
Trace Spaces: an Efficient New
Technique for State-Space Reduction

L. Fajstrup M. Raussen
Department of Mathematical Sciences,

Aalborg University
name@math.aau.dk

É. Goubault E. Haucourt S. Mimram
CEA, LIST

surname.name@cea.fr

Abstract
State-space reduction techniques, used primarily in model-checkers,
all rely on the idea that some actions are independent, hence could
be taken in any (respective) order while put in parallel, without
changing the semantics. It is thus not necessary to consider all exe-
cution paths in the interleaving semantics of a concurrent program,
but rather some equivalence classes. The purpose of this paper is
to describe a new algorithm to compute such equivalence classes,
and a representative per class, which is based on ideas originat-
ing in algebraic topology. We introduce a geometric semantics of
concurrent languages, where programs are interpreted as directed
topological spaces, and study its properties in order to devise an
algorithm for computing dihomotopy classes of execution paths. In
particular, our algorithm is able to compute a control-flow graph
for concurrent programs, possibly containing loops, which is “as
reduced as possible” in the sense that it generates traces modulo
equivalence. A preliminary implementation was achieved, showing
promising results towards efficient methods to analyze concurrent
programs, with better results than state of the art partial-order re-
duction techniques.

Introduction
Formal verification of concurrent programs is traditionally consid-
ered as a difficult problem because it might involve checking all
their possible schedulings, in order to verify all the behaviors the
programs may exhibit. This is particularly the case for checking
for liveness or reachability properties, or in the case of verifica-
tion methods that imply traversal of some important parts of the
graph of execution, such as model-checking [4], and abstract test-
ing [6]. Fortunately, many of the possible executions are equivalent
(we say dihomotopic) in the sense that one can be obtained from the
other by permuting independent instructions, therefore giving rise
to the same results. In order to analyze a program, it is thus enough
(and much faster) to analyze one representative in each dihomotopy
class of execution traces.

Contributions and related work. We introduce in this paper
a new algorithm to reduce the state-space explosion during the
analysis of concurrent systems. It is based on former work of

[Copyright notice will appear here once ’preprint’ option is removed.]

some of the authors, most notably [24] where the notion of trace
space is introduced and studied, and also builds up considerably
on the geometric semantics approach to concurrent systems, as
developed in [15]. Some fundamentals of the mathematics involved
can be found in [20]. The main contributions of this article are the
following: we develop and improve the algorithms for computing
trace spaces of [24] by reformulating them in order to devise an
efficient implementation for them, we generalize this algorithm to
programs which may contain loops and thus exhibit an infinite
number of behaviors, we apply these algorithms to a toy shared-
memory language whose semantics is given in the style of [12], but
in this paper, formulated in terms of d-spaces [20], and we report
on the implementation and experimentation of our algorithms on
trace spaces.

Stubborn sets [26], sleep sets and persistent sets [16] are among
the most popular methods used for diminishing the complexity
of model-checking using transition systems; they are in particular
used in SPIN [1], with which we compare our work experimentally
in Section 2.6. They are based on semantic observations using Petri
nets in the first case and Mazurkiewicz trace theory in the other
one. We believe that these are special forms of dihomotopy-based
reduction as developed in this paper when cast in our geometric
framework, using the adjunctions of [19]. Of course, the trace
spaces we are computing have some acquaintance with traces as
found in trace theory [8]: basically, traces in trace theory are points
of trace spaces, and composition of traces modulo dihomotopy is
concatenation in trace theory. Trace spaces are more general in
that they consider general directed topological spaces and not just
partially commutative monoids; they also include all information
related to higher-dimensional (di-)homotopy categories, and not
just the fundamental category, as in trace theory. Trace spaces are
also linked with component categories, introduced by some of the
authors [14, 18], and connected components of trace spaces can
also be computed using the algorithm introduced in [17].

Contents of the paper. After a giving intuitions (Section 1.1),
we define formally the programming language we are considering
(Section 1.2) together with a classical semantics (Section 1.3) as
well as an associated geometric semantics, (Section 1.4). We then
introduce an algorithm for computing an effective combinatorial
representation of trace spaces as well as an efficient implementation
of it (Section 2), and extend this algorithm in order to handle
program containing loops (Section 3). Finally, we discuss various
applications and possible extensions of the algorithm and conclude.

1 2011/7/16

1. Geometric semantics of concurrent processes
1.1 An informal introduction
Consider the following program consisting of two subprograms,
which modify variables, executed in parallel:

x:=1;y:=2 | y:=3 (1)

where assignments are supposed to be atomic. This program might
be scheduled in three different ways, respectively giving rise to the
following three interleavings of the instructions:

y:=3;x:=1;y:=2 x:=1;y:=3;y:=2
x:=1;y:=2;y:=3

(2)

which might be represented graphically by a transition graph

x:=1 // y:=2 //

y:=3

OO

x:=1
//

1© y:=3

OO

y:=2
//

2© y:=3

OO

(3)

Notice that the first two interleavings of (2) give rise to the same
resulting state (in the end x = 1 and y = 2), whereas the third pro-
duces a different state (x = 1 and y = 3). The reason why the first
two are equivalent is that the instructions x:=1 and y:=3 “com-
mute”, i.e. the way they are scheduled cannot be observed, because
they modify different variables: in this sense the first two execu-
tions are equivalent, or dihomotopic. Using a terminology borrowed
from category theory, one could say that the diagram 1© commutes,
whereas the diagram 2© does not; or, if we see the transition graph
as a 2-dimensional topological space, the square 1© would be filled,
whereas the square 2© would be a hole. With that last view, the al-
gebraic topological notion of continuous deformation or dihomo-
topy [15, 20] coincides with local commutation of actions.

In most concurrent programming languages, the programmer is
responsible for ensuring that a variable (or more generally a shared
resource) will not be accessed concurrently by two processes. This
is usually done by using mutexes, which are locks ensuring this
property. For instance the program (1) should be rewritten as

Pb;x:=1;Vb;Pa;y:=2;Va | Pa;y:=3;Va

where the instruction Pa locks the mutex a and Va unlocks it
(these respectively correspond to pthread_mutex_lock and
pthread_mutex_unlock functions of the POSIX thread li-
brary), and mutexes act in such a way that they cannot be locked by
two processes at the same time. In order to abstract away from the
irrelevant details of the programming language, we suppose that all
involved variables are protected by mutexes ensuring they will not
be accessed by two processes at the same time, and moreover we
forget about the instructions other than control flow and mutex ma-
nipulations since they determine both the structure of the program
and whether two schedulings of the program are dihomotopic or
not. So, the program (1) will be simplified into

Pb.Vb.Pa.Va | Pa.Va (4)

In order to devise an algorithm for computing the dihomo-
topy classes of interleavings, we shall use geometrical intuition
and formalism by introducing a semantics in which programs
are interpreted by topological spaces. For instance, the process
Pb.Vb.Pa.Va will be interpreted as a finite line

Pb Vb Pa Va

The execution of the process will be modeled as a path going from
the left to the right of the figure: the progression of time imposes
a direction in paths of our spaces. When the path reaches the point

marked Pb, the program performs the action Pb and so on. At each
point of the space, there is thus an associated usage of resources;
for instance, in all the points strictly between the points Pa and Va,
the mutex a is taken but not the mutex b. In a similar fashion,
the process Pa.Va is interpreted by a finite directed line, and the
process (1) as a cartesian product of the interpretations of the two
programs in parallel:

Pb Vb Pa Va

Pa

Va

(5)

Again, an execution of the process will correspond to a continu-
ous path going from the lower-left to the upper-right corner (the
beginning and end points), which is always increasing (going up
and right), such as the red path corresponding to the interleaving
Pa.Pb.Va.Vb.Pa.Va. These are called dipaths, and are going to be
points in trace spaces, formally introduced in Section 1.3. Resource
usage is also defined in each point of the space. In particular, at the
points in the interior of the gray square, the mutex a is taken twice
(once by each process), and the semantics of mutexes ensures that
this situation does not happen. So in fact, any valid execution path
does not cross the gray square, which is called a forbidden region
and is removed from the space (i.e. it is a hole).

In order to determine the dihomotopy classes of paths in the
space, the general idea of the algorithm is to test for each hole all
the possible schedulings. In our example, the mutex a is taken first
either by the first or the second process. More generally, we test
for each hole a possible class of scheduling by forbidding some
process to take a mutex first, which amounts to removing the light
gray portion of the space in the examples below, and computing
whether there exists a path from the beginning to the end satisfying
this scheduling.

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

The idea might seem simple, but it turns out to be difficult to
handle correctly and efficiently in the general case, as handled in
the present article.

1.2 A toy shared-memory concurrent language
In this paper, we consider a toy imperative shared-memory concur-
rent language as grounds for experimentation. In this formalism, a
program can be constituted of multiple subprograms which are run
in parallel. The environment provides a set of resources R, where
each resource a ∈ R can be used by at most κa subprograms at
the same time, the integer κa ∈ N being called the capacity of the
resource a. In particular, a mutex is a resource of capacity 1.

Whenever a program wants to access a resource a, it should ac-
quire a lock by performing the action Pa which allows access to a,
if the lock is granted. Once it does not need the resource anymore,
the program can release the lock by performing the action Va, fol-
lowing again the notation set up by Dijkstra [9]. If a subprogram
tries to acquire a lock on a resource a when the resource has al-
ready been locked κa times, the subprogram is stuck until the re-
source is released by an other subprogram. In order to be realistic
even though simple, the language considered here also comprises
a sequential composition operator ., a non-deterministic choice op-
erator + and a loop construct (−)∗, with similar semantics as in
regular languages (it should be thought as a while construct), as
well as a parallel composition operator | to launch two subprograms
in parallel.

2 2011/7/16

Programs p are defined by the following grammar:

p ::= 1 | Pa | Va | p.p | p|p | p+p | p∗

Programs are considered modulo a structural congruence ≡ which
imposes that operators ., + and | are associative and admit 1 as
neutral element. A thread is a program which does not contain the
parallel composition operator |.

1.3 Trace semantics

Suppose given an alphabet set Σ. Recall that a graph (V,E) con-
sists of a set V of vertices (or states) and a set E ⊆ V × Σ × V
of edges (or transitions). We sometimes write x A // y for an
edge (x,A, y), and A is called the label of the transition. The no-
tion of transition graph is a common tool in the study of semantics
of programming languages. However, in order to properly model
concurrent computations, one should also consider commutations
between transitions.

Definition 1. An asynchronous graph G = (V,E, I) consists of a
graph (V,E) together with a set I of independence tiles which are
pairs of paths of length 2, with the same source and target, and with
labels of the form A.B and B.A, which we sometimes draw as

y1
B // z

x

A

OO

B
// y2

A

OO

These are close to transition systems with independence [2, 25].
Intuitively, a tile relating two such paths means that the transi-
tions A and B can be permuted in the program, as in the tile 1©
in the introductory example (3). For the sake of simplicity, we
only present asynchronous graphs here, but it should be noted that
they are particular cases of a more general notion called cubical
sets [19], which is able to model commutations between any num-
ber of events. All the developments carried on here can be general-
ized to those.

Given two asynchronous graphsG1 andG2, their asynchronous
tensor product G1 ⊗G2 is defined as follows. Its underlying
graph G is the so called “cartesian product of graphs” (which is
not actually a cartesian product in the category of graphs but only a
tensor product) defined by V = V1 × V2 and the transitions are of
the form (x, x′) A→ (y, x′) or (x′, x) A→ (x′, y) when there exists
a transition x A→ y inG1 or inG2 respectively (i.e. every transition
in G either comes from G1 or from G2). Its independence tiles
relate every two paths of the form

(y, x′) B // (y, y′)

(x, x′)

A

OO

B
// (x, y′)

A

OO

where the transitions x A→ y and x′ B→ y′ come from G1 and G2
respectively.

From now on, suppose that Σ = {Pa, Va / a ∈ R} is the
set of actions. To every program p we associate an asynchronous
graph Gp and two vertices bp and ep of Gp (the beginning and the
end) defined inductively by

– G1 is the terminal graph (with one vertex and no edge),

– GPa is the graph bPa

Pa→ ePa (with two vertices and one edge),

– GVa is the graph bVa

Va→ eVa (with two vertices and one edge),

– Gp.q is the graph obtained from the disjoint union ofGp andGq
by identifying ep with bq , such that bp.q = bp and ep.q = eq ,

– Gp+q is the graph obtained from the disjoint union of Gp
and Gq by identifying bp with bq and ep with eq , such that
bp+q = bp = bq and ep+q = ep = eq ,

– Gp∗ is obtained from Gp by identifying ep with bp, such that
bp∗ = ep∗ = bp = ep,

– Gp|q is the graphGp⊗Gq with bp|q = (bp, bq) and ep|q = (ep, eq).

A total path in such a graph is a path from the beginning to the end.
We write Σ∗ for the free monoid of words over Σ. Every path s

in an asynchronous graph Gp (also called a trace) is labeled by
a word `(s) in Σ∗. The set ZR of functions R → Z can be
equipped with a structure of additive monoid with the constant
function equal to 0 as unit, and the sum f + g of two functions f
and g being defined pointwise, i.e. as the function which to every
resource a ∈ R associates f(a) + g(a). The resource function
r : Σ∗ → ZR is the morphism of monoids such that

r(Pa)(b) =
{
−1 if b = a

0 otherwise
and r(Va)(b) =

{
1 if b = a

0 otherwise

In the following, we always suppose that the graph Gp is such that
for every two paths s1 : bp � x and s2 : bp � x with bp as source
and the same target, we have r(`(s1)) = r(`(s2)). This property
can be enforced on programs by a simple syntactic criterion [12],
based on a well-bracketing condition (if we see resource locking
and unlocking as an opening and closing bracket respectively).
Given a state x reachable from bp, we write r(x) = r(`(s)) for
any path s : bp � x.

The asynchronous transition system Hp of a program p is
the asynchronous graph obtained from Gp by removing all the
vertices x not satisfying 0 6 κa + r(x) 6 κa for some resource
a ∈ R, as well as all edges and independence tiles involving them.
For instance the asynchronous graph associated to the program (4)
is the graph

Pb //

I

Vb //

I

Pa // Va //

Va

OO

Pb
//

I

Va

OO

Vb
//

I

Va

OO

Va

OO

Pa

OO

Pb

//
Vb

//
Pa

OO

Pa

//
Pa

OO

Va

//
Pa

OO

with all the squares marked I as independence tiles. We write ∼
for the congruence on paths generated by I , called dihomotopy: it
is the smallest equivalence relation such that s ∼ t for every pair
of paths (s, t) ∈ I , and if s ∼ t then s1 · s · s2 ∼ s1 · t · s2
for every paths s1 and s2 for which the concatenations make sense.
The schedulings of a program p is the set of paths s : bp � ep
quotiented by dihomotopy. As we will see in Section 1.3, this
describes the connected components of the trace space. In order
to compute this trace space, it turns out to be convenient to adopt
a more geometrical point of view and replace the asynchronous
graphs by topological spaces (their geometric realizations).

1.4 Geometric semantics

The notion of trace semantics introduced in previous section is
quite convenient to work with and has lead to many develop-
ments [27], but it is sometimes difficult to build intuitions about the
behavior of concurrent programs. In order to overcome this, we in-
troduce a semantics based on (directed) topological spaces. More-
over, the geometric semantics will allow a different representation

3 2011/7/16

of n pairwise independent actions (as the surface of an n-cube)
and n truly concurrent actions as the full n-cube.

We denote by I = [0, 1] ⊆ R the standard euclidean interval. A
path p in a topological space X is a continuous map p : I → X ,
and the points p(0) and p(1) are respectively called the source and
target of the path. Given two paths p and q such that p(1) = q(0),
we define their concatenation as the path p · q defined by

(p · q)(t) =
{
p(2t) if 0 6 t 6 1/2
q(2t− 1) if 1/2 6 t 6 1

A topological space can be equipped with a notion of “direc-
tion” as follows [20]:

Definition 2. A directed topological space (or d-space for short)
X = (X, dX) consists of a topological space X together with a
set dX of paths in X (the directed paths) such that

1. constant paths: every constant path is directed,
2. reparametrization: dX is closed under precomposition with

(non necessarily surjective) increasing maps I → I , which are
called reparametrizations,

3. concatenation: dX is closed under concatenation.

A morphism of d-spaces f : X → Y , a directed map, is a
continuous function f : X → Y which preserves directed paths,
in the sense that f(dX) ⊆ dY .

Example 3. Every topological space X equipped with a partial
order6 defines a d-space by taking dX the set of paths p : I → X
which are increasing. In particular, we often write ~I for the d-space
induced by the unit interval I = [0, 1] equipped with the usual
total order. Notice that given a d-space X , the maps p : ~I → X
are the directed paths in dX and the maps r : ~I → ~I are the
reparametrizations.

The circle S1 = {eiθ / 0 6 θ < 2π} in
the complex plane can be equipped with a struc-
ture of d-space with dS1 being the set of paths p
of the form p(t) = eif(t) for some increasing func-
tion f : I → R. Notice that in this case, the structure of directed
spaces is not induced by a partial order on the space, which makes
d-spaces a more general notion.

The category of d-spaces is complete and cocomplete [20].
This allows us to abstractly define some constructions on d-spaces,
which extend usual constructions on topological spaces, that we
detail here explicitly by describing the associated directed paths.

– The terminal d-space ? is the space reduced to one point.

– The cartesian product X×Y of two d-spaces X and Y is such
that d(X × Y) = dX × dY .

– The disjoint unionX]Y of two d-spacesX and Y is such that
d(X] Y) = dX] dY .

– The amalgamed sum (X] Y)/(x ∼ y) of two d-spaces X
and Y on points x ∈ X and y ∈ Y is the disjoint union X] Y
where the points x and y have been identified. A directed path
is a reparametrization of a path p · q, where (p, q) ∈ dX × dY
(resp. (q, p) ∈ dX × dY) are paths such that p(1) = x and
q(0) = y (resp. p(1) = y and q(0) = x).

– The difference X \ Y of two d-spaces X and Y has the set
d(X \ Y) = {p ∈ dX / p(I) ∩ Y = ∅} of directed paths.

– Given a d-space X and a topological space Y ⊆ X , the
subspace Y can be canonically equipped with a structure of
d-space by dY = {p ∈ dX / p(I) ⊆ Y }.

These constructions enable us to define the geometric semantics of
a program as follows.

Definition 4. To every program p, we associate a d-space Gp
together with a pair of points bp, ep ∈ Gp, respectively called
beginning and end, and a resource function rp : R × Gp → Z
which indicates the number of locks the program holds at a given
point. The definition of these is done by induction on the structure
of p as follows

– G1 = ?, b1 = ∗, e1 = ∗, r1(a, x) = 0,
– GPa = ~I , bPa = 0, eVa = 1,

rPa (b, x) =
{
−1 if b = a and x > 0
0 if b 6= a or x = 0

– GVa = ~I , bVa = 0, eVa = 1,

rVa (b, x) =
{

1 if b = a and x = 1
0 if b 6= a or x < 1

– Gp.q = (Gp]Gq)/(ep ∼ bq), bp.q = bp, ep.q = eq ,

rp.q(a, x) =
{
rp(a, x) if x ∈ Gp
rp(a, ep) + rq(a, x) if x ∈ Gq

– Gp+q = (Gp]Gq)/(bp ∼ bq, ep ∼ eq), bp+q = bp,

ep+q = eq , rp+q(a, x) =
{
rp(a, x) if x ∈ Gp
rq(a, x) if x ∈ Gq

– Gp∗ = Gp/(bp ∼ ep), bp∗ = bp, ep∗ = bp,
rp∗(a, x) = rp(a, x)

– Gp|q = Gp ×Gq , bp|q = (bp, bq), ep|q = (ep, eq),
rp|q(a, (x, y)) = rp(a, x) + rq(a, y)

Given a program p, the forbidden region is the d-space Fp ⊆ Gp
defined by

Fp = {x ∈ Gp / ∃a ∈ R, κa + rp(a, x) < 0 or rp(a, x) > 0}
The geometric realization of a process p, is defined as the d-space
Hp = Gp \ Fp.

We sometimes write 0 and ∞ for the beginning and the end
points respectively of a geometric realization, and say that a
path p : ~I → Gp is total when it has 0 as source and∞ as target.
It is easy to show that the geometric semantics of a program is
well-defined in the sense that two structurally congruent programs
give rise to isomorphic geometric realizations.
Example 5. The processes

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va
respectively have the following geometric realizations:

bp

ep

bp

ep

bp

ep

The space in the middle is sometimes called the “Swiss flag”
because of its form and is interesting because it exhibits both a
deadlock and an unreachable region.

The fact that the definition of the geometric semantics resembles
a lot the trace semantics introduced in Section 1.3 can be explained
by the fact that it is in fact a “geometrization” of the trace seman-
tics. Namely, if we see a vertex as a point, an edge as a directed
segment ~I , an independence tile as a directed square ~I × ~I , and
glue these topological spaces according to how they are connected
in the asynchronous graphs, then we recover a subset of the geo-
metric semantics (this process can be formally expressed category
using a coend): this process is called the geometric realization of a

4 2011/7/16

cubical set. In particular, this implies that the schedulings in trace
and geometric semantics are essentially the same:

Proposition 6. Given a program p, there is a (well-behaved) injec-
tion ι from the set of total paths of the trace semantics of p to the
set of total paths of the geometric semantics of p. Moreover, every
total path in the geometric semantics is dihomotopic to a total path
in the image of ι; and two total paths in the trace semantics are
dihomotopic if and only if their images under ι are dihomotopic.

The notion of dihomotopy in geometric semantics is formally
introduced in Definition 7 below. We call any total path in the image
of ι, dihomotopic to p in the geometric semantics, a lifting of p.

2. Computing trace spaces
2.1 Trace spaces

In topology, two paths p and q are often considered as equiva-
lent when q can be obtained by deforming continuously p (or vice
versa), this equivalence relation being called homotopy. The cor-
responding variant of this relation in the case of directed topo-
logical spaces is called dihomotopy and is formally defined as
follows. In the category of d-spaces, the object ~I is exponen-
tiable, which means that for every d-space Y , one can associate
a d-space Y ~I such that there is a natural bijection between mor-
phisms X × ~I → Y and morphisms X → Y

~I . The underlying
space of Y ~I is the set of functions ~I → Y with the compact-open
topology (also called uniform convergence topology), and the di-
rected paths h : ~I → Y

~I are the functions such that t 7→ h(t)(u)
is increasing for every u ∈ ~I . Finally, two paths are said to be di-
homotopic when one can be continuously deformed into the other:

Definition 7. Two directed paths p, q : ~I → X are dihomotopic
when there exists a directed path h : ~I → X

~I with p as source
and q as target.

Example 8. In the geometric semantics of the program (4) de-
scribed in the introduction, the two paths above the hole are di-
homotopic, whereas the path below is not dihomotopic to the two
others:

Pb Vb Pa Va

Pa

Va

As explained in the introduction (Section 1.1), two dihomotopic
paths correspond to execution traces differing by inessential com-
mutations of instructions, thus giving rise to the same result.

Given two points x and y of a d-space X , we write X(x, y)
for the subset of X~I consisting of dipaths from x to y. A trace
is the equivalence class of a path modulo surjective reparametriza-
tion, and a scheduling is the equivalence class of a trace modulo
dihomotopy. We write ~T (X)(x, y) for the trace space obtained
from X(x, y) by identifying paths equivalent up to reparametriza-
tion, and simply ~T (X) for ~T (X)(0,∞). In particular, we have
~T (X)(x, y) 6= ∅ if and only if there exists a directed path in X
going from x to y.

In this section, we reformulate the algorithm for computing
the trace space ~T (X) up to dihomotopy equivalence, originally
introduced in [24], in order to achieve an efficient implementation
of it. For simplicity, we restrict here to spaces which are geometric
realizations of programs of the form

p = p0 | p1 | . . . | pn−1 (6)

where the pi are built up only from 1, concatenation, resource lock-
ing and resource unlocking (extending the algorithm to programs
which may contain loops requires significant generalizations which
are described in Section 3). In this case, the geometric realization
is of the form

Gp = ~In \
l−1⋃
i=0

Ri

~In denoting the cartesian product of n copies of ~I , where each
Ri =

∏n−1
j=0

~Iij is a rectangle. We suppose here that each Ri is ho-
mothetic to the n-dimensional open rectangle, i.e. each directed
interval ~Iij is of the form ~Iij =]xij , yij [, and generalize this at the
end of the section. The restrictions on the form of the programs
are introduced here only to simplify our exposition: programs with
choice can be handled by computing the trace spaces on each
branch and program with loops can be handled by suitably un-
folding the loops so that all the possible behaviors are exhibited
(a detailed presentation of this is given in Section 3). We suppose
fixed a program with n threads and l forbidden open rectangles,
and consistently use the notations above.
Example 9. The geometric realization of the programs

Pa.Va.Pb.Vb|Pa.Va.Pb.Vb and Pa.Va.Pb.Vb|Pb.Vb.Pa.Va
are respectively

t0

t1

0

1

x0
0 y

0
0 x

1
0 y

1
0

x0
1

y0
1

x1
1

y1
1

and
t0

t1

0

1

x0
0 y

0
0 x

1
0 y

1
0

x1
1

y1
1

x0
1

y0
1

2.2 The index poset
Let us come back to the second program of Example 9. We will
determine the different traces, and their relationships in the trace
space, by combinatorially looking at the way they can turn around
holes. To see this in that example, we extend each hole in parallel
to the axes, below or leftwards from the holes, until they reach
the boundary of the state space. These new obstructions impose
traces to go the other way around each hole: the existence of
deadlocks, given these new constraints in the trace space allows
us to determine whether traces going one way or the other around
each hole exist. In fact, this combinatorial information precisely
computes all of the trace space [24].

In the second program of Example 9, there are four possibilities
to extend once each of the two holes:

t0

t1

t0

t1

t0

t1

t0

t1

(7)
Notice that there exists a total path in the first three spaces (as
depicted above), whereas there is none in the last one.

A simple way to encode the combinatorial information about
the extension of holes is through boolean matrices. We writeMl,n

for the poset of l × n matrices, with l rows (the number of holes
Ri) and n columns (the dimension of the space, i.e. the number
of threads in the program), with coefficients in Z/2Z, with the
pointwise ordering such that 0 6 1: we have M 6 N whenever

∀(i, j) ∈ [0 : l[×[0 : n[, M(i, j) 6 N(i, j) (8)

5 2011/7/16

where [m : n[denotes the set {m, . . . , n − 1} of integers and
M(i, j) denotes the (i, j)-th coefficient of M . We also writeMR

l,n

for the subposet ofMl,n consisting of matrices whose row vectors
are all different from the zero vector, and MC

l,n for the subposet
ofMl,n consisting of matrices whose column vectors are all unit
vectors (containing exactly one coefficient 1).

Given a matrix M ∈ Ml,n, we define XM as the subspace
of X obtained by extending downwards each forbidden rectan-
gle Ri in every direction j′ different from j for every j such
that M(i, j) = 1. Formally,

XM = ~In \
⋃

M(i,j)=1

R̃ij

where R̃ij =
∏j−1
j′=0]0, yij′ [×]xij , yij [×

∏n−1
j′=j+1]0, yij′ [, see Ex-

amples 11 and 12 below.
In order to study whether there is a total path in the space

associated to a matrix, we define a map Ψ :Ml,n → Z/2Z
by Ψ(M) = 1 iff ~T (XM) = ∅, i.e. there is no total path in XM .
A matrix M is dead when Ψ(M) = 1 and alive otherwise. The
map Ψ can easily be shown to be order preserving.

Definition 10. We write

D(X) = {M ∈MC
l,n / Ψ(M) = 1}

for the set of (column) dead matrices and

C(X) = {M ∈MR
l,n / Ψ(M) = 0}

for the set of alive matrices (with non-empty rows), which is called
the index poset – it is implicitly ordered by the relation (8).

Example 11. In the example above, the three extensions of holes (7)
are respectively encoded by the following matrices:(

1 0
1 0

) (
0 1
1 0

) (
0 1
0 1

) (
1 0
0 1

)
The last matrix is dead and the three other are alive. The last matrix
being dead shows that there is no way a trace can go left and up of
the upper left hole and carry on going right of the lower right hole.
Example 12. The geometric semantics of the program consti-
tuted of three copies of the thread Pa.Va.Pb.Vb in parallel, with
κa = κb = 2, is

0

1

t0

t1

t2

The spaces XM corresponding to the matrices(
1 0 0
0 0 1

) (
0 0 1
1 0 0

) (
0 0 0
1 1 1

)
are respectively

t0

t1

t2

t0

t1

t2

t0

t1

t2

The first two matrices are alive, as shown by the drawn total paths.
A reason why the matrices in the index poset are convenient

objects to study the schedulings is that they are topologically very
simple [24]:

Proposition 13. For any matrix M ∈ MR
l,n, any two paths

with the same source x and target y are dihomotopic: the space
XM (x, y) is either empty or contractible. In particular, for any
matrix M ∈ C(X), the space XM (0,∞) is always contractible.

Our main interest in the index poset is that it enables us to
compute the schedulings (i.e. maximal paths modulo dihomotopy)
of the space: these schedulings are in bijection with alive matrices
in C(X) modulo an equivalence relation called connexity, which
is defined as follows. Given two matrices M,N ∈ Ml,n, their
intersection M ∧ N is defined as the matrix M ∧ N such that
(M ∧N)(i, j) = min(M(i, j), N(i, j)).

Definition 14. Two matrices M and N are connected when their
intersection does not contain any row filled with 0.

The dihomotopy classes of total paths inX can finally be computed
thanks to the following property:

Proposition 15. The connected components of C(X) are in bijec-
tion with schedulings in X .

Example 16. Consider the program p = q|q|q where q = Pa.Va.
The associated trace space Xp is a cube minus a cube (as in Exam-
ple 12 but with only one forbidden cube). The matrices in C(Xp)
are (

1 0 0
) (

0 1 0
) (

0 0 1
)(

0 1 1
) (

1 0 1
) (

1 1 0
)

and they are all (transitively) connected. For instance,(
0 1 1

)
∧
(
1 0 1

)
=

(
0 0 1

)
The program p thus has exactly one total scheduling, as expected.

Intuitively, alive matrices describe sets of dihomotopic total
paths (Proposition 13) and the fact that two matrices have non-
empty lines in their intersection means that there are paths which
satisfy the constraints imposed by both matrices, i.e. the two matri-
ces describe the same dihomotopy class of total paths.

2.3 Computing dihomotopy classes

The computation of the dihomotopy classes of total paths in the
geometric semantics X of a given program will be performed in
three steps:

1. we compute the set D(X) of dead matrices,

2. we use D(X) to compute the index poset C(X),

3. we deduce the homotopy classes of total paths by quotient-
ing C(X) by the connexity relation.

These steps are detailed below.
Given a subset I of [0 : l[and an index j ∈ [0 : n[, we

write yIj = min{yij / i ∈ I} (by convention y∅j =∞). Given
a matrix M ∈ Ml,n, we define the set of non-zero rows of M
by R(M) = {i ∈ [0 : l[/ ∃j ∈ [0 : n[, M(i, j) 6= 0}. It can be
shown that a matrixM is dead if and only if the spaceXM contains
a deadlock. From the characterization of deadlocks in geometric
semantics given in [13], the following characterization of dead
matrices can therefore be deduced:

Proposition 17. A matrix M ∈MC
l,n is in D(X) iff it satisfies

∀(i, j) ∈ [0 : l[×[0 : n[, M(i, j) = 1⇒ xij < y
R(M)
j (9)

Example 18. In the example below with l = 2 and n = 2, the

matrix M =
(

0 1
1 0

)
is dead (we suppose that xij = 1 + i(j + 1)

6 2011/7/16

and yij = 3 + i(j + 1)− j):

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

x0
1 = 1 < 2 = y

{0,1}
1

x1
0 = 2 < 3 = y

{0,1}
0

Example 19. Consider the geometric semantics of the second pro-
gram of Example 9. The minimal dead matrices are

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

D0 =
(

1 1
0 0

)
D1 =

(
0 0
1 1

)
D2 =

(
1 0
0 1

)
The above proposition enables us to compute the set of dead

matrices, for instance by enumerating all matrices and checking
whether they satisfy condition 9 (a more efficient method is de-
scribed in Section 2.5). From this set, the index poset C(X) can be
determined using the following property:

Proposition 20. A matrix M ∈ Ml,n is not in C(X) iff there
exists a matrix N ∈ D(X) such that N 6 M . In other words,
M ∈ C(X) iff for every matrix N ∈ D(X) there exists indexes
i ∈ [0 : l[and j ∈ [0 : n[such that M(i, j) = 0 and N(i, j) = 1.

Notice that the poset C(X) is downward closed (because Ψ
is order preserving) and one is naturally interested in the sub-
set Cmax(X) of maximal matrices in order to describe it. Propo-
sition 20 provides a simple-minded algorithm for computing (max-
imal) matrices in C(X). We write D(X) = {D0, . . . , Dp−1}. We
then compute the sets Ck of maximal matrices M such that for ev-
ery i ∈ [0 : k[we have Di 66 M . We start from the set C0 = {1}
where 1 is the matrix containing only 1 as coefficients. Given a
matrix M , we write M¬(i,j) for the matrix obtained from M by
replacing the (i, j)-th coefficient by 1 − M(i, j). The set Ck+1
is then computed from Ck by doing the following for all matri-
ces M ∈ Ck such that Dk 6M :

1. remove M from Ck,

2. for every (i, j) such that Dk(i, j) = 1,

– remove every matrix N ∈ Ck such that N 6M¬(i,j),

– if there exists no matrix N ∈ Ck such that M¬(i,j) 6 N ,
add M¬(i,j) to Ck.

The set Cmax(X) is obtained as Cp. If we remove the second point
and replace it by

2’. for every (i, j) such that Dk(i, j) = 1 and M¬(i,j) ∈ MR
l,n,

add M¬(i,j) to Ck.

we compute a set Cp such that Cmax(X) ⊆ Cp ⊆ C(X), which is
enough to compute connected components and has proved faster to
compute in practice.
Example 21. Consider again Example 19. The algorithm starts with

C0 =
{
M0 =

(
1 1
1 1

)}

For C1, we must have D0 66 M0 so we swap any of the two ones
in the first row:

C1 =
{
M1 =

(
0 1
1 1

)
,M2 =

(
1 0
1 1

)}
Similarly for C2, we have to swap the bits on the second row so
that D1 66Mi:{
M3 =

(
0 1
0 1

)
,M4 =

(
0 1
1 0

)
,M5 =

(
1 0
0 1

)
,M6 =

(
1 0
1 0

)}
Finally, we have D2 66 Mi, excepting D2 6 M5, so we swap the
bits in position (1, 1) and in position (2, 2):

M ′5 =
(

0 0
0 1

)
6M3 M ′′5 =

(
1 0
0 0

)
6M6

Since we are only interested in minimal matrices, we end up with
C3 = {M6,M4,M3}. The trace spaces corresponding to those
matrices are the three first depicted in (7). None of those matrices
being connected, the trace space up to dihomotopy consists of
exactly 3 distinct points.

Other implementations of the algorithm can be obtained by
reformulating the computation of Cmax(X) as finding a minimal
transversal in a hypergraph. Recall that an hypergraphH = (V,E)
consists of a set V of vertices and a set E of edges, where an edge
is a subset of V . A transversal T of H is a subset of V such that
T ∩ e 6= ∅ for every edge e ∈ E. The set D(X) can be regarded as
a hypergraph H , whose set of vertices is [0 : l[×[0 : n[and whose
hyperedges are the sets {(i, j) / D(i, j) = 1}, where D is a ma-
trix in D(X). It is easy to see that the sets {(i, j) / M(i, j) = 0},
where M is a maximal matrix of C(X), correspond to minimal
transversals wrt inclusion order (or hitting sets) of the hyper-
graph H . The computation of those transversals was the subject
of many studies, for which efficient algorithms have been pro-
posed [21]. Also, we are currently exploring links with transversal
matroids, which are likely to provide useful new theoretical tools
to study trace spaces.

2.4 Extension to cubes touching boundaries
In Section 2.1, we have supposed that the forbidden region was
a union of rectangles Ri, each such rectangle being a product of
open intervals ~Iij =]xij , yij [. The algorithm given above can easily
be generalized to the case where the rectangles Ri can “touch the
boundary” in some dimensions, i.e. the intervals ~Iij are either of the
form]xij , yij [or [0, yij [or]xij ,∞] or [0,∞]. For example, the pro-
cess Pa.Va|Pa.Va|Pa.Va, with κa = 1, generates such a forbidden
region. We write B ∈ Ml,n for the boundary matrix, which is the
matrix such thatB(i, j) = 0 whenever xij = 0 (i.e. the i-th interval
touches the lowest boundary in dimension j) and B(i, j) = 1 oth-
erwise. The matrices of D(X) are the matrices M ∈ Mn,l of the
form M = N ∧B, for some matrix N ∈ MC

n,l, which satisfy (9)
and such that

∀j ∈ C(M), y
R(M)
j =∞ (10)

where C(M) is the set of indexes of null columns of M .

2.5 An efficient implementation

In order to compute the setD(X) of dead matrices, the general idea
is to enumerate all the matrices M ∈ MC

l,n and check whether
they satisfy the condition (9). Of course, a direct implementation
of this idea would be highly inefficient since there are ln matrices
inMC

l,n. In order to improve this, we try to detect “as soon as pos-
sible” when a matrix does not satisfy the condition: we first fix the
coefficient in the first column ofM and check whether it is possible
for a matrix with this first column to be dead, then we fix the second
column and so on. Namely, we have to check that every coefficient
(i, j) such that M(i, j) = 1 satisfies xij < y

R(M)
j . Now, suppose

7 2011/7/16

let rec compute_dead j m rows yrows =
if j = n then dead := m :: !dead else

for i = 0 to l − 1 do
try

let changed_rows = not (Set.mem i rows) in
let rows = Set.add i rows in
let m = Array.copy m in
if bounds(i,j) = 1 then m.(j)←None else m.(j)←Some i;
(match m.(j) with

| Some i→if xij > yrows.(j) then raise Exit
| None→ if yrows.(j) 6=∞ then raise Exit);

let yrows =
let j′ = j in
if not changed_rows then yrows else

Array.mapi (fun j yrj →
if yrj 6 yij then yrj else

match m.(j) with
| None→

if j 6 j′ && yij 6=∞then raise Exit ; yij
| Some i→

if xij > yij then raise Exit ; yij
) yrows

in
compute_dead (j+1) m rows yrows

with Exit → ()
done

Figure 1. Algorithm for computing dead matrices.

that we know some of the coefficients (i, j) for whichM(i, j) = 1.
We therefore know a subset I ⊆ R(M) of the non-null rows. If for
one of these coefficients we have xij > yIj , we know that the ma-
trix cannot satisfy the condition (9) because xij > yIj > y

R(M)
j . A

similar reasoning can be held for condition (10).
The actual function computing the dead matrices is presented in

Figure 1, in pseudo-OCaml code. This recursive function fills j-th
column of the matrix M (whose columns with index below j are
supposed to be already fixed) and performs the check: it tries to set
the i-th coefficient to 1 (and all the others to 0) for every i ∈ [0 : l[.
If a matrix beginning as M (up to the j-th column) cannot be dead,
the computation is aborted by raising the Exit exception. When all
the columns have been computed the matrix is added to the list
dead of dead matrices. Since a matrix M ∈ MC

l,n has at most one
non-null coefficient in a given column, it will be coded as an array
of length nwhose j-th element is either None when all the elements
of the j-th column are null, or Some i when the i-th coefficient of
the j-th column is 1 and the others are 0. The argument rows is the
set of indexes of known non-null rows of M and yrows is an array
of length n such that yrows.(j)= yrowsj . The function is initially
called with the following parameters:

compute_dead 0 (Array.make n None) Set.empty (Array. init n ∞)

The matrix bounds is the matrix previously noted B used to per-
form the check (10). Notice that the algorithm takes advantage of
the fact that when the coefficient i chosen for the j-th column is al-
ready in rows (i.e. when the variable changed_rows is false) then
many computations can be spared because the coefficients yrowsj

are not changed.
Once the set of dead matrices computed, the set C(X) of alive

matrices is then computed using the naive algorithm of Section 2.3,
exemplified in Example 21. We have also implemented a simple
hypergraph transversal algorithm [3] but it did not bring significant
improvements, more elaborate algorithms might give better results
though. Finally, the representatives of traces are computed as the
connected components (in the sense of Proposition 15) of C(X),
in a straightforward way. An explicit sequence of instructions cor-

responding to every representative M can easily be computed: it
corresponds to the sequence of instructions crossed by any increas-
ing total path in the d-space XM , as explained for the path of (5)
for example.

2.6 A benchmark: the n dining philosophers

In order to illustrate the performances of our algorithm, we present
below the computation times for the well-known n dining philoso-
phers program [10] whose schedulings are difficult to compute and
is thus often used as a benchmark for concurrency tools. It is con-
stituted of n processes pk in parallel, using n mutexes ai, defined
by pk = Pak .Pak+1 .Vak .Vak+1 , where the indexes on mutexes ai
are taken modulo n. Such a program generates 2n − 2 distinct
schedulings, which our program finds correctly. The table below
summarizes the execution time and memory consumption for our
tool ALCOOL (programmed in OCaml), as well as for the model
checker SPIN [1] implementing state of the art partial order reduc-
tion techniques. If SPIN is not significantly slower, it consumes
much more memory and starts to use swap from n = 12 (thus
failing to give an answer in a reasonable time for n > 12). No-
tice that the implementation of SPIN is fine tuned and also benefits
from gcc optimizations, whereas there is room for many improve-
ments in ALCOOL. In particular, most of the time is spent in com-
puting dead matrices and the algorithm of Figure 1 could be im-
proved by finding a heuristic to suitably sort holes so that failures
to satisfy condition (9) are detected earlier. The present algorithm
is also significantly faster than some of the author’s previous contri-
bution [17]: for instance, it was unable to generate these maximals
dipaths because of memory requirements, for n philosophers with
n > 8 (in the benchmarks of [17], it was taking already 13739s,
on a 1GHz laptop computer though, to generate just the component
category for 9 philosophers).

n sched. ALC. (s) ALC. (MB) SP. (s) SP. (MB)
10 1022 5 4 8 179
11 2046 32 9 42 816
12 4094 227 26 313 3508
13 8190 1681 58 ∞ ∞
14 16382 13105 143 ∞ ∞

Since the size of the output is generally exponential in the size of
the input, there is no hope to find an algorithm which has less than
an exponential wost-case complexity (which our algorithm clearly
has). However, since our goal is to program actual tools to very
concurrent programs, practical improvements in the execution time
or memory consumption are really interesting from this point of
view. We have of course tried our tool on many more examples,
which confirm the improvement trend, and shall be presented in a
longer version of the article.

3. Programs with loops
3.1 Paths in deloopings

One of the most challenging part of verifying concurrent programs
consists in verifying programs with loops since those contain a pri-
ori an infinite number of possible execution traces. We extend here
the previous methodology and, given a program containing loops,
we compute a (finite!) automaton whose accepted paths will be ex-
actly the schedulings of the program: this automaton, can thus be
considered as a “reduced” control flow graph of the concurrent pro-
gram. Of course, we are then able to use the traditional methods
in static analysis, such as abstract interpretation, to study the pro-
gram (this is briefly presented in Section 3.3). This section builds
on some ideas being currently developed by Fajstrup [11], however
most of the properties presented in this section are entirely new. We

8 2011/7/16

have tried to give an idea of the proof for most properties we stated,
these should be formally presented in a long version of the article.

In the following, we suppose fixed a program of the form
p = p0|p1| . . . |pn−1 as in (6), with n threads. We write

p∗ = p∗0 | p∗1 | . . . | p∗n−1

for the associated “looping program”. Our goal in this section is
to describe the schedulings of such a program p∗ (more general
programs could have also been considered, at the cost of a more
technical presentation). Following Section 1.4, its geometrical se-
mantics consists of an n-dimensional torus with rectangular holes.
As previously, for simplicity, we suppose that these holes do not
intersect the boundaries, i.e. that p satisfies the hypothesis of Sec-
tion 2.1. Given an n-dimensional vector v = (v0, . . . , vn−1) with
coefficients in N, the v-delooping of p, written pv , is the program
pv0

0 |p
v1
1 | . . . |p

vn−1
n−1 , where p

vj

j denotes the concatenation of vj
copies of pj . A scheduling in p is a scheduling in the previous sense
(i.e. a total path modulo homotopy) in pv for some vector v.

Example 22. Consider the program p = q|q where q = Pa.Va. Its
geometric realization Xp is pictured on the left, and its (3, 2)-de-
looping Xp(3,2) is pictured on the right.

t0

t1

t0

t1

Given two spaces X and Y which are hypercubes with holes
(which is typically the case for the geometric realization of the
programs we are considering), we write X ⊕j Y for the space
obtained by identifying the j-th target face of the hypercubeX with
the j-th source face of the hypercube Y , and call it the j-gluing
of X and Y . Formally, this can be defined as in Section 1.4 as
X ⊕j Y = X] Y/ ∼ where ∼ identifies points x ∈ X
and y ∈ Y such that xj = ∞, yj = 0 and xj′ = yj′ for
every dimension j′ 6= j, and directed paths are defined in a similar
fashion. Notice that, by definition, there is a canonical embedding
of X (resp. Y) into X ⊕j Y , which will allow us to implicitly
consider X (resp. Y) as a subspace of X ⊕j Y in the following.

Example 23. The (3, 2)-delooping of Example 22 is

Xp(3,2) = (Xp ⊕0 Xp ⊕0 Xp)⊕1 (Xp ⊕0 Xp ⊕0 Xp)

More generally, any v-delooping pv of a program p of the form (6)
can be obtained by gluing copies of Xp.

Given two matrices M and N encoding extensions of holes
of such a program p (cf. Section 2.2), we reuse the notation and
write M ⊕j N for the obvious matrix coding extension of holes in
the space Xp ⊕j Xp.

Example 24. The program p of Example 22 admits two maximal
alive matrices:

M0 =
(
1 0

)
M1 =

(
0 1

)

t0

t1

t0

t1

The matrix M0 ⊕0 M1 =
(

1 0
0 1

)
encodes the following exten-

sion XM0⊕0M1 of holes in Xp(2,1) = Xp ⊕0 Xp:

0 1

t0

t1

(11)

(the dotted line represents the face on which the two squares have
been glued).

In the above example, notice that the “first copy” ofXp (the part
corresponding to M0) gets a new (horizontal) hole inherited by the
extension of the second hole due to M1:

0

t0

t1

In the following, we write XM0\0XM1 for this space and more
generally, given matrices M and N and a dimension j, XM\jXN
denotes the space obtained as the subspace ofXM⊕jN correspond-
ing to XM , which is called the j-residual of XM before XN .

Lemma 25. Suppose given matricesM ,N , P , and a dimension j.
The residuation operation defined above is commutative and idem-
potent in the sense that

(XM\jXN)\jXP = (XM\jXP)\jXN
and

(XM\jXN)\jXN = XM\jXN
Moreover, there exists a smallest matrix N\jP such that

– N 6 N\jP
– XM\jX(N\jP) = (XM\jXN)\jXP
– N\jP is alive if N ⊕j P is alive

Proof. The commutativity, idempotence and distributivity proper-
ties are easy to show. The matrix N\jP can be defined as follows.
Consider the matrix P ′ defined by P ′(i, j′) = 0 if j′ 6= j and
P ′(i, j) = P (i, j), and define N\jP = N ∨ P ′ (where ∨ is com-
puted pointwise). The matrix N\jP thus defined can be checked
to satisfy the three properties.

Example 26. With the notations of Example 24, we have the ma-
trices M0\0M1 =

(
1 1

)
and M1\0M0 =

(
0 0

)
.

By generalizing Example 23, it can easily be shown that any
matrix M for a v-delooping pv of a program p can be expressed as
a suitable gluing of matrices Mw for p, indexed by n-dimensional
N-vectors such that for every dimension j we have 0 6 wj < vj .
We say that the matrix M contains a matrix N when there exists
a vector w such that N = Mw. The following lemma will prove
useful in order to deduce the alive matrices of the deloopings pv

from the alive matrices of p:

Lemma 27. Given a vector v, if M is a matrix for pv which is
alive, then any matrix N for p contained in M is also alive.

Proof. The result can be deduced from the following series of
equivalences: the matrix M is dead iff the space XM contains a
deadlock iff it contains a deadlock in some subspace XMw (since
those form a partition of XM) iff there exists a vector w such that
Mw is dead.

9 2011/7/16

Of course, the converse implication is not true: Example 24 shows
that the gluing (11) of two alive matrices is not necessarily alive.

3.2 The scheduling automaton
The trace space of a program p∗ is not finite in the general case.
We show here that it can however be described as a quotient of the
set of paths of an automaton that we call the reduced scheduling
automaton: this automaton provides us with a finite presentation of
the set of schedulings.

Definition 28. The scheduling automaton Sp of a looping pro-
gram p∗ with n threads is the automaton, i.e. graph labeled by the
alphabet [0 : n[, whose

– vertices are the maximal alive matrices of Xp, i.e. elements of
the index poset C(Xp),

– there is a transition labeled by j ∈ [0 : n[from M to N
whenever M ⊕j N is alive.

A path in this automaton is called a transition path.

Example 29. Consider the program p = q|q with q = Pa.Va intro-
duced in Example 22. The vertices of Sp are the two maximal alive
matrices M0 and M1 described in Example 24, and the transitions
are the following:

M0

0,1

�� 1 ++
M1

0
kk

1,0

��

For instance, the transition M1 0 // M1 reflects the fact that
the matrix M1 ⊕0 M1 is alive:

0 1

t0

t1

However, there is no transition M0 0 // M1 because the ma-
trix M0 ⊕0 M1 is not alive, as figured in (11).

Our goal is to show that schedulings of p∗ correspond to paths
in Sp. However it is not the case, because two transition paths in Sp
can encode the same scheduling, and we will introduce a variant of
the scheduling automaton, called the reduced scheduling automa-
ton for which this property is verified. The following definitions
and lemmas are established in order to do so. Given a space X
which is an n-dimensional hypercube with holes, and a dimension
j ∈ [0 : n[, we say that X is j-reachable when there exists a path
whose source is the beginning point of the hypercube and target is
a point lying on the j-th target face of the hypercube.
Example 30. The first space is 0-reachable (as shown by the drawn
path) but the last two are not (there is no path from the beginning
to the right face):

t0

t1

t0

t1

t0

t1

Lemma 31. Given a point x of XN , there is a path from 0 to x
in M ⊕j N , where x is a point of XN if and only if XM is
j-reachable and there exists a path from 0 to x in XN .

Proof. We illustrate the proof on the example where p is the pro-
gram of Example 29, M = N = M1, and j = 0. Suppose that
there exists a path s from 0 to some point x in the target 0-border
of XN :

0 1
XM XN

t0

t1

x
x1

x0

s1 s2

We write x1 for the intersection of the path with the gluing face
and x0 for the beginning point of XN . The path s can be ex-
pressed as the concatenation of two paths s = s1 · s2 such
that s1(1) = s2(0) = x1. Moreover, the path s′1, from x0 to x1,
obtained as the projection of s1 onto the j-th target face of XM is
well-defined (i.e. does not go through a forbidden region): if it was
not the case, it would mean that there exists an obstruction which
was extended, but then the path s1 itself would not be valid since it
would cross the forbidden region:

0 1

t0

t1

xx1

x0
s′2

Therefore, the path s1 shows that XM is j-reachable, and the
path s′1 · s2 is a path in XN from the beginning point x0 to x.

Conversely, suppose that XM is j-reachable, i.e. there exists a
path s1 from the beginning of XM to a point x1 in the j-th target
face of XM , and there exists a path from the beginning x0 of XN
to x:

0 1

t0

t1

x
x1

x0

s1 s2

The space XM can be shown under (pointwise) supremums [24].
Therefore the path s′2 defined for any t ∈ ~I by s′2(t) = s2(t) ∨ x1
(drawn with a dotted line) is well-defined in XN and has x1 as
source and x as target. The path s1 · s′2, which is from 0 to x,
enables us to conclude.

Previous lemma shows in particular that there is a transition
path M j // M ′ in the automaton Sp if and only if M\jM ′
is j-reachable. This result enables us to “lift” any transition path in
the automaton to a trace of the process p∗:

Lemma 32. For any transition path in Sp

Mk0 j1 // Mk1 j2 // . . . jk
// Mkm (12)

there exists a total path in Xpv , called the lifting of the transition
path, where v is the n-dimensional vector such that vj is one plus
the number of occurrences of j in the labels of the edges occurring
in (12), with forbidden regions in copies of Xp extended according
to the matrices Mki (see Example 33 below).

Proof. If the transition path (12) is of length m = 0, the result is
immediate since the matrix Mk0 is alive and therefore there exists
a total path in XMk0

. If the transition path (12) is of length m = 1,
then by definition of the transitions in Sp there exists a total path in
Mk0 ⊕j1 Mk1 . We give here the idea of the proof for a path

Mk0 j1 // Mk1 j2 // Mk2

of length m = 2, which can easily be generalized to any longer
path. If j1 6= j2 then the result is easily obtained: by defini-
tion of the automaton, we know that there is a total path in both
XMk0

⊕j1XMk1
andXMk1

⊕j2XMk2
, i.e. by Lemma 31 the space

10 2011/7/16

XMk0
\j1XMk1

is j1-reachable and the space XMk1
\j2XMk2

is
j2-reachable, and we can conclude by Lemma 31 again. Now, sup-
pose that j1 = j2. The situation is more subtle here since it might
a priori happen that there is a total path in both XMk0

⊕j1 XMk1
and XMk1

⊕j2 XMk2
but not in XMk0

⊕j1 XMk1
⊕j2 XMk2

,
because Mk2 creates a deadlock with Mk0 , i.e. we have that the
space XMk0

\j1XMk1
\j1XMk2

contains a deadlock. However,
this case cannot occur. Namely, by Lemma 25, we have

XMk0
\j1XMk1

\j1XMk2
= XMk0

\j1X(Mk1\j1Mk2) (13)

and Mk1\j1Mk2 is alive and above Mk1 . Moreover, since by
definition of Sp, the matrix is Mk1 is maximally alive, we deduce
Mk1\j1Mk2 = Mk1 . Therefore the space (13) does not contain
any deadlock.

Example 33. Considering again the automaton of Example 29, the
transition paths

M0
1 // M0

0 // M0 M0
1 // M1

0 // M0 M0
0 // M0

1 // M1

respectively imply that there are total paths in the following spaces:

t0

t1

t0

t1

t0

t1

Notice that since the label of the first two transition paths are 10,
the witnessing paths are first going up (direction 1) and then right
(direction 0); and in the other way for the last transition path. More-
over, the holes are extended according to the Mi. For instance in
the second space, the lower left copy of Xp is extended according
to M0, the upper left copy of Xp according to M1 and the upper
right copy according to M0 (and the lower right copy is not ex-
tended).

Lemma 34. Suppose given a transition path of the form (12), then
any two paths in Xpv lifting this transition path (as described in
Lemma 32) are dihomotopic.

Proof. This can be deduced from the fact that in the space generated
by an alive matrix, two paths with the same source and target are
dihomotopic (Proposition 13).

Lemma 35. Every path in Xpv is a lifting of some transition path
in Sp.

So, Lemma 32 states that every transition path in Sp can be lifted
into a path in Xp and by Lemma 34 this lifting is uniquely defined
up to dihomotopy. The lifting operation which to every transition
path of Sp associate the dihomotopy class of the paths lifting it is
thus well-defined, and is surjective by Lemma 35. However, the
lifting operation is not injective. For instance, the two last paths of
Example 33 are homotopic and yet are respectively the lifting the
distinct transition paths

M0 1 // M1 0 // M1 and M0 0 // M0 1 // M1

This suggests that paths in the automaton should be considered
modulo a congruence identifying the two paths above: we write
Rp for the set of pairs of transition paths of length 2 of the form

M1 j // M2 j′ // M3 and M1 j′ // M ′2 j // M3

which lift into paths in

(M1 ⊕j M2)⊕j′ (M ′2 ⊕j M3)

These are called the relations of the automaton Sp. We write ≡
for the smallest congruence (wrt concatenation) on paths of Sp
containing these relations. In the following, we will consider paths
in Sp modulo this congruence (in fact Sp should be formalized as
an asynchronous graph whose independence tiles are specified by
Rp but we do not detail this here).
Example 36. The relations of the automaton of Example 29 are

M0 0 // M0 1 // M0 ≡ M0 1 // M1 0 // M0

M0 0 // M0 1 // M1 ≡ M0 1 // M1 0 // M1

M1 0 // M0 1 // M0 ≡ M1 1 // M1 0 // M0

M1 0 // M0 1 // M1 ≡ M1 1 // M1 0 // M1

Finally, two vertices of an automaton which are connected ma-
trices in the sense of Definition 14 should be identified because of
Proposition 15. We thus define

Definition 37. The reduced automaton S̃p associated to a pro-
gram p is the automaton Sp where connected vertices have been
identified.

This automaton thus enables us to provide a finite presentation of
the set of schedulings, in a sense close to group presentations [7]
(i.e. a finite set of generators, the automaton S̃p, and a relation ≡
finitely generated by Rp):

Theorem 38. The transition paths in the reduced automaton S̃p
considered modulo the congruence ≡ generated by Rp are in
bijection with schedulings in p∗.

The previously developed algorithm (Section 2) can be adapted
in order to compute the reduced scheduling automaton S̃p associ-
ated to a looping program p (in particular, the procedure for deter-
mining whether a matrix is alive can be modified in order to deter-
mine whether a matrix is j-reachable). For the lack of space, we do
not detail this here.

3.3 Application to static analysis
Now that we have the reduced scheduling automaton, we are in a
position to explain how one can perform static analysis by abstract
interpretation [5] on concurrent systems, in an economic way. The
systematic design and proof of correctness of such abstract analysis
is left for a future article, the aim of this section is to give an
intuition why the computations of Section 3 are relevant to static
analysis by abstract interpretation. The idea is to associate, to each
node M of the scheduling automaton S̃p, a set of values AM that
program variables can take if computation follows a scheduling
lifting a transition path whose last vertex is M . Among the actions
the program can take along this scheduling, we consider only the
greedy ones, that is the ones which execute all possible actions
permitted by the dihomotopy class of schedulings ending by M .

Suppose that we want to analyze the program

p∗ =
(
Pa. (a := a− 1) .Va

)∗∣∣∣(Pa.(a := a

2

)
.Va

)∗
(14)

What are the possible sets of values reached, for a, starting with
a ∈ [0, 1]? The associated scheduling automaton Sp has been
determined in Example 29 (this automaton is reduced) together
with relations, that we will not be using in this article, yet. In
many ways, this reduced scheduling automaton plays the role of
a compact control flow graph for the program we are analyzing.

We are now in a position to interpret the arrows of the schedul-
ing automaton as simple abstract transfer functions and produce a
system of equations for which we want to determine a least-fixed
point, to get the invariant of the program at the (multi-)control point
which is the pair of the heads of the loops of each process. Remem-
ber that we determined the two maximal alive matricesM0 andM1

11 2011/7/16

corresponding to the program p of (14) in Example 24. The greedy
executions of the program in XM0 and XM1 have the following
effect on a: respectively a := a/2 and a := a − 1. This inter-
prets the transfer functions associated to the self arrows on M0
and M1. The transfer function associated to the arrows from M0
to M1 (resp. from M1 to M0) are identity functions: they simply
indicate that we have to take the union of the values coming from
M0 (resp. from M1) with the effect of the transfer function associ-
ated to the self arrow onM0 (resp. onM1). This can be graphically
pictured as

M0[a := a
2]

0,1

�� 0 ..
M1[a := a− 1]

1mm

1,0

��

Given the abstract transfer functions on each edge of the
scheduling automaton, we produce as customary the abstract se-
mantic equations, one per node, by joining all transfer functions
correspond to ingoing edges to that node:{

A0 = A0
2 ∪A1

A1 = (A1 − 1) ∪A0

This set of semantic equations can be seen as a least-fixed point
equation, that we can solve using any of our favorite tool, for
instance Kleene iteration and widening/narrowing, on any abstract
domain, such as the domain of intervals as in the example below.

The least-fixed point formulation is thus that we are looking for
A∞ =

∨
[0,1] F where:

F

(
A0
A1

)
=

(
A0
2 ∪A1

(A1 − 1) ∪A0

)
where [0, 1] ⊆ A. A simple Kleene iteration on this monotonic
function F on the lattice of intervals over R reveals that

A∞0 = A∞1 =]−∞, 1]
We have presented this example in order to show how the reduced
scheduling automaton can be used in order to use usual static
analysis methods on concurrent programs, avoiding state-space
explosion as much as possible. It has the advantage of being short,
however it does not really show the main interest of our technique:
the scheduling automaton allows us to take in account properties
which tightly depend on the way the synchronizations constraint
the executions of the programs.

4. Future works
We have presented an algorithm in order to compute a finite pre-
sentation of the trace space of concurrent programs, which may
contain loops. An application to abstract interpretation has also de-
scribed but remains to be implemented. In order to give a simple
presentation of the algorithm, we have restricted ourselves here to
programs of a simple form (in particular, we have omitted non-
determinism). We shall extend our algorithm to more realistic pro-
gramming languages in a subsequent article. Our approach can
also be applied to languages with other synchronization primi-
tives (monitors, send/recv, etc.), for which there are simple geo-
metric semantics available. There are also many possible general
improvements of the algorithm; the most appealing one would per-
haps be to find a way to have a more modular way of computing
the total schedulings by combining locally computed schedulings
in ~T (X)(x, y) with varying endpoints x and y. In a near future,
the schedulings provided by the algorithm will be used by our
tool ALCOOL to analyze concurrent programs using abstract in-
terpretation, thus providing one of the first tools able to do such a
static analysis on concurrent programs without forgetting most of
the possible synchronizations during their execution.

On the theoretical side, we envisage to study in details and use
the structure of the index poset C(X) which contains much more
information than only the schedulings of the program. Namely,
it can be equipped with a structure of prodsimplicial set [22] (a
structure similar to simplicial sets but whose elements are products
of simplexes), whose geometric realization provides a topological
space which is homotopy equivalent to the trace space ~T (X) [24].
This essentially means that C(X) contains all the geometry of the
trace space and we plan to try to benefit from all the information
it provides about the possible computations of a program. Our
ALCOOL prototype actually implements this computation – using
a combinatorial presentation of the prodsimplicial sets known as
simploidal sets [23] – which will be reported elsewhere.

References
[1] The SPIN Model-Checker. http://spinroot.com/.

[2] M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis,
University of Sussex, 1988.

[3] C. Berge. Hypergraphs, volume 445. North Holland Mathematical
Library, 1989.

[4] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 1999.

[5] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of Principles Of Programming Lan-
guages, pages 269–282. ACM Press, 1979.

[6] P. Cousot and R. Cousot. Abstract interpretation based program test-
ing. In Proc. of the SSGRR 2000 Computer & eBusiness International
Conference, 2000.

[7] H. Coxeter and W. Moser. Generators and relations for discrete
groups. Springer-Verlag, 1980.

[8] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific,
1995.

[9] E. Dijkstra. The structure of the the operating system. Communication
of the ACM, 11(15):341–436, 1968.

[10] E. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1(2):115–138, 1971. ISSN 0001-5903.

[11] L. Fajstrup. Trace spaces of directed tori with rectangular holes.
Technical Report R-2011-08, Aalborg University, 2001.

[12] L. Fajstrup and S. Sokolowski. Infinitely running concurrent processes
with loops from a geometric viewpoint. ENTCS, 39(2), 2000. ISSN
1571-0661.

[13] L. Fajstrup, E. Goubault, and M. Raußen. Detecting deadlocks in
concurrent systems. CONCUR’98 Concurrency Theory, pages 332–
347, 1998.

[14] L. Fajstrup, M. Raußen, E. Goubault, and E. Haucourt. Components
of the fundamental category. Appl. Cat. Struct., 12(1):81–108, 2004.

[15] L. Fajstrup, M. Raußen, and E. Goubault. Algebraic topology and
concurrency. Theor. Comput. Sci., 357(1-3):241–278, 2006.

[16] P. Godefroid and P. Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. In Proc. of the
Third Workshop on Computer Aided Verification, volume 575, pages
417–428. Springer-Verlag, LNCS, 1991.

[17] E. Goubault and E. Haucourt. A practical application of geometric
semantics to static analysis of concurrent programs. In CONCUR,
pages 503–517, 2005.

[18] E. Goubault and E. Haucourt. Components of the fundamental cate-
gory II. Applied Categorical Structures, 15(4):387–414, 2007.

[19] E. Goubault and S. Mimram. Formal relationships between geometri-
cal and classical models for concurrency. CoRR, abs/1004.2818, 2010.

[20] M. Grandis. Directed Algebraic Topology, Models of Non-Reversible
Worlds. Number 13 in New Mathematical Monographs. Cambridge
University Press, 2009.

12 2011/7/16

http://spinroot.com/

[21] D. Kavvadias and E. Stavropoulos. Evaluation of an algorithm for the
transversal hypergraph problem. Algorithm Engineering, pages 72–
84, 1999.

[22] D. Kozlov. Combinatorial Algebraic Topology. Springer-Verlag, 2007.
[23] S. Peltier, L. Fuchs, and P. Lienhardt. Simploidals sets: Definitions,

Operations and Comparison with Simplicial Sets. Discrete Applied
Mathematics, 157:542–557, 2009.

[24] M. Raussen. Simplicial models of trace spaces. Alg. & Geom. Top.,
10:1683–1714, 2010.

[25] M. Shields. Concurrent machines. Computer Journal, 28, 1985.
[26] A. Valmari. A stubborn attack on state explosion. In Proc. of CAV’90.

LNCS, 1990.
[27] G. Winskel and M. Nielsen. Models for Concurrency, 1995.

13 2011/7/16

	Geometric semantics of concurrent processes
	An informal introduction
	A toy shared-memory concurrent language
	Trace semantics
	Geometric semantics

	Computing trace spaces
	Trace spaces
	The index poset
	Computing dihomotopy classes
	Extension to cubes touching boundaries
	An efficient implementation
	A benchmark: the n dining philosophers

	Programs with loops
	Paths in deloopings
	The scheduling automaton
	Application to static analysis

	Future works

