1); (C1 JF K �1;D JF K �2); hid; iF i)~PF =̂(D JF K �1; (C1 JF K �1;D JF K �2); hpF ; idi)We build h1F and h2F by stru
tural indu
tion on F .If F is a base type A, noti
e that iA = pA = m0A = m00A = id, so take h1A=̂h2A=̂id.If F is a box formula �G. Re
all �rst that p�G = �pG and i�G = �iG. Also,be
ause (D�\(F1 
 id)) J K ~� is a representation of stri
t CS4 
ategories, it preserves�. In parti
ular hm0�G;m00�Gi = �hm0G;m00Gi. Be
ause � is stri
t monoidal, m0�G =�m0G, m00�G = �m00G. Therefore it suÆ
es to let h1�G be �h1G, h2�G be �h2G.If F is an arrow type G � H. We �rst build h1G�H . Constru
t the morphism:F1(C1 JG � HK �1)� F1(C1 JGK �1) �id�m0G F1(C1 JG � HK �1)�DG

F1(C1 JHK �1)F1(App)g h1H � DHin D. For short, let us 
all this morphism u temporarily.Also 
onstru
t the morphism v=̂(App;App) from (C1 JG � HK �1;D JG � HK �2)� (C1 JGK �1;D JGK �2) to (C1 JHK �1;D JHK �2) in C1 �D.We 
laim that (u; v) is a morphism in D�\(F1 
 id) (if so, this is from ~IG�H �(D�\(F1 
 id)) JGK ~� to (D�\(F1 
 id)) JHK ~�). This requires us to show that the fol-lowing diagram 
ommutes (where we have split produ
ts so as to in
rease readabil-
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ations, vol. ?(?), 2001 62ity):F1(C1 JG � HK �1)�F1(C1 JGK �1) �id�m0G F1(C1 JG � HK �1)�DG iG�H�m00G � D JG � HK �2�D JGK �2
F1(C1 JHK �1)F1(App)g � m0H DHug m00H � D JHK �2Appg (24)

The left square of (24) 
ommutes be
ause m0H Æ h1H is the identity on DH , byindu
tion hypothesis, so
m0H Æ u = m0H Æ h1H Æ F1(App) Æ (id�m0G) = F1(App) Æ (id�m0G)For the right square of (24), note that App Æ (iG�H � id) = iH Æ F1(App) Æ (id �pG), by the de�nition of iG�H . Composing with id � m00G on the right, it followsApp Æ (iG�H �m00G) = iH Æ F1(App) Æ (id� (pG Æm00G)). However pG Æm00G = m0G byindu
tion hypothesis. So we get:

App Æ (iG�H �m00G) = iH Æ F1(App) Æ (id�m0G)Sin
e m00H Æh1H = iH by indu
tion hypothesis, the right-hand side is exa
tly m00H Æu,so the right square of (24) 
ommutes.As (24) 
ommutes, (u; v) is indeed a morphism in D�\(F1 
 id). We may then
urry it in D�\(F1 
 id), getting a morphism from ~IG�H to the internal hom ob-je
t HomD�\(F1
id)((D�\(F1 
 id)) JGK ~�; (D�\(F1 
 id)) JHK ~�), that is, from ~IG�Hto (D�\(F1 
 id)) JG � HK ~�.Let us 
all this latter morphism ~h1G�H . As re
alled in Paragraph 5.4.0.3, thismorphism is of the form (û;�(v)), where �(v) is taken in the produ
t 
ategoryC1 � D. Sin
e v was appli
ation is this 
ategory, �(v) = id. So ~h1G�H is of therequired form (h1G�H ; id); i.e., we let h1G�H be û. Be
ause this is a morphism inD�\(F1 
 id), the following diagram 
ommutes:
F1(C1 JG � HK �1) hid; iG�Hi� F1(C1 JG � HK �1)�D JG � HK �2

DG�Hh1G�Hg hm0G�H ;m00G�Hi� F1(C1 JG � HK �1)�D JG � HK �2idg
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tly the left part of the desired diagram:F1(C1 JG � HK �1)
F1(C1 JG � HK �1) h1G�H�

id �
DG�Hm

0G�Hf

D JG � HK �2m00G�HgiG�H �
Let us now build h2G�H . De�ne h2G�H=̂m00G�H . Adapting the de�nition of internalhoms to the subs
one 
ategory D�\(F1 
 id), and using a few trivial isomorphisms,(D�\(F1 
 id)) JG � HK ~� is given by the following pullba
k diagram:

DG�H hm0G�H ;m00G�Hi � F1(C1 JG � HK �1)�D JG � HK �2
HomD(DG; DH)sG�Hg h�(m0H ÆApp);�(m00H ÆApp)i� HomD(DG;F1(C1 JHK �1))�HomD(DG;D JHK �2)

�(F1(App) Æ (id�m0G))� �(App Æ(id�m00G))g
Splitting produ
ts, we may rewrite this as:

F1(C1 JG � HK �1) � m0G�H DG�H m00G�H � D JG � HK �2
HomD(DG;F1(C1 JHK �1))�(F1(App) Æ (id�m0G))g ��(m0HÆApp) HomD(DG; DH)sG�Hg �(m00HÆApp)� HomD(DG;D JHK �2)�(App Æ (id�m00G))g
Take the produ
t with DG:F1(C1 JG � HK �1)�DG �m0G�H � id DG�H �DG m00G�H � id� D JG � HK �2�DG

HomD(DG;F1(C1 JHK �1))�DG
�(F1(App) Æ(id�m0G))� idg � �(m0HÆApp)� id HomD(DG; DH)�DG

sG�H � idg �(m00HÆApp)� id � HomD(DG;D JHK �2)�DG
�(App Æ (id�m00G))� idg
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ations, vol. ?(?), 2001 64Putting this above the following diagram:HomD(DG;F1(C1 JHK �1))�DG � �(m0HÆApp)� id HomD(DG; DH)�DG �(m00HÆApp)� id � HomD(DG;D JHK �2)�DG
F1(C1 JHK �1)Appg � m0H DHAppg m00H � D JHK �2Appg

whi
h is easily seen to 
ommute, we obtain:F1(C1 JG � HK �1)�DG �m0G�H � id DG�H �DG m00G�H � id� D JG � HK �2�DG
F1(C1 JHK �1)F1(App) Æ (id�m0G)g � m0H DHsG�Hg m00H � D JHK �2App Æ (id�m00G)g (25)

Indeed, the leftmost verti
al morphism is App Æ (�(F1(App) Æ (id �m0G)) � id) =F1(App) Æ (id�m0G), while the rightmost verti
al morphism is obtained similarly.By indu
tion hypothesis m0H = pH Æm00H . So we may 
omplete Diagram (25) byadding a pH arrow from the lower right D JHK �2 to the lower left F1(C1 JHK �1),and get a 
ommutative diagram again. Looking at the leftmost and the rightmostpaths from the upper DG�H �DG to the lower left F1(C1 JHK �1), it follows:F1(App) Æ (id�m0G) Æ (m0G�H � id) = pH ÆApp Æ (id�m00G) Æ (m00G�H � id)Composing with id�h1G on the right and simplifying, we obtain F1(App)Æ(m0G�H�(m0GÆh1G)) = pH ÆAppÆ(m00G�H�(m00GÆh1G)). By indu
tion hypothesism0GÆh1G = id,and m00G Æ h1G = iG, so:F1(App) Æ (m0G�H � id) = pH ÆApp Æ (m00G�H � iG) (26)This entails that �(pH Æ App Æ (id � iG)) Æ m00G�H = �(pH Æ App Æ (id � iG) Æ(m00G�H � id)) = �(pH Æ App Æ (m00G�H � iG)) = �(F1(App) Æ (m0G�H � id)) (using(26)) = �(F1(App))Æm0G�H . Composing with RG�H on the left, remembering thatRG�H Æ �(F1(App)) = id (Diagram (22)), it obtains:RG�H Æ �(pH ÆApp Æ (id� iG)) Æm00G�H = m0G�HThat is, pG�H Æm00G�H = m0G�H .On the other hand, re
all that h2G�H = m00G�H . So we have got the right part of
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DG�Hm

0G�Hf
h2G�H� D JG � HK �2

� pG�H

D JG � HK �2m00G�Hg � id
This terminates the impli
ation 
ase.5.7. Equational CompletenessWe 
an now prove:Theorem 69 (Equational Completeness). Let D be a stri
t CS4 
ategory,F1 : S4� ! D preserve �nite produ
ts and the given 
omonads. Assume alsothat D is �nitely 
omplete, that � preserves moni
s in D, and that for every for-mulae F and G, HomD(F1(S4� JF K (�));F1(S4� JGK (�))) retra
ts strongly ontoF1(S4� JF � GK (�)), where � is the 
anoni
al in
lusion of � into S4�.Assume �nally that F1 is faithful on morphisms with domain the empty 
ontext.Then there is a valuation �2 : � ! D su
h that, for every �S4-terms M and Nof type F under �, M � N if and only if D JMK �2 = D JNK �2.Proof. The only if dire
tion is soundness (Lemma 55). Let us deal with the ifdire
tion. Without loss of generality, assume M and N ground, and � the empty
ontext: if � is not empty, say �=̂x1 : F1; : : : ; xn : Fn, we redu
e to the empty
ase by reasoning on �x1; : : : ; xn � M and �x1; : : : ; xn � N instead of M and N .Take C1=̂S4�, �1 be �. As in Lemma 68, let �2 be F1 Æ �1, and ~� map A 2 � to(�2(A); (�1(A); �2(A)); hid; idi).By the Basi
 Lemma (Lemma 67),U((D�\(F1 
 id)) JF K ~�) = (S4� JF K �1;D JF K �2)where the forgetful fun
tor U maps ea
h morphism (u; v) in the subs
one to v.Expanding the de�nition of U in this 
ase, for every type derivation of `M : F , themorphism (D�\(F1 
 id)) JMK ~� from 1 to (D�\(F1 
 id)) JF K ~� 
an be written (u; v),where the Basi
 Lemma demands that v = S4� JMK �1 �D JMK �2. Sin
e (u; v) is amorphism in D�\(F1 
 id), the following diagram 
ommutes:1 � id � 1

DFug � hm0F ;m00F i � F1(S4� JF K �1)�D JF K �2F1(S4� JMK �1) �D JMK �2g
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ations, vol. ?(?), 2001 66That is, m0F Æ u = F1(S4� JMK �1) m00F Æ u = D JMK �2By the Bounding Lemma (Lemma 68, Diagram (23)), pF Æm00F = m0F , so:F1(S4� JMK �1) = pF Æ D JMK �2As this holds for every M su
h that ` M : F is derivable, it follows immediatelythat if we take any two su
h terms M and N , su
h that D JMK �2 = D JNK �2, thenF1(S4� JMK �1) = F1(S4� JNK �1). Sin
e F1 is faithful on morphisms with domainthe empty 
ontext, S4� JMK �1 = S4� JNK �1. Sin
e �1 = (�), by Proposition 61,M � N .Corollary 70 (Equational Completeness in b�). There is a valuation �2 : �!b� su
h that, for every �S4-terms M and N of type F under �, M � N if and onlyif b� JMK �2 = b� JNK �2.Proof. Let us 
he
k all hypotheses. First, b� is a stri
t CS4 
ategory using De�ni-tion 49. Take F1=̂S4 [ ℄ (alternatively, the 
ontra
ting resolution fun
tor CResS4�).By Lemma 62, F1 preserves all �nite produ
ts and the (�;d; s) 
omonad, and isfaithful. b� is �nitely 
omplete (in fa
t a topos). And � preserves moni
s: re
all thata moni
 in b� is an a.s. map (fq)q>�1 su
h that every fq is one-to-one ([15℄ 1.462);it follows that �, whi
h maps (fq)q>�1 to (fq+1)q>�1, preserves moni
s in b�. Fi-nally, by Corollary 47, Homb�(F1(S4� JF K (�));F1(S4� JGK (�))) retra
ts stronglyonto F1(S4� JF � GK (�)) (observe that F1(S4� JF K (�)) = S4 [F ℄, and similarly forG).
The 
ase of topologi
al spa
es, and of the equational 
ompleteness of �S4 withrespe
t to the stri
t CS4 
ategory CGHaus, is still open. (Note to the referees:We hoped to in
lude this result as well, however our proof for it broke at the lastminute. In 
ase we manage to �nd a proof, this will appear in the long versionof this paper, a resear
h report of the LSV [see http://www.lsv.ens-
a
han.fr/Publis/publis-y3-2001.html℄. In turn, this may or may not be in
luded in the�nal version of the paper.)
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