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Abstract

Computers manipulate approximations of real numbers, called floating-point numbers.
The calculations they make are accurate enough for most applications. Unfortunately, in
some (catastrophic) situations, the floating-point operations lose so much precision that they
quickly become irrelevant. In this article, we review some of the problems one can encounter,
focussing on the IEEE754-1985 norm. We give a (sketch of a) semantics of its basic operations
then abstract them (in the sense of abstract interpretation) to extract information about the
possible loss of precision. The expected application is abstract debugging of software ranging
from simple on-board systems (which use more and more on-the-shelf micro-processors with
floating-point units) to scientific codes. The abstract analysis is demonstrated on simple
examples and compared with related work.

1 Introduction

Everybody knows that computers calculate numerical results which are mostly wrong, yet they are
intensively used for simulating highly complex physical processes and for predicting their behavior.
Transcendental numbers (like 7 and e) cannot be represented exactly in a computer, since machines
only use finite implementations of numbers (floating-point numbers instead of mathematical real
numbers); they are truncated to a given number of decimals. Less known is that the usual algebraic
laws (associativity for instance) that we use when thinking about numbers are no longer true in
general when it comes to manipulating floating-point numbers.

It is actually surprising that very few studies on static analysis of floating-point operations or
on their semantic foundations have been carried out. Our point of view in this article is that there
are “numerical bugs” that a programmer can encounter, and that some are amenable to automatic
detection using static analysis of the source code, using abstract interpretation. This new sort
of bug includes what is normally called bug, i.e. run-time errors (here for instance, uncaught
numerical exceptions), but also more subtle ones about the relevance of the numerical calculations
that are made. We advocate that it is as much of a bug to terminate on a “segmentation fault”
as to terminate with a completely meaningless numerical result (which might be used to control a
physical apparatus with catastrophic consequences).

This problem is not very well-known to programmers of non-scientific codes. Let us just give
one example showing this is also of importance for the non-scientific computing world. On the 25th
of February 1991, during the Gulf war, a Patriot anti-missile missed a Scud in Dharan and crashed
onto an American barracks, killing 28 soldiers. The official enquiry report (GAO/IMTEC-92-26)
attributed this to a fairly simple “numerical bug”. An internal clock that delivers a tick every
tenth of a second controlled the missile. Internal time was converted in seconds by multiplying the
number of ticks by % in a 24 bits register. But % = 0.00011001100110011001100 - - in binary
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format, i.e. 1s not represented in an exact manner in memory. This produced a truncating error of
about 0.000000095 (decimal), which made the internal computed time drift with respect to ground
systems. The battery was in operation for about 100 hours which made the drift of about 0.34
seconds. A Scud flies at about 1676m/s, so the clock error corresponded to a localization error
of about 500 meters. The proximity sensors supposed to trigger the explosion of the anti-missile
could not find the Scud and therefore the missile fell and hit the ground, exploding onto the
barracks.

Actually, more and more critical or on-board systems are using on-the-shelf floating-point units
which used not to be approved beforehand. Therefore we believe that static analysis of floating-
point operations is going to be very important in the near future, for safety-critical software as
well as for numerical applications in the large.

These kinds of problems are better-known in scientific computing, at least when modeling the
physical phenomena to be simulated. What we mean is that in many cases, the discretizations of
the (continuous) problems that are modeled are sufficiently stable so that little truncation errors
do not overly affect the result of their simulation. Unfortunately, it is difficult to find the exact
semantics of floating-point operations, and even using some well-behaved numerical schemes, some
unpredictable numerical errors can show up. Also some problems are inherently ill-conditioned,
meaning that their sensitivity to numerical errors are very high. In this latter case it is in general
very difficult to assess the relevance of the numerical simulation even by hand.

Organization of the paper In Section 2, we will explain what model of floating-point arith-
metic we want to analyze (IEEE754-1985). We carry on in Section 2.1 by explaining what kind
of properties we want to synthesize by the analysis. Then in Section 2.2 we give the syntax and
informal meaning of a simple imperative toy language manipulating floating-point numbers; we
give a first sketch of a formal semantics in Section 2.3, that we refine in section 3.2.

In Section 3 we present a few abstract domainsthat are candidate for the abstract interpretation
of the concrete semantics. We give some directions for improvement in Section 5.1. We give an
example in Section 4, and compare with existing related work in Section 6. We conclude by giving
some future directions of work in Section 7.

2 The IEEE 754 norm

The IEEE754-1985 norm specifies how real numbers are represented in memory' using floating-
point numbers, see [Gol91, Kah96]. The norm itself relies on a simple observation:

Lemma 1
{-1,1} x [0,1] x IN
F: (s, 1, k)

15 a bijection with inverse:

R* — {-1,1} x [0,1] x N

G: = = (s(x), flz), k(z))
with s(x) being the sign of x, k(x) = |loga(| x |)| where |u] denotes the integral part? of u and
logs is the logarithm in base 2, and f(x) = ZLx(L) —1.

Taking a representation with a fixed number of bits K for exponents (function k(z)) and a
fixed number of bits N for the mantissa (function f(z) or m(z) = 1+ f(z)), the norm defines
several kinds of floating-point numbers,

1But not in the registers of micro-processors.

2j.e. the greatest integer less or equal than z. We will also use [u] which is the least integer greater or equal

than z.
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Figure 1: Representation of a floating-point number in memory.

The standard numbers, r = s x n * 28H1=N with s € {—1,1}, 1 =28 <k < 2K 0<n <2V
normalized so that, r = s % 28 (1 + f) with f < 1,

e De-normalized numbers (to manage “underflow” in a gradual manner), r = sxn x2F 1=V =
sx28(0+ f) withk=2-2K and 0<n< 2V tie 0< f <1,

e +oo and —oo (notice that their inverses, +0 et —0 are also there),

NaN “Not a Number” signed or not (which are the results of dubious operations such as
0 % 00).

Normalized numbers come in several versions, according to different choices of K and N, so
allowing more or less precision at will. Simple precision (REAL*4, float) has K =7 and N = 24,
double precision (REAL*8, double) has K = 10, N = 53, and double extended (REAL*10 etc., long
double) has K > 14, N > 64.

Just to give an order of magnitude of the numbers we are talking about, let us show a few
examples. For a simple float, the maximum normalized number is 3.40282347 * 103®, the mini-
mum positive normalized number is 1.17549435 % 10738 the maximum de-normalized number is
1.17549421 % 10~3® minimum positive de-normalized number is 1.40129846 % 10~%. Around 1, the
maximal error (“unit in the last place”, or ulp, or ulp(1)) is 2723 for a simple float, i.e. about
1.19200928955 % 1077,

The norm also specifies some properties of some of the computations we can make on floating-
point numbers. For instance, the norm specifies that +, —, x, /, |/ are computed with an inaccuracy
that cannot go beyond the ulp around the exact result (if there is no “overflow”).

The norm allows the user to use different round-off methods. One can use round-off towards
zero, round-off towards the nearest, round-off towards plus infinity, and round-off towards minus
infinity. A more subtle rule is that when we have the choice between two roundings (in the round-
off towards the nearest mode), we choose the even mantissa. In fact, the norm even specifies®
that z.y (where . is one of the floating-point operations +, -, *, / on floating-point numbers # and
y) is the rounding (in the corresponding rounding mode) of # o y (where o is the corresponding
operation in IR). We will actually suppose in the sequel that this holds true also for the square
root operation as well.

The conversions are to be given an explicit semantics as well. More annoying is that we should
take care of the order of evaluation (in conflict with compiler optimizations!), since the round-offs
destroy associativity in general.

Caveats As we said in the beginning of this section, the norm specifies what happens in memory
but not in processor registers. There are conversions between memory and registers that we have
to know about. In general, (except M680x0 and Ix86/Ix87 where all operations are computed in
double extended before round-off), registers are like main memory. There can be some differences
with RISC processors as well, like the IBM Power PC or Apple Power Macintosh, because of the
use of compound instructions (multiply-add etc.) which do not use the same round-off methods.
Most of the machines follow the norm anyway but not all the compilers in particular concerning
the way they handle (or do not handle!) arithmetic exceptions (underflow etc.). CRAY used to

3This is done using extra “guard digits” for computation by the processor of the operations.



have a different arithmetic, which is a problem for actual applicability of our methods for scientific
computing. Hopefully, it seems that it is now converging towards the norm. We have seen cases
in which porting a scientific code to a computer with a different arithmetic produces dramatic
changes.

Another problem is to know how to deal with the other mathematical operations (like the ones
in <math.h>in C). In general we have to know the algorithm or its specifications (sometimes given
by library providers). The problem of having “good” libraries is well-known in the literature, as
the “Table makers’ dilemna”. In this article we will stick to the core of the norm, and consider
only “simple” operations.

2.1 Examples and properties of interest

Our aim 18 to be able to analyze at compile-time the way floating-point operations are used or
mis-used.

What we intend to automatically find is at least the exceptions that might be raised (and not
caught), like “Overflow”, “Underflow” and “NaN”. This could be handled with other well-known
analyses (interval analysis as used in Syntox [Bou92], polyhedra [CH78] etc.) so we will not describe
this part so much. What we really would like to find is some not too pessimistic information about
the precision of the values of the variables. This leads to estimates of branching reliability in tests
and in expecting to partially solve some difficult termination problems (see Example 1).

Example 1 Consider the expression & = M which leads on an UltraSparc in simple preci-

swon, for cg =0, ea = 1, by = —46099201, b2 = —35738642 a1 = 37639840 and a» = 29180479,
to x = 1046769994 (the true result is v = —46099201). This s an example of a problem known as
“cancellation”. The control flow might be wrong after this instruction, if it were followed by the
(somewhat unlikely!) instructions:

if (x==-46099201) { ... }
else { ... }

or non-termination could happen since this could be the termination test of a loop.

Here are some simple (and classic) examples of stable and unstable numerical computations:

Example 2 Consider the following two implementations of the computation of the nth power of
the gold number (g = @) The first one on the left (program (A)) relies on the simple property
that if u, 1s the nth power of the gold number, upyo = Up — Uny1. The second one, on the right
hand side (program (B)), is the brute force approach.

main()
float ;
T madn()
x=1" ’ { float t;
s 3 t 1 .
y=(sqrt(5)-1)/2; ;21‘1,

i=1;1<=20;i++
for (i=1;1<=20;i++) { for (i=1;i<=20;i++) {

iixf t=t*(sqrt(5)-1)/2;
Rk printf("phi~%d=%f\n",i,t); } }
y=z-y;

printf("phi~%d=%f\n",i,x); } }
Program (A) gives the following results:



phi~1=0.618034 phi~11=0.005026

phi~2=0.381966 phi~12=0.003103
phi~3=0.236068 phi~13=0.001923
phi~4=0.145898 phi~14=0.001180
phi~5=0.090170 phi~15=0.000743
phi~6=0.055728 phi~16=0.000437
phi~7=0.034442 phi~17=0.000306
phi~8=0.021286 phi~18=0.000131
phi~9=0.013156 phi~19=0.000176
phi~10=0.008130 phi~20=-0.000045

Which of course does not make much sense! The fact is that the numerical scheme used on
program (A ) is not well-conditioned, meaning that it is very sensitive to the initial inaccuracy. In
fact the initial inaccuracy on the computation of (\/(5) — 1)/2 which is of the order of ulp(1) at
most, is increased at each iteration and becomes more tmportant than the real result.

Program (B) leads to the following results,

phi~1=0.618034 phi~11=0.005025
phi~2=0.381966 phi~12=0.003106
phi~3=0.236068 phi~13=0.001919
phi~4=0.145898 phi~14=0.001186
phi~5=0.090170 phi~15=0.000733
phi~6=0.055728 phi~16=0.000453
phi~7=0.034442 phi~17=0.000280
phi~8=0.021286 phi~18=0.000173
phi~9=0.013156 phi~19=0.000107
phi~10=0.008131 phi~20=0.000066

Which is in fact completely acceptable. Take now program (C) below which looks like program
(A) (at least it does not look simpler):

x=1;

y=-1.0/3.0;

for (i=1;i<=20;i++) {
Z=X;
X=y;
y=(x+z)/6; }

The results that are computed are accurate (they are roundings of (—%)n)

phi~1=-0.333333
phi~2=0.111111
phi~3=-0.037037
phi~4=0.012346
phi~“5=-0.004115
phi~6=0.001372
phi~7=-0.000457
phi~8=0.000152
phi~9=-0.000051
phi~10=0.000017

phi~11=-0.000006
phi~12=0.000002
phi~13=-0.000001
phi~14=0.000000
phi~15=-0.000000
phi~16=0.000000
phi~17=-0.000000
phi~18=0.000000
phi~19=-0.000000
phi~20=0.000000

This “numerical scheme” is well-conditioned, i.e. stable.

2.2 A language

In the language we consider in this paper, we confine ourselves to simple floating-point operations
(which are fully specified in the IEEE754-1985 norm), with one type of floating-point number only
(no double precision nor cast here),



Expr = cste constant real expression
X variable X € Var
Expr + Expr sum
Expr # Expr product
Expr — Expr difference
Expr/Expr  division
VExpr square Toof,

(Expr) bracketing

The idea is that the evaluation of arithmetic expressions is determined by the syntax (left to
right, innermost to outermost evaluation here). We confine ourselves in this paper to very simple
test expressions, as follows,

test = X ==0 -zero
X >0 strict positivity
X>0 positivity

Instructions are,

Instr = X = Expr assignment for X € Var
if test then block else block conditional statement
while test block while loop

We have used in the examples “equivalent” C forms of a program in that syntax.
Blocks of instructions are concatenations of instructions,

block = 0 empty block
Instr;block block concatenation

Finally a program P is just a block.

2.3 A (almost) standard concrete semantics

We plunge floating-point numbers (parameterized here by N and K, the length of the binary
words representing respectively the mantissa and the exponent) into Val which is the union of
the (mathematical) real numbers IR extended with values {oco, —c0, NaN,w, v, d, ¢} which stand
respectively for +o00 and —oo (mathematical infinities, coming from a compactification of the set
of reals for instance), NaN, a special element denoting the value “not a number”, and w denoting
overflow, v, underflow, 4, division by zero error and ¢ is the error resulting from taking the square
root of a strictly negative number. The semantics is given as a transition system, where states
are elements of C'trl x Env where Env = Var — Val and Ctrl is the text of the program yet
to be executed. The semantics also depends on the round-off mode M : Val — Val (a partial
function?) and on the use (or not) of some standard handlers in case of overflow, taken care of by
a (partial) function £ : Val — Val. By convention, all our (partial) functions (if not otherwise
stated) will not be defined on “errors” w, v, § and o, nor on Na/N and will be the identity on oo
and —oo. For the sake of simplicity, we will consider only normalized floating-point numbers and
will not use signed NaN nor signed zero. We re-define now the following mathematical functions
acting on Val,

e We “overload” the exponent function we had at lemma 1; & : Val — Val is the exponent
(partial) function with, k(co) = k(—o0) = oo, k(z) = maz(|loga(| = |)],2 — 2%) if z € IR,
z# 0, k(0) =0, k(x) = L (i.e. not defined) in all other cases. This enables us to have the

right f (as in lemma 1) function and thus the wright underflow mechanism.

4We write in an equivalent manner M(z) = L and M(x) undefined.



e M(z)=s (inf% + 1) 2k(®) (this is the rounding towards zero mode, which we write when
there is a risk of ambiguity My), other modes include: M(z) = s (SDN;% + 1) 2k (@)
(rounding towards plus infinity or M4 ), and M(z) = s (SBN;% + 1) 2k(@) (rounding

towards minus infinity or M_),

e E(x)=01if |z |> 92541 _ 927N E)y=Uif |z |< 92-2"% (so that we are not dealing
here with “gradual underflow” or de-normalized numbers), otherwise £(x) = « (this is the
“no handler” option).

We look at the semantics of an expression Expr. Given p € Env,

[este]/p = EoM(cste)

[X17p = p(X)

[Expri +Expra]’p = [Expri]/p+7 [Exprs]/p
[Expr; * Expro]/p = [Expri]/p +/ [Expra]/p
[Expri/Exprs]/p = [Expri]p/![Expra]/p
[Expri — Expra]/p = [Expri]/p — [Exprs]/p

[VExpr]/p = V[Exprl”’
where the functions +/, */, /7, —/ and \/'f are defined as follows,
. a—l—fb:é'o./\/l(a—l—b)
o axl b=Eo M(ab)

a—b = EoM(a—b)if a and b are not both the same infinity. In the latter case, a—'b = NaN.

a/fb=EoM($)ifb#0. If b = 0 then a/fb=4.
o \/a_f =& o M(/a) if a > 0 otherwise \/Ef —o.

Assignments have the following semantics: [X = Expr]/p = p[X « [Expr]’p] where p[u < v]
denotes the new environment in which p(u) is now equal to v, whereas all other variables are
mapped to the value they had by p. Tests are also quite straightforward ([test ]; is a boolean
value indicating whether the test is true or not). Transitions from state (Instr; Prog,p) to
(Prog, p') are now rather easy to write down, given the evaluation of expressions above. We spare
the reader the details, given that this is rather standard (in SOS style [Plo81] for instance). In
order to be able to write the abstract semantics in an easier manner in the sequel, we suppose that
all expressions are decomposed into sequences of single operations (like +, — etc. respecting the
evaluation strategy). For instance, the assignment x=y*z+2 will be supposed to be decomposed
using an auxiliary variable t as t=y*z; x=t+2. This refines the transition system described above
by splitting the transition representing the evaluation of a (complex) expression into a sequence
of transitions, one for each simple floating-point operation.

Notations In the sequel, operations +7/, —f etc. (respectively +, — etc.) will have to be
understood as the floating-point (respectively “real”) operations. We will also introduce new
operations @, & etc. (next section) and 4+, —* etc., that are “abstractions” of these operations.

3 Abstract domains

A correct (in the sense of abstract interpretation) domain for abstracting the semantics above is
given by intervals of floating-point numbers (in the style of F. Bourdoncle’s Syntox integer interval
analyzer). Basically the “best” correct abstract operations (forward semantics) are:



e the abstraction of the + operation is [a,b] ® [¢,d] = [M"(a + ¢), M/, (b4 d)]
e for subtraction: [a,b]& [c,d] = [M’(a = d), M/, (b —7 ¢)]

e for multiplication: [a,b]®[e, d] = [M" (min(a*’ c,a*! d, b+ ¢, bx/ d)), M (max(a wf e, axf
d, b+ e b+l d))]

o for the inverse (here d > ¢ > 0): inv’([c,d]) = [M"_(1//d), M/ (1/f¢)]

e for the square root: /[c,d] = [/\/l/_(\/Ef),/\/u(\/Ef)] (when ¢,d > 0)

e For tests, one should be cautious with the rule for strict positivity: [X > 0]p = (p(X) >
92-2"),

where M’ is the rounding function on the analyzer’s internal representation of floating-point
numbers, +/, —/ etc. are the floating-point operations on the target architecture where the
program which is statically analyzed should be run, and K is the corresponding number of bits
used for representing exponents. In general, we can (should?) hope for the analyzer to have a better
precision than the target architecture®, and in that case we can simplify the rules above (forgetting
about the M’ in the right-hand side of the definitions). This semantics has been implemented as
part of the abstract domains used in the static analyzer TWO (ESPRIT project 28940), but is
obviously very unsuitable for having a precise information on floating-point operations. Actually,
we used an even less precise semantics in that we supposed we did not know the rounding mode
in the analyzed program, so we had to assume the worst case which 1is, for instance in the case
of the abstraction of addition: [a,b] @ [¢,d] = [M_(a + b), M4 (c + d)] where M is the rounding
function corresponding to the target architecture (or a suitable approximation of).

The experiments (to be described in a forthcoming article) show that this kind of analysis
behaves poorly on floating-point code. The figure of about ten percent of the lines (which use
floating-point operations) of a code being signaled as potential run-time errors (over-pessimistic
warnings about the possibility of getting to an erroneous state; like overflow, division by zero
etc.) is not uncommon. Using this semantics though, we are able to find real “subtle” bugs
such as for the program: if (x>0) y=1/x*x, where there might be a division by zero error®
(for instance when z = 22_2R). Also this abstract semantics 1s sufficient to get good estimates
of the 20th iteration of program (B) of example 2. It is of order [pg — 2723 pg + 2723]20 j.e.
about [6.61067063328 x 1075,6.61072163724 x 107°]. Also the numerical bug of the Patriot as
explained in the introduction would certainly have been found by such interval analyzers, with
correct floating-point semantics.

But interval semantics 1s always very conservative and pessimistic: it might even incorporate
the error of computation of the analyzer itself (M’)! Secondly, it aggregates in the abstract value
both the magnitude of the expected result and the inaccuracy error. Also it does not take care
of dependencies between the values and especially between the errors. For instance, x — x will
always lead in such abstractions to a strictly positive error except if x is a singleton interval (i.e.
a constant). What we really need is a relational abstraction at least on inaccuracy values.

3.1 Domain of affine forms

The idea here is to trace instructions (or locations in the program) that create round-off errors.
We associate with each location and variable the way this control point makes the variable lose
precision. This is loosely based on ideas from affine arithmetic [VACS94] (used in simulation of
programs, not in static analysis).

50ne could actually use multi-precision numbers instead of IEEE 754 double or extended double types for
representing intervals in the static analyzer.
6 This is an example taken from a seminar by Alain Deutsch in 1998.



The abstract values (notwithstanding error values) are, # = ag + a1€1 + - - - + anen, the ¢ are
variables, intended to represent random values with range | —ulp(1), ulp(1)[”, associated with each
location (describing the loss of precision at that point), the a; being in an abstract domain A (for

example real or floating-point intervals) abstracting p(IR U {00, —oc0}), through (for instance) a

o
Galois Connection [CC92a] p(IR U {c0, —0}) «—= A. Basically ag should be an abstraction
v

of the intended result if the program was manipulating real numbers, and the a; (¢ > 1) represent
abstractions of each small error due to the “ith operation” in the program.

Let us make this more precise by setting first £, the set of all locations in the programs to be
analyzed (i.e. all elements in C?rl in the concrete semantics given in section 2.3) £L = {¢; |1 € L}
that we will identify in the sequel with a subset of IN. The affine forms domain, parameterized
by A and £ is the domain D defined as follows, D = {ao + ;. i€ | ao, a; € A,i € L} and the
order is defined component-wise, ag + > ;cp aie; < ag + ) oy are; if ag <4 ap and a; <4 af for
all 2 € L.

Therefore, if A is a lattice, then D is a lattice with component-wise operations. Similarly,
widenings and narrowings [CC92b] defined in A can be extended in a component-wise manner
to generate widenings and narrowings on D. In general the classical widenings on intervals
are not very subtle. We use the following family of widenings here: [a,b]Vi[c,d] = [e, f] with
{e:c—?k(a—c) ife<a {f:d—i—?k(d—b) ifd>b

. and .
e=a otherwise f=a otherwise
ing if we suppose that the boundaries of our intervals use a finite precision arithmetic (bounded
multi-precision for instance).

We can now define a concretization function T' : D — (IRU{o0, —o0}) by T'(ag +ZiEL a;€;) =
Ylao) + 37, p v(as)*] — ulp(1), ulp(1)[.

The problem is that there is no way we can hope for a very strong correctness condition (we will
give it in detail in section 3.3) for an analysis based on D with respect to the concrete semantics
given in section 2.3, because we have not specified in the concrete semantics what the “real” result
should be. Therefore there is no best choice to what ag should be (hence the same problem holds
for the a;, i € L)®. We should in fact have designed a non-standard concrete semantics that
remembers the inaccuracy of the computations, which we shall see now.

. This is only a widen-

3.2 A non-standard semantics

We slightly change the semantics of section 2.3 so that environments are now of the form p :
Var — (Val x Val) (we will write p = (p,p)). So p(X) = (X, X) where X is any variable, and the

intended meaning is that X is the semantics we had in section 2.3 and X is the intended “real”
computation (i.e. using real numbers and not floating point numbers). For the sake of simplicity,
we only carry on the concrete and abstract semantics without dealing with Na/N nor run-time
errors, hence dropping the &£ part of the semantics. For expressions for instance, we find the new
concrete operators:

e a+/ b= (M(a+b),a+b)
o axl b= (M(ab),ab)

e a—'b=(M(a—-b),a—0b)
o a/fb=(M(%),2)ifb#0.

"Notice that if we assume the default rounding mode, we could actually use a smaller interval i.e.
[—ulp(1)/2,ulp(1)/2].
& Mathematically, suppose we have a corresponding abstraction A : ©(Val) = D making (A, T') into a Galois con-

nection. Suppose for instance that A is the interval domain, and consider I'(u; = [0,0]4[1,1]e1) =] —wip(1),uip(1)[
and ['(u2 = [0,0] 4+ [1,1]e2) =] — wip(1),uwlp(1)[ as well. But I'(u; Nwuz) = I['([0,0]) = [0,0] is not equal to
I(u1) N (u2) =] — wlp(1),ulp(1)[, so there cannot be a left-adjoint to I'.



The rest of the semantics is pretty much the same, “executing in parallel” the program
with floating-point operations, and the program with operations in IR, but without observ-
ing precisely the steps in the “real” computation. For instance, we have a transition from
(x = Expr; Prgm, (p,p)) to (Prgm, ([x = Expr]/p, [ = Expr]p)) where [.]/ is the “floating-
point” semantics given in section 2.3, and [] is a similar semantics, but with operations and
numbers in IR (the “ideal semantics”). The more difficult part of the semantics is tests (also
while loops of course since they include tests). The problem is that a test in the floating-
point semantics might well not give the same result as the test in the real number semantics
(as in example 1), leading to a different flow of execution in the two semantics. We choose in
that case to stop computing the real number semantics: for instance there is a transition from
(if(x<0)z=z+lelsex =z—1,(x + =103 2 < 0)) to (z = 2+ 1,(z + —10737, 1))
and then to (@, (z < 1, L))°. This actually corresponds to a synchronized product [Arn92] (with
synchronization between two transitions being only allowed when the two have the same labels) of
the transition system corresponding to the floating-point semantics with another, corresponding
to an “observer”, which is the real number semantics.

From this semantics, we can construct an even more detailed semantics which will be our final
non-standard semantics, and which goes (briefly) as follows. We define inductively the notion of
“inaccuracy” coming from a location (i.e. a transition) that we identify with a “formal” variable
¢;. Consider a trace s of execution from an initial environment (p,7). Suppose this trace goes
through locations ¢; to ¢;_, and that variables x and y are computed on this trace; we suppose
we can write formally (this is the induction step of the definition) # = ¢ + Z‘Z;ll z;€¢; and
Y=o+ Z‘Z;ll yi€; where ¢ is a formal variable of magnitude € = ulp(1). xy (respectively yp) is
the value computed with the semantics of real numbers on s from 7. z; is the magnitude (divided
by €) of the error of the computed result in the semantics of floating-point numbers starting at
p, due to the rounding operation at instruction ¢;. Then suppose we extend the trace s with
operation z = x.y. This derived semantics computes z = zp + Z‘Zzl z;€; with z; being a function
of the z, and ¢ (1 <k <j—1and 1 <[ < j—1). This semantics is left for the full version of
the paper. Now we are going to abstract the coefficients z;.

3.3 Abstract Semantics

We particularize D with A being the interval lattice (but this is easy to generalize on any non-
relational abstract domain) and £ being the set of locations (identified again with a subset of IN).
We will only deal here with a forward abstract semantics that we call [.]*. Of course, having a
backward abstract semantics would enable us to gain more precision during analysis, using iterates
of forward and backward iterates [CC92a], but this is outside the scope of the paper.

The semantics of expressions 1s defined using operations +¢, —¢, % inv®, \/'a as follows: let
@ = [ag, bo] + iy [ai, bilei, y = [co, do] + >+ i, di]ei be two affine forms. We are trying to find
a good abstraction for an operation . on z and y at location j, giving the result z = zg —1—2?21 265
The abstract semantic functions are (using @, ® etc. of section 3, where we assume M’ = M):

ety = ([ao, bol @ [co, dol) + Y ([ai, bi] @ [ei, dil) & + (o T(w) @ a0 L(y))e;

i=1

This merely translates the fact that the “real value” of the sum should be in the sum of the
(floating-point) intervals containing the real values of  and y. The errors from ¢; must be over-
approximated by the sum of the errors for computing z and y at €;. The last term (factor of ;)
is due to the rounding of the “real” sum operation at ¢;. Because of the IEEE-754 standard, its
magnitude is at most ulp(z) where z is the floating-point sum of # and y. Tt is easy to see that it

?We say in that case that this test is “unstable”.
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is less or equal than (o o I'(x) @ o 0o T'(y))e;. The other rules are:

e="y ([, bo] ©feo, o)) + 3 ([oi, bl © e di i + (@0 T(w) © a0 T(y))es
exty S fan bl [eo, o]+ 3 (lain b © @0 Dly)) @ (o0 T(&) O [er, di))
+ (ao F(x)'® aoT(y))e;
inv(x) def inv’([ag, bo]) — inv’(aoT'(z) @ a o T'(z)) ® Z[ai, bile; + inv®(a o T'(z))e;
N def [ao,b0]0+inv°([2,2]® ozoF(x)o)®Z_:[ai,bi]€i+ Ofor(l’)oﬁi

The correctness of this semantics with respect to the semantics of section 2.3 i1s expressed as
follows; let = and y be two affine forms, and let .7 (respectively h’/) be any of the operations -+,
—7xF | (vespectively inv/ \/'f) then ['(z)./T'(y) C I'(z.%y) (respectively ['(h/(z)) C h*(['(z))).

Addition and subtraction rules are easy, even if they are too approximate in fact because we
always say that the operation might create an inaccuracy of up to one ulp around the result (which
is at most, by the IEEE 754 norm of wlp(| z.y |) <| z.y | ulp(1)).

Let us show for instance the correctness of x%. Take U = Uy + 2‘7—1 Uie; and V = Vp +
Z‘Z;ll Vie; two affine forms, with U; = [a;, ;] and V; = [¢;, dy]. Let u € T(U) and v € T'(V).
We write u = ug + Z‘Z;ll uje (where € = ulp(1)) and v = vo + El 1 UZE where u; € v(U;) and
v; € v(Vi). We consider u x/ v = M(uv). uv = ugvg —1—2 o uvm—l—Z 1 vuzE. So

M(u x v) uvt | uv | €
UgUy + Z‘Z_ll(uvl +vug)et |uv | €
maw([ao,bo] [co, do])+

D121 (maz(D(U) @ [es, di] + [ai, bi] © T(V)))e + maz(] D)L (V) [)e

INIAIA

Which shows one part of the inclusion. The rest is left to the reader.
For the formula for inv, the abstraction is correct since & — %

definition, so it can be safely approximated on an interval [a,b] by (for « € [a,b], x + 6 € [a, b]):

1 1 1 I_ L5 ifab>0
I = - b
x azégx—i—ég{i—%é ifab <0

1s concave on 1its domain of

Same proof with square root, but this time the function is convex so we approximate it on
[a, ] by:
< <
ﬁ+f \/_6 Vae+§ f+f
Of course, there are other ways to give lower and upper bounds to these computations. The choice
we have taken is that the individual coefficients of the ¢; should reflect the magnitude of the error
coming from the computation at ¢; in the total error on a trace of computation. Of course this
depends on the “formal derivatives” that appear in these formulae.

The correctness of this semantics with respect to the semantics of section 3.2 1s as follows. On
the set of paths that Prgm can execute from a set of initial environments, # (respectively y) has
real value in [ag, bo] (respectively [cg, dg]) and errors coming from location ¢; (1 € {1,---,j —1})
are in [a;, b;] (respectively [¢;, d;]), then on the set of paths that Prgm;z = z.y can execute from
the same environment, z has real value in zg, and the error coming from location ¢; is in z; plus
the error in the computation of the operation . itself (represented by €;). The effect of adding the
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operation z = x.y on the magnitude of the error coming from location ¢; (i < j) is reflected by
the derivative of the operation in question.

We have not spoken of the abstract semantics of constants and tests. Constants are easy to
abstract, the IEEE754-1985 rules dealing with constants are very precise and we can determine for
sure whether we lose precision or not. Tests are more complex. We use local decreasing iterations
as in [Gra92]. For instance suppose we want to interpret @ == y. The corresponding abstract
operator == will be the greatest fixed point of the functional F' on affine forms, which to every pair
of affine forms (x = 2o+ >, zi&;, ¥y = Yo+ _; yi€i) associates (2’ = xy+>, zlei, ¥ = yh+ >, Yiei)
with (each component of the functional is in A, i.e. here the lattice of intervals)

g = xoN(D(y—* )2 ie))
T =
Yo = yon(T(z—"37 )
vi = i

This is not the best abstraction (on the coefficients of ¢;) but it is enough to show that some tests
might be unstable (when the order of magnitude of the #; or y; is not negligible with respect to
zg and yp respectively).

4 An example
Let us decorate now the different floating-point operations for program (A):

x=1;
y=(sqrt(5) 1! -1 121)/2 131; 14!

for(i=1;i<20;i++){
Z=X;
X=y;
y=z-y; !5!

}

The semantics using affine forms'® goes as follows; first for the locations before the loop:

M5 = [2.236068,2.236069] + [2.236068, 2.236069]¢1
20:vV5-1 = [1.236068,1.236069] + [2.236068, 2.236069]¢1 + [1.2360676, 1.2360684]co
1
13! 3 = [0.5,0.5] + [0.5,0.5]e3
5—-1
4! = . , 0. + (1. 1. €1
14! \/_2 0.618033936,0.618034058 1.118033936, 1.118034058

+[0.6180338176,0.6180342272]¢5 + [0.6180340736, 0.6180342784]e3
+[0.6180340736,0.6180342784]¢4

= Y

(Notice that % is blindly over-approximated. This could be done exactly in a more refined seman-

tics). We can then look at the abstract values on the first unfolding of the loop. For instance, in
the first loop we find the abstract value for y to be:
[0.381966004,0.381966126]+[—1.118033935, —1.118033813]¢1+[—0.6180341760, —0.6180337664]co+

[—0.6180342272, —0.6180340224]e3 + [—0.6180342272, —0.6180340224]e4+
[0.3819656448, 0.3819658240]¢5

10This comes from a library programmed in C by Nicolas Regal in 1999 [Reg99).
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(concretization is [0.38196568,0.38196583]). Then,
[0.236067780,0.236068024] 4 [2.236067872,2.236068116]¢y + [1.2360676352, 1.2360684544]e5+

[1.2360681472,1.2360685568]¢5 + [1.2360681472,1.2360685568] ¢4+
[—0.1458974464, —0.1458969344]¢5
(concretization is [0.23606846,0.23606873]) Then,

[0.145897995,0.145898346]+[—3.354102050, —3.354101562]¢1+[—1.854102528, —1.8541012992] o+

[—1.854102528, —1.8541021184]es + [—1.854102528, —1.8541021184]e4+
[0.2917938944,0.2917948160]c5
(concretization is [0.14589696,0.14589734]) Then,

[0.090169434,0.090170029] + [5.590169434,5.590170411]¢; + [3.090168832,3.0901712896]ea+

[3.0901702656, 3.0901714944]e3 + [3.0901702656, 3.0901714944]e4+
[—0.2016236672, —0.2016221184]¢s
concretization 1s |0. ,0. en again (the fifth time we go around the loop):
ization 1s [0.09017118,0.09017179]) Th i he fifth ti d the 1

[0.055727959,0.055728913]4[—8.944272460, —8.944270507]e1+[—4.9442738176, —4.9442693120] e+

[—4.9442742272, —4.9442717696)e3 + [—4.9442742272, —4.9442717696]e4+
[0.2573515008, 0.2573540352]¢5

(concretization is [0.05572883,0.05573179]). We see that the coefficients of the ¢ up to ¢ = 4
get bigger and bigger as the expected value gets smaller and smaller. The subtraction in control
point 5 does not lose much precision as such. This means the loop magnifies the initial error of
computation of y at each turn. This is an example of bad-conditioning. For the well-conditioned
example computing (—1/3)", the computation with affine forms would show there is no problem.

Of course, in general we cannot unfold loops like that in a static analyzer. After some number of
un-foldings, we use our widening operator, which would predict a huge potential loss of precision.
We need better widening operators in general.

5 Improvements

5.1 Affine interval transformations

The idea is to consider that the semantics creates dependencies between the a; coefficients (due
to an inaccuracy at location ¢) that we can approximate by linear dependencies. This choice
is motivated by the fact that a great deal of numerical codes compute affine operations (also
quadratic sometimes in finite elements methods). Tt is also motivated by the fact that we know
in general how to linearize errors, and we know how to manipulate affine constraints (which are
used for instance in [Kar76] in static analysis).

We call T an affine transformation on the space generated by {e1,--- , €, } if there exists anxn
matrix A, and an n-dimensional vector B such that for all vectors X, T(X) = AX + B. We can
represent such a transformation by the pair (A4, B). We abstract a set of affine transformations by
abstracting all its elements in A and B by an element of A. In fact the semantics of section 3.2
gives a set of such transformations each over-approximating the effect of each trace.

For instance, setting A to be the interval domain,

(LG T)-00))- (G 2)- GO = (Gl B3)-(85)
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So the abstract domain of affine error dependence 7 1s isomorphic to A7+ with component-
wise ordering. This means that as for affine intervals, if A is a lattice, then 7 is a lattice with
intersection and union computed pointwise etc.

The concretization function GG goes from 7 to the set of all (concrete) affine transformations.
G(A = (agyj)lziijH,B’ = (b})lsjsn) is the set of affine transformations (A = (a; j)1>ij<n, B =
(bj)i<j<n) with a; j € ya(aj ;) (for all 1 <4,j <n) and b; € y4(b}) (for all 1 < j < n).

What is important to see now is that these abstract affine transformations act on elements of
D, because we can use the semantics of the operations +, * in A to compute a safe approximation
of {AX + B/(A,B) CG(A, B'), X € G(X')}.

For instance, the instruction z + y = z at instruction j will be written in matrix form as:

() .. o oelr) ely) .. o (Y €

o [ 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

. 0 0 1 0 0 0 0 0 0

@] 0 00 1 0 0 0 0 0

o) | 0 00 o 1 0 0 o 0

0 0 0 0 0 1 0 0 0

. 0 0 O 0 0 0 1 0 0

| 0 00 o 0 0 0 1 0

w=| 1 0 0 0o 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0

izl 0 00 1 0 0 0 1 0
€;(z) 0 0 0 0 0 0 0 0 ~vol(z)®dvyol(y)

We do not write the other rules since they are the transcription of what we have seen for affine
interval forms, on affine interval matrices.

5.2 Principle of the improvement

Let X be the product of the domain Var — D with 7. An abstract value in A" is a pair
(f = Ar.ao(®) 4+ > ai(w)ei, (A, B)) which describes an abstract state at some location ¢; for
which the value of variable # is in y(ag(#)) plus inaccuracy errors of order vy(a;(z)) coming from
control point i, together with the abstract affine transformation approximating the way these
inaccuracy errors have been transformed by the instructions just before location ¢;. This extra
information added to f would not be necessary if the control flow of the program we are analyzing
was acyclic. It is only when we need infinite least fixed point iterations that we can benefit from
the approximation of the transformation of errors that take place at certain control points (given
by (A, B)) to widen the iterations. So in practice, the abstract affine transformations will be
managed at some suitable widening points as defined for instance in [Bou90, Bou93] (heads of
loops, return sites in case of inter-procedural analysis of mutually recursive functions).

We use this extra-information for getting better widening operators. In fact we approximate
the abstract affine transformation by a transformation that multiplies by an upper approximation
of the spectral radius of the transformation (A4, B). We can then look at the asymptotic value:

limy, oo AN X + A2 ld g

Unfortunately, most of the ‘interesting properties” that we might want to compute on G(A’, B)
are NP-complete. Among these interesting properties are, the property of having all the trans-
formations invertible, or the determination of the spectrum of all the transformations (“spectral
portrait”). So we need to approximate further, so that we can compute in an efficient manner a
good upper approximation of the spectral radius of (4, B).

“Any” norm on matrices can be used to determine an approximation of the spectral radius.

A= (aijhcijen 1Al =22 Tais [ Al = /225 Taig %+ [[Alle = max {] a;j [} can
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all be used because, the maximal norm of its eigenvalues is Apgr < [|A]| (2[]A]| in the last case).
This is not a very precise though.

There are in fact better algorithms to calculate this spectral radius. A very famous method
(iterative power) is as follows. Let A = (a;;)1<ij<n be a matrix, v any non-null vector, and

(qr)k>0 the sequence, qo = W, gy = Hﬁ]ﬁ, -+ qj converges (when k — +o00) towards
2 - 2

the greatest norm of the eigenvalues of A. Unfortunately this is not of much use in an abstract
calculus since we do not know if any of the iterates are upper-approximations of the spectral
radius. We have only a weaker result, about the convergence of the (¢i) sequence.

There 1s a better approximation, which only uses “lattice-theoretic” notions. It is called the
“Gerschgorin discs” and is based on an old result by the french mathematician J. Hadamard.

Lemma 2 Let A = (a;;)1<ij<n be a matriz. The spectrum of A is contained in Dy N Dy (in the
complex plane) with,

o Dy =Uici<nD1,

o Dy =Uigj<nDay,

o Dy ; is the circle with center a; ;, radius r1 ; = Elgjgn,j;éi | ai; |,

o Dy ; is the circle with center a; ;, radius ro ; = Zlgign,i;éj | aij|.

A good approximation of the biggest absolute value of the eigenvalues of real A is thus G(A),
max {| a;; | +max {ri;, 72}/l <i<n}

Consider again the example 2 and in particular program (A). The analysis using affine trans-
formations basically discovers something that numericians are used to. At each loop the errors on
z, y et z are given by the affine transformation,

' 0 1 0 8 0
&l =11 -1 o0 5, |+ «
5 1 0 0 5. 0

with at the first iteration of the loop d, = ¢ = 2723, and « is the error due to the rounding of
operation — in the loop.

0 1 0
A = 1 -1 0
1 0 0

In fact, matrix A which comes from the semantics is slightly bigger, but is quite redundant.

We find G(A) = 2 (instead of 1.6180---).
Then we have to notice that a < 272* (in fact it is of order 27237%). In fact the affine

transformation has two non-null eigenvalues p; = _142.\/3 and py = %\/g < —1. Therefore the

error at the 20th iteration of order plfpu 0+ lfflll__lloz (about 4 % 107% + 2.4 % 1073) bigger than
p2% (about 6.6 % 107°).

Of course to do this we need a reduced product with at least an interval analysis on the integer
variables (to determine the right number of loops). This will not be described here.

Note that program (C) has G(A) = 1 (instead of 1/2 which is the exact greatest eigenvalue),
hence the inaccuracy does not increase at each iteration of the loop.
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6 Related work

To our knowledge, there are two main types of tools that are used to help the programmer compute
with floating-point operations (see [BMMM95, Mul89] for general references).

The first type of tool uses alternative arithmetic implementations to better match the “ideal”
semantics of reals. For instance, interval arithmetic [GL70, Moo79] implements a real number
as an interval of floating-point numbers containing it. Multi-precision arithmetic [KJ93, Sco89]
uses variable length floating-point numbers to approximate at best real number computations.
Rational arithmetic [Bak75, Cle74, HCLT68, Kla93, KM8&83, KM88, KM89, Sch83] implements
exact arithmetic for rational numbers, which can be used to approximate real numbers, for instance
using continued fractions [KM85, RT73, Sei83, Vui90]. These methods do not solve the problem
in all cases; interval arithmetic might lead to very imprecise (but true) results'!, multi-precision
arithmetic and rational arithmetic may be very costly to perform on real scientific codes!'?.

A new and promising line of research uses domain theory and fractal encoding of exact real
numbers [ES98, EP97, Edad7]. We do not know yet how we can use these ideas for static analysis
purposes.

Another approach is at the heart of the CADNA software [Che95]. Tt is known as the per-
turbation method (CESTAC) or stochastic arithmetic [CV88, CV92]. The idea is that round-off
errors can be modeled as quasi-Gaussian distributions of some sort, and that a simple statistic
test (Student test) can estimate its parameters, thus enabling to give better approximations of
real number computations. This method and tool is probably one of the most favored among the
code programmers, since it is quite precise. But it has lead to some criticisms, see [Kah91] for
example. We review some of its central ideas more in detail in section 6.2. A similar approach
(still stochastic but in a “backwards” manner) has been implemented and tested under the name
“Precise” [CCT00]. We thought of using similar probabilistic ideas as a basis of a static analysis
but at the moment there seems to be no way to ensure (even probabilistically) the correctness
of the approach. Very important work is being carried out on the foundations of probabilistic
abstract interpretation [Mon00, Mon01] which we might use for this purpose later on.

In some applications (image synthesis etc.), some algorithmic geometry has been specifically
designed, like for CGAL, [BCDT99] in order to use in a very controlled manner the IEEE 754
floating-point numbers for some computations. We do not know yet how to use this for our
purposes.

We know of only one example of a static analyzer (such as we are discussing in this article), that
not only tries to give more precise results on one execution, or give some hint about the precision
on one execution, but rather assesses a property valid for all (or a large class of) executions. This
analyzer [ACFG92] actually uses abstract interpretation. We will explain the abstraction chosen
more in detail in next section.

6.1 Another abstract interpretation

The abstract interpreter [ACFG92] is based on the following underlying concrete model. Floating-
point numbers are identified with a pair f = (m,e) with, a mantissa m € M = {m € Z/p €
IN, —(107 — 1) < m < 10 — 1}, and an exponent e € E ={e € Z/qg e N, —¢ < e < ¢}.

Abstract values are f = (s,p,em,eM) where, s = +,—, +/—, L is an abstract sign, p is an in-
teger representing the “number of significative digits” and [em, e M] is the “interval of exponents”.
For instance < 4,4, 6,12 > denotes in the concrete model,

F' ={0.1000 % 10°,0.1001 % 10°,- - ,0.9999 % 10'?}

HSee Section 3 for examples of that phenomenon.
12 And they do not solve the problem in general, see [CC94] where the following classical dynamical system

example by J. M. Muller U, = 111 — % + %107[33_1 with Uy = 2 and U; = —4 leads with floating-point

numbers of all (finite) precision — this includes multi-precision arithmetic — to 100 whereas the exact value for the
limit is 6. This can only be solved by exact real numbers, i.e. infinite precision arithmetic!
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It is proved to form a complete lattice with a Galois connection with the set of subsets of the
concrete model. Abstract operations like Add, Sub, Mul, Div are defined. Unfortunately, no
interpretation of tests nor of loops is made, thus greatly restricting the precision of the analysis.
The analysis is sometimes even weaker than an interval analysis of floating-point numbers, thus
much weaker than our analysis.

6.2 CADNA

The CADNA library implements the CESTAC method [CV88, CV92, PV74, VA85, Vig78, Vig8T,
Vig93]. The underlying model is that the round-off errors are of the form 277 .«; where the a; are
equi-distributed independent random variables on | — 1, 1[ with uniform law. This law is justified
both experimentally and by some theoretical reasons [Knu73]. The perturbation methods goes as
follows. At each floating-point operation, we perturbate the round-off towards 400 or —oo with
the same probability. We execute N times each of the instructions of the program (in practice,
N =2 or 3). The mean value “converges” towards the exact mathematical result and the Student
test computes a good approximation of the standard deviation of the quasi-Gaussian distribution
law of the result.

Thus this method can be used both for improving the computations, and for testing the rele-
vance of a given execution. It is very much used in practice but some bugs are known: its estimates
are sometimes too optimistic. There are several reasons for which this may happen [Kah91]. The
approximation by a Gaussian law is justified by the central limit theorem but the convergence is
very slow on the tail of the distribution (in particular with N = 2 or 3). The approximation is
very bad on un-probable events (precisely the ones which lead to very costly errors). In order to
justify the use of the theorem, we also have to suppose that the round-off errors are random, not
correlated, continuously distributed on a small interval. But in general, the errors are only due
to a few round-off errors and to singularities (which we might find out by data perturbation but
probably not by perturbation of the operations). So errors are not uncorrelated random variables.
Also, the distribution of errors is a discrete distribution on floating-point numbers and not on
continuous real number. Finally, this is only a “first order approximation”: for multiplication and
division, second-order terms are not considered, but it might occur that they are not negligible.

7 Conclusion and future work

We have presented some ideas about what static analysis can try to do for programs computing
with floating-point numbers. Our first concern in the DAEDALUS project is to analyze control-
command software (like the Patriot software seen in the introduction) which is not numerically
intensive, and for which we think we should have good chances of finding nice solutions. Numeric-
intensive software, like scientific codes, are much more complex. Some of them, such as well-
conditioned problems, might be amenable to static analysis. More difficult is to consider what can
happen for ill-conditioned problems (for example, inverse of a matrix with very small determinant).
We believe that there 1s little hope an automatic tool can cope with such problems, but we would
like to be shown to be wrong .

In fact, most scientific codes pose new problems to static analyzers. For instance, some codes
rely on Monte Carlo methods, or more generally on randomized algorithms. We believe that the
static analysis of such algorithms is an interesting prospect, but goes beyond the scope of this
paper (see [Mon00, Mon01] for some ideas which could constitute a good basis for future work).
What might have to be considered on these codes is that the random generators that are used
are only pseudo-random generators. This complexifies again the semantic problem. Also some
scientific codes use parallel algorithms which make things even more complex, especially regarding
the evaluation order of floating-point operations; they will depend on actual synchronizations
between tasks.

Our future work will not try to tackle these very subtle problems. The first extension we wish
to make is to look at inverse problems i.e. at clever backwards semantics. The aim is to solve the
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following problem: what precision should we have on the input so that we reach a given precision
level on the output. The last point is particularly important in the field of on-board software
since the wrong estimate of the precision for the input of a control/command program can be very
expensive (for instance, the cost of very precise sensors).
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