
Statistical Mechanics and Information TheoryJeremy GunawardenaBRIMS, Hewlett-Packard LabsFilton Road, Stoke Gi�ordBristol BS12 6QZ, UK.jhcg@hplb.hpl.hp.com1 July 1995AbstractA workshop on \Statistical Mechanics and Information Theory" was held at Hewlett-Packard's Basic Research Institute in the Mathematical Sciences (BRIMS) in Bristol, Eng-land from 5-9 June 1995. This document contains a report on the workshop, the abstractsof the talks and the accompanying bibliography.
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1 Report on the workshopStatistical mechanics and information theory have been linked ever since the latter subjectemerged out of the engineering demands of telecommunications. Claude Shannon's originalpaper on \A mathematical \theory of communication", [71], makes clear the analogy betweeninformation entropy and the \H" of Boltzmann's H-theorem. Earlier work of Szilard in at-tempting to exorcise Maxwell's demon gave a glimpse of the signi�cance of information tophysics, [7]. Since that time, the two �elds have developed separately for the most part, al-though both have interacted fruitfully with the �eld of statistical inference and both haveinuenced the development of other �elds such as neural networks and learning theory. Inrecent years, this apartheid has been breached by a number of tantalising observations: forinstance, of connections between spin-glass models and error-correcting codes, [73].To explore these developments, a workshop on \Statistical Mechancis and Information Theory"was held at Hewlett-Packard's Basic Research Institute in the Mathematical Sciences (BRIMS)in Bristol, England. The workshop was organised by Jeremy Gunawarden of BRIMS. Thepurpose was to bring together physicists, information theorists, statisticians and scientistsin several application areas to try and demarcate the common ground and to identify thecommon problems of the two �elds. The style of the workshop was deliberately kept informal,with time being set aside for discussions and facilities being provided to enable participants towork together.Related conferences which have been held recently include the series on \Maximum Entropyand Bayesian Methods"|see, for instance, [41]|the NATO Advanced Study Institute \FromStatistical Physics to Statistical Inference and Back", [34], and the IEEE Workshop on \Infor-mation Theory and Statistics".The workshop revealed that the phrase \information" conveyed very di�erent messages todi�erent people. To some, it meant the rigorous study of communication sources and channelsrepresented by the kind of articles that appear in the IEEE Transactions on InformationTheory. To others, particularly the physicists inuenced by Jaynes' work, [67], it meant amethodological approach to statistical mechanics based on the maximum entropy principle.To others, it was a less rigorous but, nevertheless, stimulating circle of ideas with broadapplications to biology and social science. To others, particularly the mathematicians ormathematical physicists, it represented a source of powerful mathematical theorems linkingrigorous results in statistical mechanics with probability theory and large deviations. To othersstill, it was the starting point for a \theory of information", with broad applications outsidecommunication science. The abstracts of the talks, which are collected together in the nextsection, and the workshop bibliography, which appears after that, give some idea of the rangeof material that was discussed at the workshop.Whether the workshop succeeded in \demarcating the common ground" is a moot point.The mathematical insights, particularly the lectures of John Lewis, Anders Martin-L�of andSergio Verdu, certainly con�rmed the existence of a common ground between informationtheory, probability theory and statistical mechanics, which in many respects is still not properlyexplored. But to single out this aspect reects the peculiar prejudices of the organiser. Perhapsthe best that can be said is that the workshop revealed to many of the participants the amazingfruitfulness of the information concept and brought home vividly the importance of developingan encompassing \theory of information", upon which biologists, physicists, communication1



scientists, statisticians and mathematicians can all draw. This still lies in the future.The bibliography contains a number of references which are not directly cited in the abstractsbut are relevant to the overall subject.The workshop was entirely supported by BRIMS as part of its wider programme of scienti�cactivity. Further information about BRIMS, including a copy of this report, is available on theworld wide web at URL:http://www-uk.hpl.hp.com/brims/.
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2 Abstracts of talksA tale of two entropiesRoy Adler, IBM Yorktown Heightsadler@watson.ibm.comFor the purposes of this talk we divide the subject of abstract dynamical systems into two areas:ergodic theory and topological dynamics. In ergodic theory, a dynamical system is endowedwith a probability measure so that one can study distribution of orbits in phase space; intopological dynamics, a metric so that one can study, stability, almost periodicity, density oforbits, etc. Ideas originating in Shannon's work in information theory have played a crucialrole in isomorphism theories of dynamical systems. Shannon used notions of entropy andchannel capacity to determine the amount of information which can be transmitted throughchannels. Kolmogorov and Sinai made his idea into a powerful invariant for ergodic theory;and then Ornstein proved that entropy completely classi�es special systems called Bernoulishifts. Adler, Konheim, and McAndrew introduce into topological dyanamics an analogousinvariant called topological entropy which turns out to be a generalization of channel capacity.Then Adler and Marcus developed an isomorphism theory in which this invariant completelyclassi�es symbolic systems called shifts of �nite type. The surprise is that this abstract theoryhas engineering applications: namely their methods of proof lead to construction of encodersand decoders for data transmission and storage. As a result the history of Shannon's ideashave come full circle. He used them to study transmission of information. Mathematicianstook up his ideas to classify dynamical systems, �rst in ergodic theory and then in topologicaldynamics. Results in thesecond area then lead to methods for optimizing transmission andstorage of data. For references, see [1, 2, 61].(Editor's note: due to personal reasons which arose at the last minute, Roy Adler was unfor-tunately unable to attend the workshop.)Non-commutative dynamical entropyRobert Alicki, University of Gdansk�zra@univ.gda.plThe concept of dynamical entropy, called also Kolmogorov-Sinai invariant, proved to be veryuseful in the classical ergodic theory in particular for studying systems displaying chaos .Since twenty years several attempts to generalize this notion to non-commutative algebraicdynamical systems have been undertaken. In the present lecture a brief survey of the recentinvestigations based on the new de�nition of non-commutative dynamical entropy introducedby M.Fannes and the author is presented. Several examples of dynamical systems includingclassical systems, shift on quantum spin chain, quasi-free Fermion automorphisms, Powers-Price binary shifts, Stormer free shift and quantum Arnold cat map are discussed. The newdynamical entropy is compared with the alternative formalisms of Connes-Narnhofer-Thirringand Voiculescu. For references, see [3, 4, 22]. 3



Non-equilibrium biologyJohn Collier, University of Newcastle, Australiapljdc@linga.newcastle.edu.auAbstract not available, but see [20, 21, 27, 28, 78].Chaos and detectionAndy Fraser, Portland State Universityandy@sysc.pdx.eduThe low likelihood of linear models �t to chaotic signals and the ubiquity of strange attractorsin nature suggests that nonlinear modeling techniques can improve performance for some de-tection problems. We review likelihood ratio detectors and limitations on the performance oflinear models implied by the broad Fourier power spectra of chaotic signals. We observe thatthe KS entropy of a chaotic system establishes an upper limit on the expected log likelihoodthat any model can attain. We apply variants of the hidden Markov models used in speechresearch to a synthetic detection problem, and we obtain performance that surpasses the the-oretical limits for linear models. KS entropy estimates suggest that still better performance ispossible. For references, see [31, 32, 33].Practical Entropy Computation in Complex SystemsNeil Gershenfeld, MIT Media Labneilg@media.mit.eduI will discuss the interplay between entropy production in complex systems and the estimationof entropy from observed signals. Entropy measurement in lag spaces provides a very generalway to determine a system's degrees of freedom, geometrical complexity, predictability, andstochasticity, but it is notoriously di�cult to do reliably. I will consider the role of regularizeddensity estimation and sorting on adaptive trees in determining entropy from measurements,and then look at applications in nonlinear instrumentation and the optimization of informationprocessing systems. For references, see [33, 79].Origin and growth of order in the expanding universeDavid Layzer, Harvardlayzer@cfa.harvard.eduI de�ne order as potential statistical entropy: the amount by which the entropy of a statisticaldescription falls short of its maximum value subject to appropriate constraints. I argue that,as a consequence of a strong version of the postulate of spatial uniformity and isotropy, theuniverse contains an irreducible quantity of speci�c statistical entropy; and I postulate that inthe initial state the speci�c statistical entropy was equal to its maximum value: the universeexpanded from an initial state of zero order. Chemical order, which shows itself most conspic-4



uously as a preponderance of hydrogen in the present-day universe, arose from a competitionbetween the cosmic expansion and nuclear and subnuclear reactions. The origin of structuralorder is more controversial. I will argue that it might have been produced by a bottom-upprocess of gravitational clustering. For references, see [44, 45, 46]. See also, [69].On sequential compression with distortionAbraham Lempel, HP Israel Science Centrelempel@hpl.hp.comAbstract not available.Large Deviations, Statistical Mechanics and Information TheoryJohn Lewis, Dublin Institute for Advanced Studieslewis@stp.dias.ieIn 1965, Ruelle showed how to give a precise meaning to Boltzmann's Formula. Exploringthe consequences of Ruelle's de�nition leads to the theory of large deviations and informationtheory. For a reference, see [48].(Editor's note: John Lewis also gave an additional tutorial lecture on large deviations. Amongthe texts he cited were [15, 29].)Entropy in States of the Self-Excited System with External ForcingGrzegorz Litak, University of Lublinglitak@archimedes.pol.lublin.plSelf-excited systems with external driving force are characterized by a number of interestingfeatures as synchronization of vibration, and transition to chaos. Using an one dimensionalexample of the self-excited system{Froude pendulum we examined the inuence of parameterson the system itegrity. The motion is described by the following nonlinear equation withRaylaigh damping term ��� (�� � _�2) _�+  sin(�) = B cos!t :There are two characteristic frequencies in the system: p { self{excited and ! { driving fre-quency. For the nodal driving force amplitude B the system oscillates with self{excited fre-quency. For B 6= 0, depending on the system parameters, two cases of regular solutions mayoccurred: mono{frequency solution and the quasi{periodic solution with the modulated am-plitude. Except for regular solution the chaotic one appear. The chaotic vibrations correspondwith the positive value of Kolmogorov Entropy K. Here the entropy is the measure of chaotic-ity of the system, indicating how fast the information about the dymamical system state islosing. The de�nition of Kolmogorov entropy is in analogy with Shannon's in information the-ory. In our paper the Kolmogorov entropy and other indicators of the dynamical system states5



are examined. The regions of system parameters and initial conditions leading to chaotic,synchronized and quasi{periodic are obtained. The condition for the pendulum to escape fromthe potential well V (�) = (1 � cos(�)) was also found. This is joint work with WojciechPrzystupa, Kazimierz Szabelski and Jerzy Warminski.Sharpening Occam's razorSeth Lloyd, MITslloyd@mit.eduAbstract not available.Free Energy Minimization and Binary Decoding TasksDavid MacKay, University of Cambridgemackay@mrao.cam.ac.ukI study the task of inferring a binary vector ~s given a noisy measurement of the vector ~t =A~s mod 2, where A is an M �N binary matrix. This combinatorial problem can be attackedby replacing the unknown binary vector by a real vector of probabilities which are optimizedby variational free energy minimization. The resulting algorithm shows great promise as adecoder for a novel class of error correcting codes. For references, see [51, 36].The Shannon-McMillan theorem from the point of view of statistical mechanicsAnders Martin-L�of, University of Stockholmandersml@insanus.matematik.su.seAbstract not available, but see [53]. Anders provided a set of handwritten notes for this lecture.Copies are available from Jeremy Gunawardena upon request.Some Properties of the Generalized BFOS Tree Pruning AlgorithmNader Moayeri, HP Labs Palo Altomoayeri@alvand.hpl.hp.comWe �rst show that the generalized BFOS algorithm is not optimal when it is used to design�xed-rate pruned tree-structured vector quantizers (TSVQ). A simple modi�cation is madein the algorithm that makes it optimal. However, this modi�cation has little e�ect on the(experimental) rate-distortion performance. An asymptotic analysis is presented that justi�esthe experimental results. It also suggests that in designing �xed-rate, variable-depth TSVQ's,one can get as good a rate-distortion performance with a greedy TSVQ design algorithm aswith an optimal pruning of a large tree. 6



Continuum entropies for uidsDavid Montgomery, Dartmouth CollegeDavid.C.Montgomery@dartvax.dartmouth.eduThis paper reviews e�orts to de�ne useful entropies for uids and magnetouids at the level oftheir continuous macroscopic �elds, such as the uid velocity or magnetic �eld, rather than atthe molecular or kinetic theory level. Several years ago, a mean-�eld approximation was used tocalculate a \most probable state" for an assembly of a large number of parallel interacting idealline vortices. The result was a nonlinear partial di�erential equation for the \most probable"stream function, the so-called sinh-Poisson equation, which was then explored in a variety ofmathematical contexts. Somewhat unexpectedly, this sinh-Poisson relation turned out muchmore recently to have quanitative predictive power for the long-time evolution of continuous,two-dimensional, Navier-Stokes turbulence at high Reynolds numbers [54]. It has been ourrecent e�ort to de�ne an entropy for non-ideal continuous uids and magnetouids that makesno reference to microscopic discrete structures or particles of any kind [55], and then to test itsutility in numerical solutions of uid and magnetouid equations. This talk will review suche�orts and suggest additional possible applications. The work is thought to be a direct buttardy extension of the ideas of Boltzmann and Gibbs from point-particle statistical mechanics.See also W.H. Matthaeus et al, Physica D51, 531 (1991) and references therein.Statistical mechanics and information theoretic tools for the study of formal neural networksJean-Pierre Nadal, ENS Parisnadal@physique.ens.frAbstract not available, but see [14, 34, 57, 58, 59].Shannon Information and Algorithmic and Stochastic ComplexitiesJorma Rissanen, IBM Almadenrissanen@almaden.ibm.comThis is an introduction to the formal measures of information or, synonymously, descriptioncomplexity, introduced during the past 70 or so last years, beginning with Hartley. Although allof them are intimately related to ideas of coding theory, I introduce the fundamental Shannoninformation without it. I also discuss the central role stochastic complexity plays in modelingproblems and the problem of inductive inference in general. For references, see [65, 66].Information and the Fly's EyeDan Ruderman, University of Cambridgedlr1002@cus.cam.ac.ukThe design of compound eyes can be seen as a set of tradeo�s. The most basic of these wasdiscussed by Feynman in his Lectures: smaller facets allow for �ner sampling of the world but7



reduces acuity due to di�raction. Good \ballpark" estimates of facet size can be made byequating the di�raction limit to resolution with the Nyquist frequency of the sampling lattice.But other factors are involved such as photon shot noise, which fundamentally limits all visualprocessing. In the 1970's, Snyder et al, [72], applied information theory to the compound eye,�nding that maximizing information capacity gave reasonable estimates of design parameters.In this talk I extend the information-theoretic treatment by introducing the time domain. Basicquestions such as \how fast should a photoreceptor respond as a function of light level and ightspeed?" will be addressed, as will the use of moving natural images as a stimulus ensemble.Preliminary results suggest that information theory can provide a useful tool for understandingthe tradeo�s and trends in compound eye design, both in the spatial and temporal domains.For references, see [64, 68]. This is joint work with S. B. Laughlin.Entropy estimates: measuring the information output of a sourceRaymond Russell, Dublin Institute for Advanced Studiesrussell@stp.dias.ieAbstract not available.On Tree Sources, Finite State Machines, and Time ReversalGadiel Seroussi, HP Labs Palo Altoseroussi@hpl.hp.comWe investigate the e�ect of time reversal on tree models of �nite-memory processes. Thisis motivated in part by the following simple question that arises in some data compressionapplications: when trying to compress a data string using a universal source modeler, canit make a di�erence whether we read the string from left to right or from right to left? Wecharacterize the class of �nite-memory two-sided tree processes, whose time-reversed versionsalso admit tree models. Given a tree model, we present a construction of the tree modelcorresponding to the reversed process, and we show that the number of states in the reversedtree might be, in the extreme case, quadratic in the number of states of the original tree. Thisanswers the above motivating question in the a�rmative. This is joint work with MarceloWeinberger. For a reference, see [70].Statistical physics and replica theory|neural networks; equilibrium and non-equilibriumDavid Sherrington, Oxford Universitysherr@thphys.ox.ac.ukAbstract not available, but see [16, 84].Maximum Quantum EntropyRichard Silver, Los Alamos National Laboratory8



rns@loke.lanl.govWe discuss a generalization of the maximum entropy (ME) principle in which relative Shannonclassical entropy may be replaced by relative von Neumann quantum entropy. This yieldsa broader class of information divergences, or penalty functions, for statistics applications.Constraints on relative quantum entropy enforce prior correlations, such as smoothness, inaddition to the convexity, positivity, and extensivity of traditional ME methods. Maximumquantum entropy yields statistical models with a �nite number of degrees of freedom, whilemaximum classical entropy models have an in�nite number of degrees of freedom. ME methodsmay be extended beyond their usual domain of ill-posed inverse problems to new applicationssuch as non-parametric density estimation. The relation of maximum quantum entropy tokernel estimators and the Shannon sampling theorem are discussed. E�cient algorithms forquantum entropy calculations are described. For references, see [34, 35, 38, 60, 65, 87].Spin glasses and error-correcting codesNicolas Sourlas, ENS Parissourlas@physique.ens.frAbstract not available, but see [73, 74].Individual open quantum systemsTim Spiller, HP Labs Bristolts@hplb.hpl.hp.comThe reduced density operator is the conventional tool used for describing open quantum sys-tems, that is systems coupled to an environment such as a heat bath. However, this statisticalapproach is not the only one on the market. It is possible to describe instead the evolution ofan individual system, one member of the ensemble. I motivate such an approach and illustrateit with some simple examples. One nice feature is the emergence of characteristic classicalbehaviour, such as chaos.Large deviations and conditional limit theoremsWayne Sullivan, University College Dublinwsulivan@irlearn.ucd.ieAbstract not available, but see [49].Topological Time Series Analysis of a String Experiment and Its Synchronized ModelNick Tu�llaro, Los Alamos National Laboratorynbt@goshawk.lanl.gov 9



We show how to construct empirical models directly from experimental low-dimensional timeseries. Spec�cally, we examine data from a string experiment and use MDL to contruct an \op-timial" empirical model and show how this empirical model can be syncronized to the chaoticexperimental data. Such empirical models can then used for process control, monitoring, andnon-destructive testing. For a reference, see [75].Asymptotic equipartition property in source codingSergio Verdu, Princetonverdu@ivy.princeton.eduAbstract not available.Sequential Prediction and Ranking in Universal Context Modeling and Data CompressionMarcelo Weinberger, HP Labs Palo Altomarcelo@hpl.hp.comWe investigate the use of prediction as a means of reducing the model cost in lossless datacompression. We provide a formal justi�cation to the combination of this widely acceptedtool with a universal code based on context modeling, by showing that a combined schememay result in faster convergence rate to the source entropy. In deriving the main result, wedevelop the concept of sequential ranking, which can be seen as a generalization of sequentialprediction, and we study its combinatorial and probabilistic properties. For a reference, see[81].
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