
Set Consensus Using Arbitrary Objects(Preliminary Version)Maurice HerlihyDigital Equipment CorporationCambridge Research LaboratoryOne Kendall SquareCambridge, MA 02139herlihy@crl.dec.com Sergio Rajsbaum�MIT Laboratory for Computer Science545 Technology SquareCambridge, MA 02139rajsbaum@theory.lcs.mit.edu.AbstractIn the (N; k)-consensus task, each process in a groupstarts with a private input value, communicates withthe others by applying operations to shared objects,and then halts after choosing a private output value.Each process is required to choose some process's in-put value, and the set of values chosen should havesize at most k. This problem, �rst proposed byChaudhuri in 1990, has been extensively studied us-ing asynchronous read/write memory. In this paper,we investigate this problem in a more powerful asyn-chronous model in which processes may communicatethrough objects other than read/write memory, suchas test&set variables.We prove two general theorems about the solv-ability of set consensus using objects other thanread/write registers. The �rst theorem addresses thequestion of what kinds of shared objects are needed tosolve (N; k)-consensus, and the second addresses thequestion of what kinds of tasks can be solved by Nprocesses using (M; j)-consensus objects, forM � N .Our proofs exploit a number of techniques from alge-braic topology.1 IntroductionAn asynchronous concurrent system consists of a setof processes that communicate by applying opera-�On leave from Instituto de Matem�aticas, U.N.A.M.,M�exico. Partly supported by DGAPA Projects.0

tions to shared objects. An object's type speci�es theoperations it provides and their meanings. Examplesof objects include read/write registers, test&set reg-isters, fetch&add registers, and compare&swap regis-ters.A task is a problem where each process starts witha private input value, communicates by applying op-erations to shared objects, and halts with a privateoutput value. A set of input values de�nes an ini-tial con�guration, while a set of output values de�nesa �nal con�guration. A task is speci�ed by a setof possible initial con�gurations, and for each initialcon�guration, the set of legal �nal con�gurations.Modern multiprocessors are inherently asyn-chronous: processes can be halted or delayed withoutwarning by interrupts, pre-emption, or cache misses.In such environments, it is desirable to design proto-cols that are wait-free: any processes that continuesto run will choose an output value in a �xed num-ber of steps, regardless of delays or failures by otherprocesses.Under what circumstances does a task have a wait-free solution? It is known that the computationalpower of a concurrent system depends on the types ofthe shared objects. For example, every object can beassigned a consensus number [10] which partly char-acterizes its computational power: in a system of Nor more concurrent processes, it is impossible to con-struct a wait-free implementation of an object withconsensus number N from an object with a lower con-sensus number. On the other hand, any object withconsensus number N is universal in a system of Nprocesses: it implements any other concurrent object.More recently, Herlihy and Shavit [11, 12] have givena general combinatorial characterization of the deci-sion tasks that can be solved in read/write memory(which has consensus number one).Nevertheless, relatively little is known about thecomputational power of objects with consensus num-ber greater than one but less than N . This ques-Page 1

tion has considerable practical interest, since manymodern multiprocessors provide such objects (such astest&set or memory-to-register swap) as built-in syn-chronization primitives. In this paper, we make someprogress on this basic question by investigating thecircumstances under which one can solve the (N; k)-consensus task using objects other than read/writeregisters. In the (N; k)-consensus task, each of Nprocesses starts with an integer input value, and eachchooses some process's input value, such that thenumber of values chosen has size at most k. (Whenk = 1, this problem is the well-known consensusproblem [6].) The (N; k)-consensus problem was �rstposed in 1990 by Chaudhuri [4] (who called it k-setagreement), along with a conjecture that it could notbe solved in read/write memory. This conjecture was�nally proved by three independent research teams in1993 [2, 11, 15]. When the speci�c values of N and kare unimportant, we will refer to this problem as setconsensus.In this paper we prove two general theorems aboutthe solvability of set consensus using objects otherthan read/write registers. The �rst theorem ad-dresses the question of what kinds of shared objectsare needed to solve set consensus. Any protocol em-ploying shared objects of any kind has a characteristicgeometric structure, called a simplicial complex [11].The topological properties of this complex are deter-mined by the types of the shared objects. In our �rstresult, we show that a protocol cannot implement setconsensus if the protocol's associated complex lacksholes of su�ciently small dimension (i.e., if certainlow-dimensional homology groups are trivial).The second theorem addresses the question of whatkinds of tasks can be solved by N processes using(M; j)-consensus objects, for M � N . We show thatthe complex associated with any N -process proto-col using (M; j)-consensus objects starting from a�xed set of inputs has no holes of dimension lessthan j � b(N � 1)=Mc (i.e., these low-order homol-ogy groups are trivial). When j = 1, then M is theobject's consensus number [10]. This theorem givesan intriguing topological interpretation to consensusnumbers. At one extreme, when M = 1, the com-plex has no holes at all (i.e., it has trivial homologyin all dimensions), reecting a prior result of Herlihyand Shavit [11]. For consensus numbers above one,however, the complex may have holes. If the consen-sus number is low, then holes appear only in higherdimensions, but as the consensus number grows, theholes spread into increasingly lower dimensions. Fi-nally, when the consensus number M = N , the com-plex becomes disconnected.Together, these theorems imply, for example, that

it is impossible to implement (n+1; k)-consensus us-ing (m; j)-consensus objects if n=k > m=j, an obser-vation also made by Borowsky and Gafni [3]. Oneintriguing consequence of this result is that there ex-ist objects whose computational powers are incompa-rable: there is no wait-free implementation of X byY , and vice-versa. For example, (2; 1)-consensus can-not implement (6; 2)-consensus because 5=2 > 2=1.Conversely, Herlihy and Shavit [11] have shown thatone cannot implement (2; 1)-consensus using (N; 2)-consensus for any N .It should be noted that our theorems extend toany variation of (N; k)-consensus which also placesa lower bound on the number of values chosen. Forexample, a related task might require that if processeshave unique inputs, then the number of values chosenlies between ` and k � ` � 1.Our arguments make extensive use of concepts,such as simplicial complexes and homology groups,taken from undergraduate-level algebraic topology.We believe this topological approach has a great dealof promise for the theory of distributed and concur-rent computation, and that it merits further investi-gation. It has already yielded a number of results,including, for read/write memory, a general charac-terization of tasks having wait-free solutions [11, 12],the impossibility of set consensus [11], and the im-possibility of renaming [1] with a small number ofnames [11]. In the synchronous model, Chaudhuri,Herlihy, Lynch, and Tuttle [5] used this approach togive tight upper and lower bounds on the complexityof solving set consensus using message-passing. Thispaper is the �rst application of these techniques toobjects other than read/write registers.2 ModelOur model is the same as [11].An initial or �nal state of a process is modeledas a vertex, a pair consisting of a process id and avalue (either input or output). A set of d + 1 mu-tually compatible initial or �nal states is modeled asa d-dimensional simplex , (or d-simplex). It is con-venient to visualize a vertex as a point in Euclidianspace, and a simplex as the convex hull of a set ofa�nely-independent vertexes, the higher-dimensionalanalogue of a solid triangle or tetrahedron. The com-plete set of possible initial (or �nal) states is repre-sented by a set of simplexes, closed under intersection,called a simplicial complex (or complex). A principalsimplex in a complex C is one not contained in a sim-plex of higher dimension. The dimension of C is thesmallest dimension of any principal simplex. WherePage 2

Figure 1: Full-Information Complexes for multi-round Test&Set Protocols
Page 3

convenient, we use superscripts to denote the dimen-sion of a simplex or complex.A task speci�cation for N = n+1 processes is givenby an input complex In, an output complex On, anda map � carrying each input simplex of In to a set ofsimplexes of On. This map associates with each ini-tial state of the system (an input simplex) the set oflegal �nal states (output simplexes). When m < n,�(Sm) indicates the legal �nal states in executionswhere only m + 1 out of n + 1 processes take steps(the rest fail before taking any steps). A solutionto a task is a protocol in which the processes com-municate by applying operations to objects in sharedmemory, and eventually halt with mutually compati-ble decision values. A wait-free solution is one whichtolerates the failure of up to n out of n+1 processes.Any protocol that solves a task can also be associ-ated with a full-information complex , in which eachvertex is labeled with a process id and that process's�nal state (called its view). Each simplex thus cor-responds to an equivalence class of executions that\look the same" to the processes at its vertexes.For example, Figure 1 shows full-information com-plexes for four simple four-process protocols. In the�rst (degenerate) protocol, each process halts with-out communicating with any other. Because eachprocess has only one possible decision value, the full-information complex consists of a single simplex. Be-cause there are four processes, this simplex is a tetra-hedron. In the second protocol, the �rst two processesshare a test&set variable, as do the second two. Thiscomplex consists of four tetrahedrons, correspondingto the four possible outcomes of the two test&set op-erations. In the next two protocols (encompassing 42and 43 tetrahedrons), the processes respectively it-erate two and three-round test&set protocols, usingfresh variables for each round. This sequence of pic-tures is suggestive: full-information complexes gener-ated by protocols in which processes communicate bytest&set variables may have an arbitrary number of\holes" (unlike protocols employing only read/writevariables), but they still appear to remain connected.Our theorems con�rm and generalize this intuition.A simplicial map carries vertexes of one complex tovertexes of another so that simplexes are preserved.Let Fn be the full-information complex for a pro-tocol �. If S is an input simplex of dimension lessthan or equal to n, let Fn(S) � Fn denote the com-plex of �nal states reachable from the initial state S.� solves the decision task hIn;On;�i if and only ifthere exists a simplicial map � : Fn ! On, called adecision map, such that for every input simplex S,�(Fn(S)) � �(S). We prove our impossibility re-sults by exploiting the topological properties of the

full-information complex and the output complex toshow that no such map exists.Many complexes of interest have a simple but im-portant topological property: they have no \holes"in certain dimensions. Formally, this concept is cap-tured by the notion of a homology group. (Readerscompletely unfamiliar with the notion may wish toconsult any one of a number of standard textbooks[7, 8, 9, 13, 16].) For our purposes, it su�ces to notethat an n-dimensional complex Cn has n + 1 homol-ogy groups, H0(Cn); : : : ;Hn(Cn), one for each dimen-sion. For i > 0, if Hi(Cn) = 0, the trivial single-element group, then Cn has no holes of that dimen-sion. When i = 0, there are two alternative ways tode�ne H0(Cn). In this paper, H0(Cn) always denotesthe reduced 0-th homology group [16, p.172], which istrivial if and only if Cn is connected.Our principal tool for computing homology groupsfor full-information complexes is the Mayer-Vietorissequence [16, p.186]. A sequence of groups Gi is saidto be exact if there exist group homomorphisms �i :Gi ! Gi+1 such that the image of �i is the kernel of�i+1. It is easily checked that if Gi+1 = Gi�1 = 0,then Gi = 0. The Mayer-Vietoris sequence statesthat if A and B are complexes of dimension n suchthat A \B 6= ;,� � � ! Hq(A\ B)! Hq(A) �Hq(B)!Hq(A [B)! Hq�1(A \ B)! � � �is an exact sequence.A complex is connected if there is a path of edges (1-simplexes) between every pair of vertices. It is simplyconnected if it is connected and every closed path canbe continuously deformed to a point. (Any simplyconnected complex has a trivial �rst homology group([8, Ch. 12], but not vice-versa [8, p.150].)3 ImpossibilityConsider a system of N = n + 1 processes sharingread/write variables and a collection of objects O.Fix an input simplex Sn with distinct input values foreach process, and let F(Sn) be the full informationcomplex of a protocol � in which the processes startin initial state Sn and communicate via objects O. IfU is a subset of the set of process ids in Sn, let F(U)be the full information complex for executions of theprotocol in which only the processes in U take steps.Our �rst main result is the following.Theorem 3.1 Let � be a protocol such that� for jU j � c, F(U) is connected, Page 4

� for jU j � 2c, F(U) is simply connected, and� for jU j > q � c, Hq(F(U)) = 0,then � cannot solve (n + 1; bn=cc)-consensus.The argument is a generalization of the argumentused to prove impossibility of (N; k)-consensus inread/write memory. Because the full-informationcomplex for read/write protocols has no holes, onecan show that it contains an n-dimensional subdi-vided simplex whose decision values de�ne a Spernercoloring (de�ned below), and hence that some sim-plex is colored with n + 1 distinct colors, making(n + 1; n)-consensus impossible. If the complex hashigher-dimensional holes, then we can still constructa subdivided simplex with a Sperner coloring, exceptthat we need a higher-dimensional complex to avoidthe holes.The proof of the following lemma (omitted) isbased on the Hurewicz Isomorphism Theorem [16,p398], which states that if C is simply connected withHq(C) = 0 for q < k, then any continuous map of a(k � 1)-sphere to C can be extended to a continuousmap of the k-disk.Lemma 3.2 Let Sk be a k-simplex for k � bn=cc, _Skthe boundary of Sk (the set of faces), and �(_Sk) aniterated barycentric subdivision. Any simplicial mapof the subdivided boundary� : �(_Sk)! F(Sn)can be extended to the interior:� : � (Sk)! F(Sn)where � is an iterated barycentric subdivision re�ning�.Let Qi = Pi�c, for 0 � i � bn=cc, and letGi = fPi�c; : : : ; P(i+1)�c�1gfor 0 � i < bn=cc. We call each Qi a principal pro-cess. Let W be a set of `+1 principal processes, andlet S`(W) be a simplex with vertices labeled withprocess identi�ers fromW . Abusing notation, we useQi to denote the vertex labeled with Qi in S`(W),and F(Qi) the unique vertex of the full-informationcomplex associated with the solo execution of Qi.De�nition 3.1 A span for S`(W) is a simplicial map� : �(S`(W))! Fn(Sn), with the following proper-ties.

� If W = fQi0 ; : : : ; Qi`g, for i0 < : : : < i`, then� carries S`(W) to F(Gi0 [� � �[Gi`�1 [fQi`g).(In particular, if W = fQig, then �(S0(fQig)) isF(Qi).)� � restricted to each face of S`(W) is a span forthat face.Lemma 3.3 If U is the set of all bn=cc +1 principal processes, then there exists a span� : �(Sbn=cc(U))! Fn(Sn).Proof: We show, by induction on `, that every `-subsimplex S`(W) has a span �W , and that thesespans agree on their common intersections. WhenW = fQig, de�ne �fQig to send S0(fQig) to F(Qi).Suppose W = fQi; Qjg for i < j. BecauseFc(Gi [fQjg) is connected, there exists a path fromthe vertex F(Qi) to F(Qj) in Fc(Gi[fQjg). We usethis path to de�ne a subdivision � and a simplicialmap �W : �(S1(W))! Fc(Gi [fQjg)such that �W (Qi) = �fPig(Qi), and �W (Qj) =�fPjg(Qj). Notice that any two di�erent maps�fPi;Pjg and �fPi;Pkg agree on the intersection of theirdomains.Inductively, assume the claim holds for every ` <bn=cc, and consider the simplex Sbn=cc(U). Everyface of this simplex has a span, and the spans agree ontheir common intersections, so together these spansinduce a simplicial map � from a subdivision of_Sbn=cc(U) into F(Sn). Because Hq(F(Sn)) = 0 forq < bn=cc, Lemma 3.2 implies that � can be extendedto a simplicial map� : � (Sbn=cc(U))! Fn(G0[� � �[Gbn=cc�1[fQbn=ccg)Like all known impossibility proofs for (N; k)-consensus, our proof relies on Sperner's Lemma. Letbaryr(Sk) denote the r-th barycentric subdivision ofsimplex Sk.De�nition 3.2 The carrier of a vertex ~v inbaryr(Sk) is the smallest-dimensional Sl � Sk con-taining ~v.Lemma 3.4 (Sperner's Lemma) If � is a mapsending each vertex ~v of baryr(Sk) to a vertex in itscarrier, then there is at least one k-simplex Rk =h~r0; : : : ; ~rki in baryr(Sk) such that the �(~ri) are alldistinct.We are now ready to prove Theorem 3.1. Page 5

Proof: Color each vertex ~v of �(�(Sbn=cc(U))) withthe value that the process decides at the end of the ex-ecution. Let pi be the value decided by Pi. If we \re-set" each pj 2 Gi to pi�c, then the result is a Spernercoloring of �(Sbn=cc(U)), and therefore some simplexhas all bn=cc+1 colors. It follows that some simplex inthe original coloring must have had bn=cc+1 distinctcolors. Since the colors are distinct, � carries thesevertexes in �(Sbn=cc(U)) to vertexes labeled with dis-tinct processes in F(Sn), and therefore there is someexecution in which bn=cc+1 processes all choose dis-tinct values, and therefore (n+1; bn=cc)-consensus isimpossible.4 Topology of Set ConsensusIn this section we characterize the tasks that canbe solved by n + 1 processes using a combination of(m; j)-consensus objects and read/write objects. An(m; j)-consensus object can be accessed by at mostm processes, and the set of values returned by theobject is of size at most j. For our bounds to bemeaningful, we assume that j is as small as possible;e.g. if at least j processes access the object then thereare executions where j di�erent values are returned.Under this assumption, an (m; j)-consensus object isnot an (m; j + 1)-consensus object.Because an (m; j)-consensus object is non-deterministic, we assume that the choice of responsesis controlled by an adversary. We will show thatan adversary can force any protocol � using (m; j)-consensus objects to have a full-information complexwith no holes in the lower dimensions. Without lossof generality (for impossibility results), we can con-strain the adversary to choose responses according toany convenient strategy consistent with the (m; j)-consensus speci�cation. If the constrained adver-sary can force the full information protocol not tohave holes in the lower dimensions, then so can anystronger adversary. We henceforth restrict our atten-tion to the following deterministic adversary: each ofthe �rst j processes receives its own input back, andthe remaining m� j processes get the very �rst pro-cess's input. A process can tell if it is one of the �rst jprocesses (it gets its own input back), and otherwiseit observes the identity of the �rst process to accessthe object.Fix an input simplex Sn. Let Cn(m; j) be the full-information complex for any protocol using (m; j)-consensus objects and starting in Sn. The main resultof this section is the following: Cn(m; j) is simplyconnected withHq(Cn(m; j)) = 0 for q < j � j nmk :

For brevity, we refer to Hq(Cn(m; j)) for q < j �bn=mcas the low-order homology groups.The proof of this claim is by contradiction. Assumethat some low-order homology group is initially non-trivial. When the protocol is �nished, the reachablecomplex is a single simplex, all of whose homologygroups vanish. Because the low-order groups even-tually henceforth vanish, there exists a critical statein which some low-order group is non-trivial, but anystep by any process will cause them to vanish hence-forth. We then derive a contradiction by showing thatthe low-order groups of the reachable complex fromthe critical state must already be trivial.4.1 Reachable ComplexesStarting from the initial state de�ned by the inputsimplex Sn, we can run the protocol and after sometime \freeze" the system. The state at this momentspeci�es the local state of each process and the con-tents of the shared memory. All the executions ofthe system starting at this state de�ne a complex asfollows.De�nition 4.1 A simplex Rm of the full informa-tion complex Cn is reachable from state s in a historyif there is some execution starting from s in whicheach process in ids(Rm) is decided and has the viewspeci�ed in Rm. The reachable complex from state s,F(s) is the complex of reachable simplexes from s.Our approach is based on an inductive applicationof the Mayer-Vietoris sequence. Let F be a subcom-plex of the reachable complex, and W an arbitraryindex set. Consider a set fCi : i 2 Wg of subcom-plexes of F that cover F : F = [i2W Ci. De�ne, forevery U � W , CU = \i2U Ci:De�ne C; = F .Lemma 4.1 For any subsets U and V of W ,CU \ CV = CU[V :Proof:CU \ CV = (\i2U Ci)\(\i2V Ci) = \i2U[V Ci = CU[V :De�nition 4.2 A real-valued map � on naturalnumbers is slowly decreasing if�(u + 1) � �(u) � �(u+ 1) + 1: Page 6

We now reduce the problem of showing that F hastrivial low-order homology groups to showing thatproperty for intersections of the Ci.For each u, 1 � u � jW j, let U (u)0 ; : : : ; U (u)` be sub-sets of W such that each jU (u)i j = u, and for eachdistinct U (u)i and U (u)j , fig = U (u)i � U (u)j . (Equiv-alently, there is a set U , jU j = u � 1, such thatU (u)i = U (u) [fig.) We omit superscripts wheneverconvenient.Lemma 4.2 Let �(u) be a slowly-decreasing mapsuch that(i) if �(jU j) � 0, then CU 6= ;, and(ii) Hq(CU) = 0 for q < �(jU j),then for 1 � u � jW j and 0 � ` � jW j � u,Hq([̀i=0 CU(u)i) = 0 for q < �(u):Proof: We argue by reverse induction on u and in-duction on `. In the base case for u, when u = jW j,we have ` = 0 and only one set U0 = W ;Hq(CW) = 0 for q < �(jW j):follows from the hypothesis (ii).Assume the claim for sets of size u+ 1, we prove itfor u such that �(u) > 0. The base case for ` = 0 alsofollows from hypothesis (ii). We assume the claim for` � 1 and show it for `.Consider the Mayer-Vietoris sequence for CU` and[`�1i=0CUi:� � � ! Hq(CU`) �Hq(S`�1i=0 CUi)! Hq(Sì=0 CUi)! Hq�1(CU` \ (S`�1i=0 CUi))! � � �By hypothesis (ii), Hq(CU`) = 0 for q < �(u), and bythe induction hypothesis for `,Hq(`�1[i=0 CUi) = 0 for q < �(u):Let V0; : : : ; V`�1 be sets such that Vi = U` [Ui.CU` \ (`�1[i=0 CUi) = `�1[i=0(CU` \ CUi) = `�1[i=0 CVi ;where the last equality follows from Lemma 4.1. No-tice that jVij = u+1, and for each distinct Vi and Vj,fig = Vi � Vj , so by the induction hypothesis for u:Hq(`�1[i=0 CVi) = 0 for q < �(u + 1);

or Hq�1(`�1[i=0 CVi) = 0 for q < �(u + 1) + 1:Because � is slowly decreasing, �(u) � �(u+1)+1,and thus these groups are trivial for q < �(u).Since jVij = u + 1, by hypothesis (i) S`�1i=0 CVi isnot empty. From exactness of the Mayer-Vietoris se-quence, Hq([ì=0CUi) = 0 for q < �(u).4.2 Critical StatesLet } be an arbitrary property of a state.De�nition 4.3 A state s is critical for a property }if } does not hold for s, but any step by any undecidedprocess will enter a state s0 where } henceforth holds,i.e., for any state s00 reachable from s0 (including s0itself), } holds for s00.A �nal state of a protocol is one in which everyprocess is halted. Thus if s is a �nal state then F(s)is a single simplex.Lemma 4.3 Let } be a property that holds in every�nal state of a protocol. If the property does not holdin a state, then some execution from that state leadsto a critical state for }.Proof: The execution tree at a state s is de�ned asfollows. The root is s. For each state s0 in the tree,the children correspond to the states reached by theexecution of each pending operation in s0.Starting in the state s where the property is false,consider the tree of executions starting in s. Colorred the nodes of this tree where the property holdsand black the rest. Every leaf has red color and shas black color. Therefore there exists a black nodes0 with all of its children colored red. This state s0 iscritical.4.3 Pending OperationsA process which has not decided in s has a pend-ing operation, which it is about to perform. Sincewe consider only deterministic protocols, P 's pend-ing operation is uniquely de�ned. Let Pi be an unde-cided process at a state s, about to execute operationpi, and W the set of indexes of pending operations.De�ne Ci(s), i 2W , to be the reachable complex im-mediately after Pi executes pi. A simplex S is in Ci(s)if there exists an execution from s, starting with op-eration pi by Pi, such that for each vertex hQ; �i 2 S,process Q has view �. Page 7

De�ne CU (s) = Ti2U Ci(s), for any U � W , andC;(s) = F(s), the entire reachable complex. Intu-itively, each vertex in CU(s) corresponds to an execu-tion starting in s in which no process can tell whichprocess in U went �rst. More formally, if a vertexhQ; �i is in CU , then for each i 2 U there is an execu-tion starting with pi in which Q's view is �. Observethat Lemma 4.1 holds for the CU (s).Lemma 4.4 Let s be a state of the protocol, and Wbe the set of indexes of pending operations in s. Thenthe Ci(s) cover F(s): F(s) = [i2W Ci(s).Lemma 4.5 Let jU j = u. For any state s,j � �dim(CU (s))m � � j � j nmk� u+ 1:Proof: A process Pi is potentially disabled with re-spect to CU(s) if there is an execution � in whichevery process that decides chooses a vertex in CU(s),but there is no extension of � in which Pi decidesa vertex in CU (s). The dimension of CU (s) is justa way of counting the minimal number of processesthat cannot become disabled with respect to CU(s).We now undertake a case analysis to analyze howprocesses become disabled.We may assume without loss of generality thatall read/write registers are single-reader and single-writer, since they are su�cient to construct wait-freeimplementations of multi-reader/multi-writer regis-ters (e.g., [14]). Suppose U includes a process Pabout to write a register, while Q is about to readthat register. Q is disabled, since it can observethe relative order of the two operations. Each suchread/write conict disables one process.A used (m; j)-consensus object is one that has al-ready been accessed by an operation in s. If theobject has already been accessed a times, and it isaccessed c times by operations in U , the largest num-ber of operations that can become disabled is c (whena = j � 1 and c � 2).A new (m; j)-consensus object is one that has neverbeen accessed. If a new object is accessed by morethan j processes in U , then a maximum of m� j + 1processes may become disabled: the �rst j receivetheir own values, and the remaining j learn the iden-tity of the �rst process to access the object. Of the jthat receive their own values, only j�1 may continueto run, since any process that observes the results ofall j observes that the remaining processes in U didnot go �rst.Therefore, the most e�ective way to disable pro-cesses is to have at least j + 1 processes access each

consensus variable, disabling at most bu=(j + 1)c �(m � j + 1) processes:dim(CU (s)) � n + 1� � uj + 1� (m � j + 1)> n � � uj + 1�m:Dividing both sides by m, taking oors, and mul-tiplying by j yields:j � �dim(CU(s))m � � j ��j nmk� � uj + 1��The result follows from the identityj � � uj + 1� � u� 1:Lemma 4.6 If, for all U � W ,Hq(CU (s)) = 0 for q < j � �dim(CU (s))m � ;then Hq(F(s)) = 0 for q < j � �dim(F(s))m � :Proof: The function�(u) = j � bn=mc � u+ 1is slowly decreasing, and by Lemma 4.5,j � �dim(CU (s))m � � �(jU j):If �(jU j) � 0, then j � bdim(CU (s))=mc � 0, hencedim(CU (s)) � 0 and CU (s) is non-empty. The hy-pothesis implies thatHq(CU (s)) = 0 for q < �(jU j);so CU (s) satis�es the conditions of Lemma 4.2:Hq([̀i=0 CUi(s)) = 0 for q < �(jUij):When Ui is a singleton set, [ì=0Ci(s) = F(s), andHq(F(s)) = 0 for q < �(1) = j � �dim(F(s))m � :Lemma 4.7 Hq(CU (s)) = 0 for q < j �jdim(CU (s))m k.Page 8

Proof: (Sketch) Suppose not. Pick the smallest nfor which the lemma fails to hold. De�ne the predi-cate}(s) = (8U)Hq(CU (s)) = 0 for q < j � �dim(CU(s))m �where U ranges over all sets of processes with pendingoperations. In any �nal state, CU (s) = C;(s), whichis a single simplex, so } holds. By Lemma 4.3 thereexists a state s� critical for } for the protocol �. LetU� be a set that violates }.A set of operations is commuting if executing themin any order returns the same results to the callingprocesses and leave the objects in the same state.A set of operations is weakly commuting if apply-ing them in any order leaves the objects in the samestate (although the operations may return di�erentresults depending on the order). For example, pend-ing read and write operations to the same objectare weakly commuting, as are pending operations toa used (m; j)-consensus object. Pending operationson distinct objects commute. Commuting impliesweakly commuting.Suppose we execute the operations in U in someorder. A winner set is the set of process ids from anysimplex in CU (s), and a loser set is the complementof a winner set in U . A winner set is maximal if itis not contained in any larger winner set, and thecomplementary loser set is minimal. Winner sets areclosed under intersection, and loser sets under union.Any winner set can be expressed as the intersectionof maximal winner sets, any loser set as the union ofminimal loser sets.We consider two cases: (1) the pending operationsin U are weakly commuting, and (2) some object'spending operations in U are not weakly commuting.In the �rst case, for each winner set Wi and com-plementary Li, let si be the state reached from s� byexecuting the operations in Wi followed by the op-erations in Li. Let �i be the protocol starting in siidentical to � except that the processes in Li do notparticipate. Let Di be the reachable complex for �iin si. CU�(s�) =[Diwhere the index i ranges over all maximal winner setsWi.We claim that for any winner set Wi (not just max-imal ones),Hq(Di) = 0 for q < j � �dim(Di)m � :If Li is empty, then �i = �, and F(si) = Di, andthe claim follows because s� is critical. Otherwise it

follows because n is minimal. From Lemma 4.6,Hq(CU�(s�)) = 0 for q < j � �dim(CU�(s�))m � ;and CU�(s�) satis�es }, a contradiction.In the second case, there exists an object x whoseset of pending operations Ux � U is not weakly com-muting. Each ordering of Ux de�nes a set of winnersand losers as above. For each maximal winner set Wi(and minimal Li), let �i be the protocol starting ins� identical to � except that the processes in Li donot participate. Let D(i)(s�) be the reachable com-plex for �i from s�, D(i)j (s�) the reachable complexfor �i in executions in which Pj 2 U� � Li takes the�rst step, and D(i)V (s�) = \j2V D(i)j (s�):Because the operations in Ux do not commute, eachloser set Li is non-empty, so �i is a protocol forstrictly fewer than n+1 processes. Because n is min-imal, each D(i)V satis�es }:Hq(D(i)V) = 0 for q < j � $dim(D(i)V)m % :Let Vi = U� � Li. The D(i)Vi (s�) cover CU�(s�) formaximal winner sets Wi, so Lemma 4.6 implies thatHq(CU�(s�)) = 0 for q < j � $dim(D(i)Vi (s�))m % ;and CU�(s�) satis�es }, a contradiction.We are now ready to present the paper's secondmain result.Theorem 4.8 Cn(m; j) is simply connected withHq(Cn(m; j)) = 0 for q < j � j nmk :Proof: By Lemma 4.7, for all U � W ,Hq(CU (s)) = 0 for q < j � �dim(CU (s))m � ;so by Lemma 4.6,Hq(Cn(m; j)) = 0 for q < j � j nmk :The proof that Cn(m; j) is simply connected is sim-ilar to the proof of Lemma 4.2, replacing the Mayer-Vietoris sequence with the with Siefert/Van Kampentheorem ([8, 4.12]). Page 9

5 ConclusionsWe have presented for the �rst time combinatorialproperties of an asynchronous system in which pro-cesses communicate by objects more powerful thanread/write registers. We have proved two general the-orems about the solvability of set consensus.The �rst theorem characterizes a wide class of pro-tocols that cannot solve set consensus. Suppose aprotocol has a full information complex F(U) whenonly the processes in U participate. If F(U) is con-nected for jU j � c, simply connected for jU j � 2c, andhas Hq(F(U)) = 0 for q < jU j=c, then that protocolcannot solve (n + 1; bn=cc)-consensus. The proof ofthe result is general enough to point out a propertythat any solvable task should satisfy: there will al-ways be at least one execution where the number ofdecided values is at least bn=cc+ 1.The second theorem states that the full infor-mation complex Cn(m; j) for any protocol using(m; j)-consensus objects is simply connected for n >2 bm=jc, with no \holes" in the lower dimensions:Hq(Fn(m; j)) = 0 for q < j � j nmk :One implication of these two theorems is that (n+1; k)-consensus is impossible if k � j � bn=mc, whichimplies n=k > m=j.References[1] Hagit Attiya, Amotz Bar-Noy, Danny Dolev,David Peleg, and Rudiger Reischuk. Renamingin an asynchronous environment. Journal of theACM, July 1990.[2] E. Borowsky and E. Gafni. Generalized pimpossibility result for t-resilient asynchronouscomputations. In Proceedings of the 1993 ACMSymposium on Theory of Computing, May 1993.[3] E. Borowsky and E. Gafni. The implicationof the Borowsky-Gafni simulation on the setconsensus hierarchy. Technical Report 930021,UCLA Computer Science Dept., 1993.[4] S. Chaudhuri. Agreement is harder than con-sensus: set consensus problems in totally asyn-chronous systems. In Proceedings of the NinthAnnual ACM Symosium on Principles of Dis-tributed Computing, pages 311{234, August1990.[5] S. Chaudhuri, M.P. Herlihy, N. Lynch, and M.R.Tuttle. A tight lower bound for k-set agree-

ment. In Proceedings of the 34th IEEE Sympo-sium on Foundations of Computer Science, Oc-tober 1993.[6] M. Fischer, N.A. Lynch, and M.S. Paterson. Im-possibility of distributed commit with one faultyprocess. Journal of the ACM, 32(2), April 1985.[7] P.J. Giblin. Graphs, Surfaces, and Homology.Chapman and Hill, London and New York, 1981.Second edition.[8] M.J. Greenberg and J.R. Harper. AlgebraicTopology: A First Course. Mathematics LectureNotes Series. The Benjamin/Cummings Publish-ing Company, Reading MA, 1981.[9] M. Henle. Combinatorial Introduction to Topol-ogy. W.H. Freeman and Company, San Fran-cisco, 1979.[10] M.P. Herlihy. Wait-free synchronization. ACMTransactions on Programming Languages andSystems, 13(1):123{149, January 1991.[11] M.P. Herlihy and N. Shavit. The asynchronouscomputability theorem for t-resilient tasks. InProceedings of the 1993 ACM Symposium onTheory of Computing, May 1993.[12] M.P. Herlihy and N. Shavit. A simple construc-tive computability theorem for wait-free compu-tation. In Proceedings of the 1994 ACM Sympo-sium on Theory of Computing, May 1994.[13] S. Lefschetz. Introduction to Topology. PrincetonUniversity Press, Princeton, New Jersey, 1949.[14] M. Li, J. Tromp, and P.M. Vit�anyi. How to shareconcurrent wait-free variables. Technical Re-port CT-91-02, University of Amsterdam, Am-sterdam, Netherlands, March 1991.[15] M. Saks and F. Zaharoglou. Wait-free k-setagreement is impossible: The topology of pub-lic knowledge. In Proceedings of the 1993 ACMSymposium on Theory of Computing, May 1993.[16] E.H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.
Page 10

