
Static analyses of oating-point operationsEric Goubault�LIST (CEA - Recherche Technologique)DTSI-SLA, CEA F91191 Gif-sur-Yvette CedexFebruary 22, 2001AbstractComputers manipulate approximations of real numbers, called oating-point numbers.The calculations they make are accurate enough for most applications. Unfortunately, insome (catastrophic) situations, the oating-point operations lose so much precision that theyquickly become irrelevant. In this article, we review some of the problems one can encounter,focussing on the IEEE754-1985 norm. We give a (sketch of a) semantics of its basic operationsthen abstract them (in the sense of abstract interpretation) to extract information about thepossible loss of precision. The expected application is abstract debugging of software rangingfrom simple on-board systems (which use more and more on-the-shelf micro-processors withoating-point units) to scienti�c codes. The abstract analysis is demonstrated on simpleexamples and compared with related work.1 IntroductionEverybody knows that computers calculate numerical results which are mostly wrong, yet they areintensively used for simulating highly complex physical processes and for predicting their behavior.Transcendental numbers (like � and e) cannot be represented exactly in a computer, since machinesonly use �nite implementations of numbers (oating-point numbers instead of mathematical realnumbers); they are truncated to a given number of decimals. Less known is that the usual algebraiclaws (associativity for instance) that we use when thinking about numbers are no longer true ingeneral when it comes to manipulating oating-point numbers.It is actually surprising that very few studies on static analysis of oating-point operations oron their semantic foundations have been carried out. Our point of view in this article is that thereare \numerical bugs" that a programmer can encounter, and that some are amenable to automaticdetection using static analysis of the source code, using abstract interpretation. This new sortof bug includes what is normally called bug, i.e. run-time errors (here for instance, uncaughtnumerical exceptions), but also more subtle ones about the relevance of the numerical calculationsthat are made. We advocate that it is as much of a bug to terminate on a \segmentation fault"as to terminate with a completely meaningless numerical result (which might be used to control aphysical apparatus with catastrophic consequences).This problem is not very well-known to programmers of non-scienti�c codes. Let us just giveone example showing this is also of importance for the non-scienti�c computing world. On the 25thof February 1991, during the Gulf war, a Patriot anti-missile missed a Scud in Dharan and crashedonto an American barracks, killing 28 soldiers. The o�cial enquiry report (GAO/IMTEC-92-26)attributed this to a fairly simple \numerical bug". An internal clock that delivers a tick everytenth of a second controlled the missile. Internal time was converted in seconds by multiplying thenumber of ticks by 110 in a 24 bits register. But 110 = 0:00011001100110011001100 � � � in binary�Work partially funded by IST project DAEDALUS. This paper follows a seminar given at Ecole NormaleSup�erieure in June 1998. 1



format, i.e. is not represented in an exact manner in memory. This produced a truncating error ofabout 0:000000095 (decimal), which made the internal computed time drift with respect to groundsystems. The battery was in operation for about 100 hours which made the drift of about 0.34seconds. A Scud ies at about 1676m/s, so the clock error corresponded to a localization errorof about 500 meters. The proximity sensors supposed to trigger the explosion of the anti-missilecould not �nd the Scud and therefore the missile fell and hit the ground, exploding onto thebarracks.Actually, more and more critical or on-board systems are using on-the-shelf oating-point unitswhich used not to be approved beforehand. Therefore we believe that static analysis of oating-point operations is going to be very important in the near future, for safety-critical software aswell as for numerical applications in the large.These kinds of problems are better-known in scienti�c computing, at least when modeling thephysical phenomena to be simulated. What we mean is that in many cases, the discretizations ofthe (continuous) problems that are modeled are su�ciently stable so that little truncation errorsdo not overly a�ect the result of their simulation. Unfortunately, it is di�cult to �nd the exactsemantics of oating-point operations, and even using some well-behaved numerical schemes, someunpredictable numerical errors can show up. Also some problems are inherently ill-conditioned,meaning that their sensitivity to numerical errors are very high. In this latter case it is in generalvery di�cult to assess the relevance of the numerical simulation even by hand.Organization of the paper In Section 2, we will explain what model of oating-point arith-metic we want to analyze (IEEE754-1985). We carry on in Section 2.1 by explaining what kindof properties we want to synthesize by the analysis. Then in Section 2.2 we give the syntax andinformal meaning of a simple imperative toy language manipulating oating-point numbers; wegive a �rst sketch of a formal semantics in Section 2.3, that we re�ne in section 3.2.In Section 3 we present a few abstract domains that are candidate for the abstract interpretationof the concrete semantics. We give some directions for improvement in Section 5.1. We give anexample in Section 4, and compare with existing related work in Section 6. We conclude by givingsome future directions of work in Section 7.2 The IEEE 754 normThe IEEE754-1985 norm speci�es how real numbers are represented in memory1 using oating-point numbers, see [Gol91, Kah96]. The norm itself relies on a simple observation:Lemma 1 f�1; 1g � [0; 1[ � IN ! IR�F : (s; f; k) ! s(1 + f)2kis a bijection with inverse: IR� ! f�1; 1g � [0; 1[ � ING : x ! (s(x); f(x); k(x))with s(x) being the sign of x, k(x) = blog2(j x j)c where buc denotes the integral part2 of u andlog2 is the logarithm in base 2, and f(x) = jxj2k(x) � 1.Taking a representation with a �xed number of bits K for exponents (function k(x)) and a�xed number of bits N for the mantissa (function f(x) or m(x) = 1 + f(x)), the norm de�nesseveral kinds of oating-point numbers,1But not in the registers of micro-processors.2 i.e. the greatest integer less or equal than x. We will also use due which is the least integer greater or equalthan x. 2



sign exponent mantissaFigure 1: Representation of a oating-point number in memory.� The standard numbers, r = s � n � 2k+1�N , with s 2 f�1; 1g, 1� 2K < k < 2K , 0 � n < 2Nnormalized so that, r = s � 2k(1 + f) with f < 1,� De-normalized numbers (to manage \underow" in a gradual manner), r = s�n�2k+1�N =s � 2k(0 + f) with k = 2� 2K and 0 < n < 2N�1 i.e. 0 < f < 1,� +1 and �1 (notice that their inverses, +0 et �0 are also there),� NaN \Not a Number" signed or not (which are the results of dubious operations such as0 �1).Normalized numbers come in several versions, according to di�erent choices of K and N , soallowing more or less precision at will. Simple precision (REAL*4, float) has K = 7 and N = 24,double precision (REAL*8, double) has K = 10, N = 53, and double extended (REAL*10 etc., longdouble) has K � 14, N � 64.Just to give an order of magnitude of the numbers we are talking about, let us show a fewexamples. For a simple oat, the maximum normalized number is 3:40282347 � 1038, the mini-mum positive normalized number is 1:17549435 � 10�38, the maximum de-normalized number is1:17549421�10�38 minimum positive de-normalized number is 1:40129846� 10�45. Around 1, themaximal error (\unit in the last place", or ulp, or ulp(1)) is 2�23 for a simple oat, i.e. about1:19200928955� 10�7.The norm also speci�es some properties of some of the computations we can make on oating-point numbers. For instance, the norm speci�es that +;�; �; =;p are computed with an inaccuracythat cannot go beyond the ulp around the exact result (if there is no \overow").The norm allows the user to use di�erent round-o� methods. One can use round-o� towardszero, round-o� towards the nearest, round-o� towards plus in�nity, and round-o� towards minusin�nity. A more subtle rule is that when we have the choice between two roundings (in the round-o� towards the nearest mode), we choose the even mantissa. In fact, the norm even speci�es3that x:y (where : is one of the oating-point operations +, -, *, / on oating-point numbers x andy) is the rounding (in the corresponding rounding mode) of x � y (where � is the correspondingoperation in IR). We will actually suppose in the sequel that this holds true also for the squareroot operation as well.The conversions are to be given an explicit semantics as well. More annoying is that we shouldtake care of the order of evaluation (in conict with compiler optimizations!), since the round-o�sdestroy associativity in general.Caveats As we said in the beginning of this section, the norm speci�es what happens in memorybut not in processor registers. There are conversions between memory and registers that we haveto know about. In general, (except M680x0 and Ix86/Ix87 where all operations are computed indouble extended before round-o�), registers are like main memory. There can be some di�erenceswith RISC processors as well, like the IBM Power PC or Apple Power Macintosh, because of theuse of compound instructions (multiply-add etc.) which do not use the same round-o� methods.Most of the machines follow the norm anyway but not all the compilers in particular concerningthe way they handle (or do not handle!) arithmetic exceptions (underow etc.). CRAY used to3This is done using extra \guard digits" for computation by the processor of the operations.3



have a di�erent arithmetic, which is a problem for actual applicability of our methods for scienti�ccomputing. Hopefully, it seems that it is now converging towards the norm. We have seen casesin which porting a scienti�c code to a computer with a di�erent arithmetic produces dramaticchanges.Another problem is to know how to deal with the other mathematical operations (like the onesin <math.h> in C). In general we have to know the algorithm or its speci�cations (sometimes givenby library providers). The problem of having \good" libraries is well-known in the literature, asthe \Table makers' dilemna". In this article we will stick to the core of the norm, and consideronly \simple" operations.2.1 Examples and properties of interestOur aim is to be able to analyze at compile-time the way oating-point operations are used ormis-used.What we intend to automatically �nd is at least the exceptions that might be raised (and notcaught), like \Overow", \Underow" and \NaN". This could be handled with other well-knownanalyses (interval analysis as used in Syntox [Bou92], polyhedra [CH78] etc.) so we will not describethis part so much. What we really would like to �nd is some not too pessimistic information aboutthe precision of the values of the variables. This leads to estimates of branching reliability in testsand in expecting to partially solve some di�cult termination problems (see Example 1).Example 1 Consider the expression x = c1b2�c2b1a1b2�a2b1 which leads on an UltraSparc in simple preci-sion, for c1 = 0, c2 = 1, b1 = �46099201, b2 = �35738642, a1 = 37639840 and a2 = 29180479,to x = 1046769994 (the true result is x = �46099201). This is an example of a problem known as\cancellation". The control ow might be wrong after this instruction, if it were followed by the(somewhat unlikely!) instructions:if (x==-46099201) { ... }else { ... }or non-termination could happen since this could be the termination test of a loop.Here are some simple (and classic) examples of stable and unstable numerical computations:Example 2 Consider the following two implementations of the computation of the nth power ofthe gold number (g = p5�12 ). The �rst one on the left (program (A)) relies on the simple propertythat if un is the nth power of the gold number, un+2 = un � un+1. The second one, on the righthand side (program (B)), is the brute force approach.main(){ float x,y,z;int i;x=1;y=(sqrt(5)-1)/2;for (i=1;i<=20;i++) {z=x;x=y;y=z-y;printf("phi^%d=%f\n",i,x); } } main(){ float t;int i;t=1;for (i=1;i<=20;i++) {t=t*(sqrt(5)-1)/2;printf("phi^%d=%f\n",i,t); } }Program (A) gives the following results: 4



phi^1=0.618034phi^2=0.381966phi^3=0.236068phi^4=0.145898phi^5=0.090170phi^6=0.055728phi^7=0.034442phi^8=0.021286phi^9=0.013156phi^10=0.008130 phi^11=0.005026phi^12=0.003103phi^13=0.001923phi^14=0.001180phi^15=0.000743phi^16=0.000437phi^17=0.000306phi^18=0.000131phi^19=0.000176phi^20=-0.000045Which of course does not make much sense! The fact is that the numerical scheme used onprogram (A) is not well-conditioned, meaning that it is very sensitive to the initial inaccuracy. Infact the initial inaccuracy on the computation of (p(5) � 1)=2 which is of the order of ulp(1) atmost, is increased at each iteration and becomes more important than the real result.Program (B) leads to the following results,phi^1=0.618034phi^2=0.381966phi^3=0.236068phi^4=0.145898phi^5=0.090170phi^6=0.055728phi^7=0.034442phi^8=0.021286phi^9=0.013156phi^10=0.008131 phi^11=0.005025phi^12=0.003106phi^13=0.001919phi^14=0.001186phi^15=0.000733phi^16=0.000453phi^17=0.000280phi^18=0.000173phi^19=0.000107phi^20=0.000066Which is in fact completely acceptable. Take now program (C) below which looks like program(A) (at least it does not look simpler):x=1;y=-1.0/3.0;for (i=1;i<=20;i++) {z=x;x=y;y=(x+z)/6; }The results that are computed are accurate (they are roundings of ��13�n):phi^1=-0.333333phi^2=0.111111phi^3=-0.037037phi^4=0.012346phi^5=-0.004115phi^6=0.001372phi^7=-0.000457phi^8=0.000152phi^9=-0.000051phi^10=0.000017 phi^11=-0.000006phi^12=0.000002phi^13=-0.000001phi^14=0.000000phi^15=-0.000000phi^16=0.000000phi^17=-0.000000phi^18=0.000000phi^19=-0.000000phi^20=0.000000This \numerical scheme" is well-conditioned, i.e. stable.2.2 A languageIn the language we consider in this paper, we con�ne ourselves to simple oating-point operations(which are fully speci�ed in the IEEE754-1985 norm), with one type of oating-point number only(no double precision nor cast here), 5



Expr = cste constant real expressionX variable X 2 VarExpr+ Expr sumExpr � Expr productExpr� Expr di�erenceExpr=Expr divisionpExpr square root(Expr) bracketingThe idea is that the evaluation of arithmetic expressions is determined by the syntax (left toright, innermost to outermost evaluation here). We con�ne ourselves in this paper to very simpletest expressions, as follows, test = X == 0 zeroX > 0 strict positivityX � 0 positivityInstructions are,Instr = X = Expr assignment for X 2 Varif test then block else block conditional statementwhile test block while loopWe have used in the examples \equivalent" C forms of a program in that syntax.Blocks of instructions are concatenations of instructions,block = ; empty blockInstr; block block concatenationFinally a program P is just a block.2.3 A (almost) standard concrete semanticsWe plunge oating-point numbers (parameterized here by N and K, the length of the binarywords representing respectively the mantissa and the exponent) into V al which is the union ofthe (mathematical) real numbers IR extended with values f1;�1; NaN; !; �; �; �g which standrespectively for +1 and �1 (mathematical in�nities, coming from a compacti�cation of the setof reals for instance), NaN , a special element denoting the value \not a number", and ! denotingoverow, �, underow, �, division by zero error and � is the error resulting from taking the squareroot of a strictly negative number. The semantics is given as a transition system, where statesare elements of Ctrl � Env where Env = V ar ! V al and Ctrl is the text of the program yetto be executed. The semantics also depends on the round-o� mode M : V al ! V al (a partialfunction4) and on the use (or not) of some standard handlers in case of overow, taken care of bya (partial) function E : V al ! V al. By convention, all our (partial) functions (if not otherwisestated) will not be de�ned on \errors" !, �, � and �, nor on NaN and will be the identity on 1and �1. For the sake of simplicity, we will consider only normalized oating-point numbers andwill not use signed NaN nor signed zero. We re-de�ne now the following mathematical functionsacting on V al,� We \overload" the exponent function we had at lemma 1; k : V al ! V al is the exponent(partial) function with, k(1) = k(�1) = 1, k(x) = max(blog2(j x j)c; 2� 2K) if x 2 IR,x 6= 0, k(0) = 0, k(x) = ? (i.e. not de�ned) in all other cases. This enables us to have theright f (as in lemma 1) function and thus the wright underow mechanism.4We write in an equivalent mannerM(x) = ? andM(x) unde�ned.6



� M(x) = s� b2N f(x)c2N + 1�2k(x) (this is the rounding towards zero mode, which we write whenthere is a risk of ambiguity M0), other modes include: M(x) = s� sd2Nsf(x)e2N + 1� 2k(x)(rounding towards plus in�nity or M+), and M(x) = s� sb2Nsf(x)c2N + 1� 2k(x) (roundingtowards minus in�nity orM�),� E(x) = O if j x j> 22K+1 � 22K�N , E(x) = U if j x j< 22�2K (so that we are not dealinghere with \gradual underow" or de-normalized numbers), otherwise E(x) = x (this is the\no handler" option).We look at the semantics of an expression Expr. Given � 2 Env,[[cste]]f� = E �M(cste)[[X]]f� = �(X)[[Expr1 + Expr2]]f� = [[Expr1]]f� +f [[Expr2]]f�[[Expr1 � Expr2]]f� = [[Expr1]]f� �f [[Expr2]]f�[[Expr1=Expr2]]f� = [[Expr1]]f�=f [[Expr2]]f�[[Expr1 � Expr2]]f� = [[Expr1]]f� �f [[Expr2]]f�[[pExpr]]f� = p[[Expr]]f fwhere the functions +f , �f , =f , �f and p f are de�ned as follows,� a+f b = E �M(a+ b)� a �f b = E �M(ab)� a�f b = E�M(a�b) if a and b are not both the same in�nity. In the latter case, a�f b = NaN .� a=fb = E �M(ab ) if b 6= 0. If b = 0 then a=fb = �.� paf = E �M(pa) if a � 0 otherwise paf = �.Assignments have the following semantics: [[X = Expr]]f� = �[X  [[Expr]]f�] where �[u v]denotes the new environment in which �(u) is now equal to v, whereas all other variables aremapped to the value they had by �. Tests are also quite straightforward ([[test ]]f is a booleanvalue indicating whether the test is true or not). Transitions from state (Instr;Prog; �) to(Prog; �0) are now rather easy to write down, given the evaluation of expressions above. We sparethe reader the details, given that this is rather standard (in SOS style [Plo81] for instance). Inorder to be able to write the abstract semantics in an easier manner in the sequel, we suppose thatall expressions are decomposed into sequences of single operations (like +, � etc. respecting theevaluation strategy). For instance, the assignment x=y*z+2 will be supposed to be decomposedusing an auxiliary variable t as t=y*z; x=t+2. This re�nes the transition system described aboveby splitting the transition representing the evaluation of a (complex) expression into a sequenceof transitions, one for each simple oating-point operation.Notations In the sequel, operations +f , �f etc. (respectively +, � etc.) will have to beunderstood as the oating-point (respectively \real") operations. We will also introduce newoperations �, 	 etc. (next section) and +a, �a etc., that are \abstractions" of these operations.3 Abstract domainsA correct (in the sense of abstract interpretation) domain for abstracting the semantics above isgiven by intervals of oating-point numbers (in the style of F. Bourdoncle's Syntox integer intervalanalyzer). Basically the \best" correct abstract operations (forward semantics) are:7



� the abstraction of the + operation is [a; b]� [c; d] = [M0�(a+f c);M0+(b+f d)]� for subtraction: [a; b]	 [c; d] = [M0�(a�f d);M0+(b�f c)]� for multiplication: [a; b]
 [c; d] = [M0�(min(a�f c; a�f d; b�f c; b�f d));M0+(max(a�f c; a�fd; b �f c; b �f d))]� for the inverse (here d � c > 0): invo([c; d]) = [M0�(1=fd);M0+(1=fc)]� for the square root: p[c; d]o = [M0�(pcf );M+(pdf )] (when c; d � 0)� For tests, one should be cautious with the rule for strict positivity: [[X > 0]]� = (�(X) �22�2K).where M0 is the rounding function on the analyzer's internal representation of oating-pointnumbers, +f , �f etc. are the oating-point operations on the target architecture where theprogram which is statically analyzed should be run, and K is the corresponding number of bitsused for representing exponents. In general, we can (should?) hope for the analyzer to have a betterprecision than the target architecture5 , and in that case we can simplify the rules above (forgettingabout theM0 in the right-hand side of the de�nitions). This semantics has been implemented aspart of the abstract domains used in the static analyzer TWO (ESPRIT project 28940), but isobviously very unsuitable for having a precise information on oating-point operations. Actually,we used an even less precise semantics in that we supposed we did not know the rounding modein the analyzed program, so we had to assume the worst case which is, for instance in the caseof the abstraction of addition: [a; b]� [c; d] = [M�(a + b);M+(c + d)] where M is the roundingfunction corresponding to the target architecture (or a suitable approximation of).The experiments (to be described in a forthcoming article) show that this kind of analysisbehaves poorly on oating-point code. The �gure of about ten percent of the lines (which useoating-point operations) of a code being signaled as potential run-time errors (over-pessimisticwarnings about the possibility of getting to an erroneous state, like overow, division by zeroetc.) is not uncommon. Using this semantics though, we are able to �nd real \subtle" bugssuch as for the program: if (x>0) y=1/x*x, where there might be a division by zero error6(for instance when x = 22�2K). Also this abstract semantics is su�cient to get good estimatesof the 20th iteration of program (B) of example 2. It is of order [�0 � 2�23; �0 + 2�23]20 i.e.about [6:61067063328 � 10�5; 6:61072163724 � 10�5]. Also the numerical bug of the Patriot asexplained in the introduction would certainly have been found by such interval analyzers, withcorrect oating-point semantics.But interval semantics is always very conservative and pessimistic: it might even incorporatethe error of computation of the analyzer itself (M0)! Secondly, it aggregates in the abstract valueboth the magnitude of the expected result and the inaccuracy error. Also it does not take careof dependencies between the values and especially between the errors. For instance, x � x willalways lead in such abstractions to a strictly positive error except if x is a singleton interval (i.e.a constant). What we really need is a relational abstraction at least on inaccuracy values.3.1 Domain of a�ne formsThe idea here is to trace instructions (or locations in the program) that create round-o� errors.We associate with each location and variable the way this control point makes the variable loseprecision. This is loosely based on ideas from a�ne arithmetic [VACS94] (used in simulation ofprograms, not in static analysis).5One could actually use multi-precision numbers instead of IEEE 754 double or extended double types forrepresenting intervals in the static analyzer.6This is an example taken from a seminar by Alain Deutsch in 1998.8



The abstract values (notwithstanding error values) are, x = a0 + a1�1 + � � �+ an�n, the �i arevariables, intended to represent random values with range ]�ulp(1); ulp(1)[7, associated with eachlocation (describing the loss of precision at that point), the ai being in an abstract domain A (forexample real or oating-point intervals) abstracting }(IR [ f1;�1g), through (for instance) aGalois Connection [CC92a] }(IR [ f1;�1g) �< > A. Basically a0 should be an abstractionof the intended result if the program was manipulating real numbers, and the ai (i � 1) representabstractions of each small error due to the \ith operation" in the program.Let us make this more precise by setting �rst L, the set of all locations in the programs to beanalyzed (i.e. all elements in Ctrl in the concrete semantics given in section 2.3) L = f�i j i 2 Lgthat we will identify in the sequel with a subset of IN. The a�ne forms domain, parameterizedby A and L is the domain D de�ned as follows, D = fa0 +Pi2L ai�i j a0; ai 2 A; i 2 Lg and theorder is de�ned component-wise, a0 +Pi2L ai�i � a00 +Pi2L a0i�i if a0 �A a00 and ai �A a0i forall i 2 L.Therefore, if A is a lattice, then D is a lattice with component-wise operations. Similarly,widenings and narrowings [CC92b] de�ned in A can be extended in a component-wise mannerto generate widenings and narrowings on D. In general the classical widenings on intervalsare not very subtle. We use the following family of widenings here: [a; b]rk[c; d] = [e; f ] with� e = c� 2k(a � c) if c < ae = a otherwise and � f = d+ 2k(d� b) if d > bf = a otherwise . This is only a widen-ing if we suppose that the boundaries of our intervals use a �nite precision arithmetic (boundedmulti-precision for instance).We can now de�ne a concretization function � : D ! }(IR[f1;�1g) by �(a0+Pi2L ai�i) =(a0) +Pi2L (ai)�]� ulp(1); ulp(1)[.The problem is that there is no way we can hope for a very strong correctness condition (we willgive it in detail in section 3.3) for an analysis based on D with respect to the concrete semanticsgiven in section 2.3, because we have not speci�ed in the concrete semantics what the \real" resultshould be. Therefore there is no best choice to what a0 should be (hence the same problem holdsfor the ai, i 2 L)8. We should in fact have designed a non-standard concrete semantics thatremembers the inaccuracy of the computations, which we shall see now.3.2 A non-standard semanticsWe slightly change the semantics of section 2.3 so that environments are now of the form � :Var! (V al�V al) (we will write � = (�; �)). So �(X) = (X;X) where X is any variable, and theintended meaning is that X is the semantics we had in section 2.3 and X is the intended \real"computation (i.e. using real numbers and not oating point numbers). For the sake of simplicity,we only carry on the concrete and abstract semantics without dealing with NaN nor run-timeerrors, hence dropping the E part of the semantics. For expressions for instance, we �nd the newconcrete operators:� a+f b = (M(a+ b); a+ b)� a �f b = (M(ab); ab)� a�f b = (M(a� b); a� b)� a=fb = (M(ab ); ab ) if b 6= 0.7Notice that if we assume the default rounding mode, we could actually use a smaller interval i.e.[�ulp(1)=2;ulp(1)=2].8Mathematically, suppose we have a corresponding abstractionA : }(V al)! D making (A;�) into a Galois con-nection. Suppose for instance thatA is the interval domain, and consider �(u1 = [0;0]+[1;1]�1) =]�ulp(1);ulp(1)[and �(u2 = [0;0] + [1;1]�2) =] � ulp(1); ulp(1)[ as well. But �(u1 \ u2) = �([0;0]) = [0;0] is not equal to�(u1) \ �(u2) =] � ulp(1); ulp(1)[, so there cannot be a left-adjoint to �.9



The rest of the semantics is pretty much the same, \executing in parallel" the programwith oating-point operations, and the program with operations in IR, but without observ-ing precisely the steps in the \real" computation. For instance, we have a transition from(x = Expr;Prgm; (�; �)) to (Prgm; ([[x = Expr]]f�; [[x = Expr]]�)) where [[:]]f is the \oating-point" semantics given in section 2.3, and [[:]] is a similar semantics, but with operations andnumbers in IR (the \ideal semantics"). The more di�cult part of the semantics is tests (alsowhile loops of course since they include tests). The problem is that a test in the oating-point semantics might well not give the same result as the test in the real number semantics(as in example 1), leading to a di�erent ow of execution in the two semantics. We choose inthat case to stop computing the real number semantics: for instance there is a transition from(if (x < 0) x = x + 1 else x = x � 1; (x  �10�37; x  0)) to (x = x + 1; (x  �10�37;?))and then to (;; (x 1;?))9. This actually corresponds to a synchronized product [Arn92] (withsynchronization between two transitions being only allowed when the two have the same labels) ofthe transition system corresponding to the oating-point semantics with another, correspondingto an \observer", which is the real number semantics.From this semantics, we can construct an even more detailed semantics which will be our �nalnon-standard semantics, and which goes (briey) as follows. We de�ne inductively the notion of\inaccuracy" coming from a location (i.e. a transition) that we identify with a \formal" variable�i. Consider a trace s of execution from an initial environment (�; �). Suppose this trace goesthrough locations �1 to �j�1 and that variables x and y are computed on this trace; we supposewe can write formally (this is the induction step of the de�nition) x = x0 + Pj�1i=1 xi�i andy = y0 +Pj�1i=1 yi�i where �i is a formal variable of magnitude � = ulp(1). x0 (respectively y0) isthe value computed with the semantics of real numbers on s from �. xi is the magnitude (dividedby �) of the error of the computed result in the semantics of oating-point numbers starting at�, due to the rounding operation at instruction �i. Then suppose we extend the trace s withoperation z = x:y. This derived semantics computes z = z0 +Pji=1 zi�i with zi being a functionof the xk and yl (1 � k � j � 1 and 1 � l � j � 1). This semantics is left for the full version ofthe paper. Now we are going to abstract the coe�cients zi.3.3 Abstract SemanticsWe particularize D with A being the interval lattice (but this is easy to generalize on any non-relational abstract domain) and L being the set of locations (identi�ed again with a subset of IN).We will only deal here with a forward abstract semantics that we call [[:]]a. Of course, having abackward abstract semantics would enable us to gain more precision during analysis, using iteratesof forward and backward iterates [CC92a], but this is outside the scope of the paper.The semantics of expressions is de�ned using operations +a, �a, �a, inva, p a as follows: letx = [a0; b0] +Pni=1[ai; bi]�i, y = [c0; d0] +Pni=1[ci; di]�i be two a�ne forms. We are trying to �nda good abstraction for an operation : on x and y at location j, giving the result z = z0+Pni=1 zi�i.The abstract semantic functions are (using �, 
 etc. of section 3, where we assumeM0 =M):x+a y def= ([a0; b0]� [c0; d0]) + j�1Xi=1 ([ai; bi]� [ci; di]) �i + (� � �(x)� � � �(y))�jThis merely translates the fact that the \real value" of the sum should be in the sum of the(oating-point) intervals containing the real values of x and y. The errors from �i must be over-approximated by the sum of the errors for computing x and y at �i. The last term (factor of �j)is due to the rounding of the \real" sum operation at �j. Because of the IEEE-754 standard, itsmagnitude is at most ulp(z) where z is the oating-point sum of x and y. It is easy to see that it9We say in that case that this test is \unstable". 10



is less or equal than (� � �(x)� � � �(y))�j . The other rules are:x�a y def= ([a0; b0]	 [c0; d0]) + j�1Xi=1 ([ai; bi]	 [ci; di]) �i + (� � �(x)	 � � �(y))�jx�a y def= [a0; b0]
 [c0; d0] + j�1Xi=1 (([ai; bi]
 � � �(y)) � (� � �(x)
 [ci; di])) �i+ (� � �(x) 
 � � �(y))�jinv(x)a def= invo([a0; b0])� invo(� � �(x)
 � � �(x)) 
 j�1Xi=1[ai; bi]�i + invo(� � �(x))�jpxa def= p[a0; b0]o + invo([2; 2]
p� � �(x)o)
 j�1Xi=1[ai; bi]�i +p� � �(x)o�jThe correctness of this semantics with respect to the semantics of section 2.3 is expressed asfollows; let x and y be two a�ne forms, and let :f (respectively hf ) be any of the operations +f ,�f , �f , (respectively invf , p f ) then �(x):f�(y) � �(x:ay) (respectively �(hf (x)) � ha(�(x))).Addition and subtraction rules are easy, even if they are too approximate in fact because wealways say that the operation might create an inaccuracy of up to one ulp around the result (whichis at most, by the IEEE 754 norm of ulp(j x:y j) �j x:y j ulp(1)).Let us show for instance the correctness of �a. Take U = U0 +Pj�1i=1 Ui�i and V = V0 +Pj�1i=1 Vi�i two a�ne forms, with Ui = [ai; bi] and Vi = [ci; di]. Let u 2 �(U ) and v 2 �(V ).We write u = u0 +Pj�1i=1 ui� (where � = ulp(1)) and v = v0 +Pj�1i=1 vi� where ui 2 (Ui) andvi 2 (Vi). We consider u�f v =M(uv). uv = u0v0 +Pj�1i=1 uvi�+Pj�1i=1 vui�. SoM(u� v) � uv+ j uv j �� u0v0 +Pj�1i=1 (uvi + vui)�+ j uv j �� max([a0; b0]
 [c0; d0])+Pj�1i=1 (max(�(U ) 
 [ci; di] + [ai; bi]
 �(V )))�+max(j �(U )�(V ) j)�Which shows one part of the inclusion. The rest is left to the reader.For the formula for inv, the abstraction is correct since x ! 1x is concave on its domain ofde�nition, so it can be safely approximated on an interval [a; b] by (for x 2 [a; b], x+ � 2 [a; b]):1x � 1a2 � � 1x+ � � � 1a � 1ab� if ab > 01b � 1ab� if ab < 0Same proof with square root, but this time the function is convex so we approximate it on[a; b] by: pa + 1pa+pb� � px+ � � px+ 12px�Of course, there are other ways to give lower and upper bounds to these computations. The choicewe have taken is that the individual coe�cients of the �i should reect the magnitude of the errorcoming from the computation at �i in the total error on a trace of computation. Of course thisdepends on the \formal derivatives" that appear in these formulae.The correctness of this semantics with respect to the semantics of section 3.2 is as follows. Onthe set of paths that Prgm can execute from a set of initial environments, x (respectively y) hasreal value in [a0; b0] (respectively [c0; d0]) and errors coming from location �i (i 2 f1; � � � ; j � 1g)are in [ai; bi] (respectively [ci; di]), then on the set of paths that Prgm; z = x:y can execute fromthe same environment, z has real value in z0, and the error coming from location �i is in zi plusthe error in the computation of the operation : itself (represented by �j). The e�ect of adding the11



operation z = x:y on the magnitude of the error coming from location �i (i < j) is reected bythe derivative of the operation in question.We have not spoken of the abstract semantics of constants and tests. Constants are easy toabstract, the IEEE754-1985 rules dealing with constants are very precise and we can determine forsure whether we lose precision or not. Tests are more complex. We use local decreasing iterationsas in [Gra92]. For instance suppose we want to interpret x == y. The corresponding abstractoperator ==a will be the greatest �xed point of the functionalF on a�ne forms, which to every pairof a�ne forms (x = x0+Pi xi�i; y = y0+Pi yi�i) associates (x0 = x00+Pi x0i�i; y0 = y00+Pi y0i�i)with (each component of the functional is in A, i.e. here the lattice of intervals)8>><>>: x00 = x0 \ (�(y �aPi xi�i))x0i = xiy00 = y0 \ (�(x�aPi yi�i))y0i = yiThis is not the best abstraction (on the coe�cients of �i) but it is enough to show that some testsmight be unstable (when the order of magnitude of the xi or yi is not negligible with respect tox0 and y0 respectively).4 An exampleLet us decorate now the di�erent oating-point operations for program (A):x=1;y=(sqrt(5)!1! -1 !2!)/2 !3!; !4!for(i=1;i<20;i++){z=x;x=y;y=z-y; !5!}The semantics using a�ne forms10 goes as follows; �rst for the locations before the loop:!1! : p5 = [2:236068; 2:236069]+ [2:236068; 2:236069]�1!2! : p5� 1 = [1:236068; 1:236069]+ [2:236068; 2:236069]�1+ [1:2360676;1:2360684]�2!3! : 12 = [0:5; 0:5]+ [0:5; 0:5]�3!4! : p5� 12 = [0:618033936;0:618034058]+ [1:118033936; 1:118034058]�1+[0:6180338176;0:6180342272]�2+ [0:6180340736; 0:6180342784]�3+[0:6180340736;0:6180342784]�4= y(Notice that 12 is blindly over-approximated. This could be done exactly in a more re�ned seman-tics). We can then look at the abstract values on the �rst unfolding of the loop. For instance, inthe �rst loop we �nd the abstract value for y to be:[0:381966004;0:381966126]+[�1:118033935;�1:118033813]�1+[�0:6180341760;�0:6180337664]�2+[�0:6180342272;�0:6180340224]�3+ [�0:6180342272;�0:6180340224]�4+[0:3819656448; 0:3819658240]�510This comes from a library programmed in C by Nicolas Regal in 1999 [Reg99].12



(concretization is [0.38196568,0.38196583]). Then,[0:236067780; 0:236068024]+ [2:236067872;2:236068116]�1+ [1:2360676352; 1:2360684544]�2+[1:2360681472; 1:2360685568]�3+ [1:2360681472;1:2360685568]�4+[�0:1458974464;�0:1458969344]�5(concretization is [0.23606846,0.23606873]) Then,[0:145897995;0:145898346]+[�3:354102050;�3:354101562]�1+[�1:854102528;�1:8541012992]�2+[�1:854102528;�1:8541021184]�3+ [�1:854102528;�1:8541021184]�4+[0:2917938944; 0:2917948160]�5(concretization is [0.14589696,0.14589734]) Then,[0:090169434;0:090170029]+ [5:590169434;5:590170411]�1+ [3:090168832;3:0901712896]�2+[3:0901702656; 3:0901714944]�3+ [3:0901702656;3:0901714944]�4+[�0:2016236672;�0:2016221184]�5(concretization is [0.09017118,0.09017179]) Then again (the �fth time we go around the loop):[0:055727959;0:055728913]+[�8:944272460;�8:944270507]�1+[�4:9442738176;�4:9442693120]�2+[�4:9442742272;�4:9442717696]�3+ [�4:9442742272;�4:9442717696]�4+[0:2573515008; 0:2573540352]�5(concretization is [0.05572883,0.05573179]). We see that the coe�cients of the �i up to i = 4get bigger and bigger as the expected value gets smaller and smaller. The subtraction in controlpoint 5 does not lose much precision as such. This means the loop magni�es the initial error ofcomputation of y at each turn. This is an example of bad-conditioning. For the well-conditionedexample computing (�1=3)n, the computation with a�ne forms would show there is no problem.Of course, in general we cannot unfold loops like that in a static analyzer. After some number ofun-foldings, we use our widening operator, which would predict a huge potential loss of precision.We need better widening operators in general.5 Improvements5.1 A�ne interval transformationsThe idea is to consider that the semantics creates dependencies between the ai coe�cients (dueto an inaccuracy at location i) that we can approximate by linear dependencies. This choiceis motivated by the fact that a great deal of numerical codes compute a�ne operations (alsoquadratic sometimes in �nite elements methods). It is also motivated by the fact that we knowin general how to linearize errors, and we know how to manipulate a�ne constraints (which areused for instance in [Kar76] in static analysis).We call T an a�ne transformation on the space generated by f�1; � � � ; �ng if there exists a n�nmatrix A, and an n-dimensional vector B such that for all vectors X, T (X) = AX + B. We canrepresent such a transformation by the pair (A;B). We abstract a set of a�ne transformations byabstracting all its elements in A and B by an element of A. In fact the semantics of section 3.2gives a set of such transformations each over-approximating the e�ect of each trace.For instance, setting A to be the interval domain,����� 1 20 1 � ;� 34 �� ;�� 1 30 2 � ;� 35 ���� = �� [1; 1] [2; 3][0; 0] [1; 2] � ;� [3; 3][4; 5] ��13



So the abstract domain of a�ne error dependence T is isomorphic to An2+n with component-wise ordering. This means that as for a�ne intervals, if A is a lattice, then T is a lattice withintersection and union computed pointwise etc.The concretization function G goes from T to the set of all (concrete) a�ne transformations.G(A0 = (a0i;j)1�i;j�n; B0 = (b0j)1�j�n) is the set of a�ne transformations (A = (ai;j)1�i;j�n; B =(bj)1�j�n) with ai;j 2 A(a0i;j) (for all 1 � i; j � n) and bj 2 A(b0j) (for all 1 � j � n).What is important to see now is that these abstract a�ne transformations act on elements ofD, because we can use the semantics of the operations +, � in A to compute a safe approximationof fAX + B=(A;B) � G(A0; B0); X 2 G(X 0)g.For instance, the instruction x+ y = z at instruction j will be written in matrix form as:0BBBBBBBBBBBBBBBBBBBB@
�0(x) ::: ::: �n(x) �0(y) ::: ::: �n(y) �j�0(x) 1 0 0 0 0 0 0 0 0::: 0 1 0 0 0 0 0 0 0::: 0 0 1 0 0 0 0 0 0�n(x) 0 0 0 1 0 0 0 0 0�0(y) 0 0 0 0 1 0 0 0 0::: 0 0 0 0 0 1 0 0 0::: 0 0 0 0 0 0 1 0 0�n(y) 0 0 0 0 0 0 0 1 0�0(z) 1 0 0 0 1 0 0 0 0::: 0 1 0 0 0 1 0 0 0::: 0 0 1 0 0 0 1 0 0�n(z) 0 0 0 1 0 0 0 1 0�j(z) 0 0 0 0 0 0 0 0  � �(x)�  � �(y)

1CCCCCCCCCCCCCCCCCCCCAWe do not write the other rules since they are the transcription of what we have seen for a�neinterval forms, on a�ne interval matrices.5.2 Principle of the improvementLet X be the product of the domain V ar ! D with T . An abstract value in X is a pair(f = �x:a0(x) +Pi2L ai(x)�i; (A;B)) which describes an abstract state at some location �j forwhich the value of variable x is in (a0(x)) plus inaccuracy errors of order (ai(x)) coming fromcontrol point i, together with the abstract a�ne transformation approximating the way theseinaccuracy errors have been transformed by the instructions just before location �j. This extrainformation added to f would not be necessary if the control ow of the program we are analyzingwas acyclic. It is only when we need in�nite least �xed point iterations that we can bene�t fromthe approximation of the transformation of errors that take place at certain control points (givenby (A;B)) to widen the iterations. So in practice, the abstract a�ne transformations will bemanaged at some suitable widening points as de�ned for instance in [Bou90, Bou93] (heads ofloops, return sites in case of inter-procedural analysis of mutually recursive functions).We use this extra-information for getting better widening operators. In fact we approximatethe abstract a�ne transformation by a transformation that multiplies by an upper approximationof the spectral radius of the transformation (A;B). We can then look at the asymptotic value:limn!1AnX0 + An+1�IdA�Id B.Unfortunately, most of the `interesting properties" that we might want to compute on G(A0; B0)are NP-complete. Among these interesting properties are, the property of having all the trans-formations invertible, or the determination of the spectrum of all the transformations (\spectralportrait"). So we need to approximate further, so that we can compute in an e�cient manner agood upper approximation of the spectral radius of (A;B).\Any" norm on matrices can be used to determine an approximation of the spectral radius.If A = (ai;j)1�i;j�n, kAk1 = Pi;j j ai;j j, kAk2 = qPi;j j ai;j j2,� � � , kAk1 = max fj ai;j jg can14



all be used because, the maximal norm of its eigenvalues is �max � kAk (nkAk in the last case).This is not a very precise though.There are in fact better algorithms to calculate this spectral radius. A very famous method(iterative power) is as follows. Let A = (ai;j)1�i;j�n be a matrix, u any non-null vector, and(qk)k�0 the sequence, q0 = ukuk2 , � � � qk = Aqk�1kAqk�1k2 , � � � qk converges (when k ! +1) towardsthe greatest norm of the eigenvalues of A. Unfortunately this is not of much use in an abstractcalculus since we do not know if any of the iterates are upper-approximations of the spectralradius. We have only a weaker result, about the convergence of the (qk) sequence.There is a better approximation, which only uses \lattice-theoretic" notions. It is called the\Gerschgorin discs" and is based on an old result by the french mathematician J. Hadamard.Lemma 2 Let A = (ai;j)1�i;j�n be a matrix. The spectrum of A is contained in D1 \D2 (in thecomplex plane) with,� D1 = [1�i�nD1;i,� D2 = [1�j�nD2;j ,� D1;i is the circle with center ai;i, radius r1;i =P1�j�n;j 6=i j ai;j j,� D2;j is the circle with center aj;j, radius r2;j =P1�i�n;i6=j j ai;j j.A good approximation of the biggest absolute value of the eigenvalues of real A is thus G(A),max fj ai;i j +max fr1;i; r2;ig=1 � i � ngConsider again the example 2 and in particular program (A). The analysis using a�ne trans-formations basically discovers something that numericians are used to. At each loop the errors onx, y et z are given by the a�ne transformation,0@ �0x�0y�0z 1A = 0@ 0 1 01 �1 01 0 0 1A0@ �x�y�z 1A+0@ 0�0 1Awith at the �rst iteration of the loop �y = � = 2�23, and � is the error due to the rounding ofoperation � in the loop. A = 0@ 0 1 01 �1 01 0 0 1AIn fact, matrix A which comes from the semantics is slightly bigger, but is quite redundant.We �nd G(A) = 2 (instead of 1.6180� � �).Then we have to notice that � � 2�24 (in fact it is of order 2�23�i). In fact the a�netransformation has two non-null eigenvalues �1 = �1+p52 and �0 = �1�p52 < �1. Therefore theerror at the 20th iteration of order ��1��0 �201 + j�211 j�1�1�1 � (about 4 � 10�4 + 2:4 � 10�3) bigger than�200 (about 6:6 � 10�5).Of course to do this we need a reduced product with at least an interval analysis on the integervariables (to determine the right number of loops). This will not be described here.Note that program (C) has G(A) = 1 (instead of 1=2 which is the exact greatest eigenvalue),hence the inaccuracy does not increase at each iteration of the loop.15



6 Related workTo our knowledge, there are two main types of tools that are used to help the programmer computewith oating-point operations (see [BMMM95, Mul89] for general references).The �rst type of tool uses alternative arithmetic implementations to better match the \ideal"semantics of reals. For instance, interval arithmetic [GL70, Moo79] implements a real numberas an interval of oating-point numbers containing it. Multi-precision arithmetic [KJ93, Sco89]uses variable length oating-point numbers to approximate at best real number computations.Rational arithmetic [Bak75, Cle74, HCL+68, Kla93, KM83, KM88, KM89, Sch83] implementsexact arithmetic for rational numbers, which can be used to approximate real numbers, for instanceusing continued fractions [KM85, RT73, Sei83, Vui90]. These methods do not solve the problemin all cases; interval arithmetic might lead to very imprecise (but true) results11, multi-precisionarithmetic and rational arithmetic may be very costly to perform on real scienti�c codes12.A new and promising line of research uses domain theory and fractal encoding of exact realnumbers [ES98, EP97, Eda97]. We do not know yet how we can use these ideas for static analysispurposes.Another approach is at the heart of the CADNA software [Che95]. It is known as the per-turbation method (CESTAC) or stochastic arithmetic [CV88, CV92]. The idea is that round-o�errors can be modeled as quasi-Gaussian distributions of some sort, and that a simple statistictest (Student test) can estimate its parameters, thus enabling to give better approximations ofreal number computations. This method and tool is probably one of the most favored among thecode programmers, since it is quite precise. But it has lead to some criticisms, see [Kah91] forexample. We review some of its central ideas more in detail in section 6.2. A similar approach(still stochastic but in a \backwards" manner) has been implemented and tested under the name\Precise" [CCT00]. We thought of using similar probabilistic ideas as a basis of a static analysisbut at the moment there seems to be no way to ensure (even probabilistically) the correctnessof the approach. Very important work is being carried out on the foundations of probabilisticabstract interpretation [Mon00, Mon01] which we might use for this purpose later on.In some applications (image synthesis etc.), some algorithmic geometry has been speci�callydesigned, like for CGAL, [BCD+99] in order to use in a very controlled manner the IEEE 754oating-point numbers for some computations. We do not know yet how to use this for ourpurposes.We know of only one example of a static analyzer (such as we are discussing in this article), thatnot only tries to give more precise results on one execution, or give some hint about the precisionon one execution, but rather assesses a property valid for all (or a large class of) executions. Thisanalyzer [ACFG92] actually uses abstract interpretation. We will explain the abstraction chosenmore in detail in next section.6.1 Another abstract interpretationThe abstract interpreter [ACFG92] is based on the following underlying concrete model. Floating-point numbers are identi�ed with a pair f = hm; ei with, a mantissa m 2 M = fm 2 Z=p 2IN;�(10p � 1) � m � 10p � 1g, and an exponent e 2 E = fe 2 Z=q 2 IN;�q � e � qg.Abstract values are f = hs; p; em; eM i where, s = +;�;+=�;? is an abstract sign, p is an in-teger representing the \number of signi�cative digits" and [em; eM ] is the \interval of exponents".For instance < +; 4; 6; 12> denotes in the concrete model,F 0 = f0:1000 � 106; 0:1001 � 106; � � � ; 0:9999 � 1012g11See Section 3 for examples of that phenomenon.12And they do not solve the problem in general, see [CC94] where the following classical dynamical systemexample by J. M. Muller Un+1 = 111 � 1130Un + 3000Un�Un�1 with U0 = 2 and U1 = �4 leads with oating-pointnumbers of all (�nite) precision { this includes multi-precision arithmetic { to 100 whereas the exact value for thelimit is 6. This can only be solved by exact real numbers, i.e. in�nite precision arithmetic!16



It is proved to form a complete lattice with a Galois connection with the set of subsets of theconcrete model. Abstract operations like Add, Sub, Mul, Div are de�ned. Unfortunately, nointerpretation of tests nor of loops is made, thus greatly restricting the precision of the analysis.The analysis is sometimes even weaker than an interval analysis of oating-point numbers, thusmuch weaker than our analysis.6.2 CADNAThe CADNA library implements the CESTAC method [CV88, CV92, PV74, VA85, Vig78, Vig87,Vig93]. The underlying model is that the round-o� errors are of the form 2�p:�i where the �i areequi-distributed independent random variables on ]� 1; 1[ with uniform law. This law is justi�edboth experimentally and by some theoretical reasons [Knu73]. The perturbation methods goes asfollows. At each oating-point operation, we perturbate the round-o� towards +1 or �1 withthe same probability. We execute N times each of the instructions of the program (in practice,N = 2 or 3). The mean value \converges" towards the exact mathematical result and the Studenttest computes a good approximation of the standard deviation of the quasi-Gaussian distributionlaw of the result.Thus this method can be used both for improving the computations, and for testing the rele-vance of a given execution. It is very much used in practice but some bugs are known: its estimatesare sometimes too optimistic.There are several reasons for which this may happen [Kah91]. Theapproximation by a Gaussian law is justi�ed by the central limit theorem but the convergence isvery slow on the tail of the distribution (in particular with N = 2 or 3). The approximation isvery bad on un-probable events (precisely the ones which lead to very costly errors). In order tojustify the use of the theorem, we also have to suppose that the round-o� errors are random, notcorrelated, continuously distributed on a small interval. But in general, the errors are only dueto a few round-o� errors and to singularities (which we might �nd out by data perturbation butprobably not by perturbation of the operations). So errors are not uncorrelated random variables.Also, the distribution of errors is a discrete distribution on oating-point numbers and not oncontinuous real number. Finally, this is only a \�rst order approximation": for multiplication anddivision, second-order terms are not considered, but it might occur that they are not negligible.7 Conclusion and future workWe have presented some ideas about what static analysis can try to do for programs computingwith oating-point numbers. Our �rst concern in the DAEDALUS project is to analyze control-command software (like the Patriot software seen in the introduction) which is not numericallyintensive, and for which we think we should have good chances of �nding nice solutions. Numeric-intensive software, like scienti�c codes, are much more complex. Some of them, such as well-conditioned problems, might be amenable to static analysis. More di�cult is to consider what canhappen for ill-conditioned problems (for example, inverse of a matrix with very small determinant).We believe that there is little hope an automatic tool can cope with such problems, but we wouldlike to be shown to be wrong .In fact, most scienti�c codes pose new problems to static analyzers. For instance, some codesrely on Monte Carlo methods, or more generally on randomized algorithms. We believe that thestatic analysis of such algorithms is an interesting prospect, but goes beyond the scope of thispaper (see [Mon00, Mon01] for some ideas which could constitute a good basis for future work).What might have to be considered on these codes is that the random generators that are usedare only pseudo-random generators. This complexi�es again the semantic problem. Also somescienti�c codes use parallel algorithms which make things even more complex, especially regardingthe evaluation order of oating-point operations; they will depend on actual synchronizationsbetween tasks.Our future work will not try to tackle these very subtle problems. The �rst extension we wishto make is to look at inverse problems i.e. at clever backwards semantics. The aim is to solve the17
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