
Homotopy and ConcurrencyJeremy GunawardenaBRIMS, Hewlett-Packard LabsFilton Road, Stoke Gi�ordBristol BS12 6QZ, UKjhcg@hplb.hpl.hp.comSeptember 13, 1994appearing in theBulletin of the EATCS, 54, 184-193, October 94AbstractIn this paper we give a homotopy theoretic proof of a well-known result in databaseengineering: that 2-phase locking is safe. The proof gives an immediate intuitive reasonfor why the 2-phase locking condition implies safety. We point out a number of interestingopen questions regarding the interplay between homotopy and concurrency.Keywords: Homotopy theory, serializability, 2-phase locking, concurrency theory

0

1 IntroductionWhat has homotopy got to do with concurrency? At �rst sight it seems unlikely that thereshould be any relationship between these two subjects. After all, homotopy theory is aboutcontinuous objects while concurrency typically deals with discrete structures. In this paper Iwill try to show that, on the contrary, there may be a very natural relationship between thetwo.Instead of making a lot of abstract statements about homotopy and concurrency I would like towork through the proof of a theorem which all database engineers learn at their Mother's knee:that \two phase locking is safe". This result has been of considerable practical signi�cance andstill remains an important weapon in the database engineer's arsenal. The proof which I shallgive is very simple and only makes use of homotopy in the most elementary way but it doesgive us a concrete example of the potential relationship between homotopy and concurrency.In recent years a number of people have used ideas from homotopy theory and algebraictopology to study concurrency. Vaughan Pratt, [15], Rob van Glabbeek, [17], Eric Goubaultand Thomas Jensen, [8, 9], have developed a theory of \higher dimensional automata" asa semantic framework for true concurrency. In a di�erent direction, Soma Chaudhuri, [4],Michael Saks and Fotios Zaharoglu, [16], Elizabeth Borowsky and Eli Gafni, [2], MauriceHerlihy and Nir Shavit, [10, 11, 12], have found important generalisations of the classicalFischer, Lynch and Patterson Theorem, [7], using arguments from combinatorial and algebraictopology. Serious discussion of these contributions would exceed my brief here. This paper isan appetizer; the main course awaits those who are tempted to follow the pointers.2 Two phase locking is safeImagine a centralized database acted upon concurrently by a �nite number of transactions. Inorder to ensure that di�erent transactions do not attempt to update the same record at thesame time, each record is protected by a lock, or semaphore. A transaction which wishes toaccess a record must �rst acquire the lock and by doing so will lock out the others. We shallassume that each transaction consists of a sequence of record accesses known in advance. Ofcourse a transaction might do some complicated operations on the data which it accesses butwe are only interested in its interaction with the database and not on the details of what it doeswith the data. Using Djikstra's P; V notation for semaphores, [6, x3.2], we can convenientlywrite down a transaction in the form of a string likePaPbV aPcV cV bwhere Pa denotes the acquisition of the lock for record a and V a denotes the act of relinquishingit. Note that in any pre�x of such a string, the di�erence between the number of occurrencesof Pa and the number of occurrences of V a, is either 0 or 1. For our purposes we can assumethat a transaction only accesses a record at most once.The execution of a set of transactions is modelled by some interleaving of the individual Pand V actions in each transaction. This is standard interleaving semantics and you can easilywrite down a CCS expression which captures the behaviour. Alternatively, you can imagine ascheduler sitting between the transactions and the database and choosing non-deterministicallyat every step which transaction should go next.1

There is a simple geometric way of representing such semaphore programmes which goes backto Djikstra. Think of the sequence of P and V actions in a transaction as being representedby a sequence of real numbers. Which sequence of real numbers does not really matter. Theimportant point is that the ordering of P and V actions in the transaction is faithfully capturedby the numerical ordering on the corresponding numbers. It is convenient to assume that eachtransaction starts at the number 0, then performs all its record accesses and �nally �nishes atthe number 1. Hence each P and V action is represented by some real number in the interval(0; 1). If there are n transactions, T1; � � � ; Tn then we can think of Ti as being represented bythe i-th coordinate axis in Euclidean space Rn. The state of the system at any time is thenrepresented by a point in Rn whose coordinates correspond to the actions which have just beenexecuted by each transaction. The system consisting of the two transactionsT1 = PbPaV bPcV aV cT2 = PaPbV aV bcan be represented by the geometric �gure below.

- T1Pb Pa V b Pc V a V c 1

6T2

PaPb
V aV b
1

ab (1)
The big square box in the picture represents the unit cube f~x 2 Rn j 0 � xi � 1g. Thetime evolution of the system describes a path leading from the origin, (0; � � � ; 0), to the point(1; � � � ; 1). Such execution paths are constrained to always increase in each coordinate; timecannot go backwards. They also have a staircase structure in that they consist only of linearsegments parallel to the co-ordinate axes. Each segment corresponds to the execution of oneof the transactions.The locks on the records delineate certain \forbidden" regions of space which the system cannotenter. In two dimensions these forbidden regions take the form of boxes, or rectangles. Theexample above shows two such boxes, indicated in \dashed" outline, corresponding to the tworecords, a and b, which are accessed by both transactions. The record c which is accessed byT1 but not by T2 does not give rise to a forbidden region, for obvious reasons.2

The execution paths of the system must lie outside the forbidden regions. Of course, it ispossible for an execution path to get itself into a situation from which it cannot progressfurther. For instance, the two forbidden regions in (1) demarcate a corner, with coordinates(Pa; Pb), which will trap any path that goes diagonally outwards from the origin. Once thepath has reached this corner it cannot progress without either violating one of the forbiddenboxes or running time backwards. This corresponds to a deadlock.This geometric way of representing the behaviour of semaphore programmes seems to have�rst appeared in [5] where it is attributed, without reference, to Djikstra. It is sometimesreferred to as a \progress graph". The problem of detecting deadlocks in such systems hasgenerated some elegant work which exploits the underlying geometry; see, for instance, thepaper by Carson and Reynolds, [3]. Semaphore programmes are more subtle than one mightthink at �rst sight, especially when there are more than two transactions. An useful exampleto think about is the followingT1 = PxPyPzV xPwV zV yV wT2 = PuPvPxV uPzV vV xV zT3 = PyPwV yPuV wPvV uV v (2)which is due to Lipski and Papadimitriou, [13, x5.3], and is discussed further by Carson andReynolds, [3, Appendix]. This example is deadlock free but proving this is not easy.In dimensions higher than two, the forbidden regions are no longer simple rectangular boxes.Drawing these regions even in dimension three is beyond my TEX expertise but it is quite easyto describe them. It will be helpful to use the standard partial order on vectors in Rn whichcomes from the product ordering on R: ~x � ~y if xi � yi for all 1 � i � n. If ~x � ~y then thebox with corners ~x and ~y is just the region f~v j ~x � ~v � ~yg. Forbidden regions are made upof such boxes in the following way. Suppose that we have n transactions T1; � � � ; Tn and thata is a record which is accessed by some subset of transactions whose subscripts lie in the setS � f1; � � � ; ng. For each pair i; j 2 S with i 6= j, consider the box with corners ~x and ~y wherexk = (0 if k 62 fi; jgPa otherwise and yk = (1 if k 62 fi; jgV a otherwise:Clearly, ~x < ~y since no transaction can relinquish a lock without �rst acquiring it. Theforbidden region corresponding to the record a is then the union of such boxes obtained fromall possible choices of distinct i; j 2 S. There are hence p(p � 1)=2 boxes making up eachforbidden region, where p is the cardinality of S.In dimension two there is only one box for each shared record, as in (1) above and the forbiddenregions are convex. This is no longer the case in higher dimensions but the forbidden regionsare, at least, \star shaped". To make this precise let us use the same notation as in the previousparagraph and consider the box with corners ~a and ~b whereak = (0 if k 62 SPa otherwise and bk = (1 if k 62 SV a otherwise:It is easy to see that this box is contained in each box which makes up the forbidden region.I shall call this box the \centre" of the forbidden region. It has the following simple property.Suppose that ~u is in the centre of some forbidden region and that ~v is also in the same forbiddenregion. Then the line segment joining ~u to ~v lies entirely in the forbidden region. This is easy3

to see since ~v must lie in one of the boxes which make up the forbidden region and any box isconvex. This is what I mean by \star shaped".So far I have not explained what two phase locking is about. Database engineers are muchconcerned with ensuring the consistency of a database in the face of multiple transactionsaccessing the same records for di�erent purposes. A simple way of ensuring such consistencyis to force the transactions to execute in series, one after the other. The trick is to allowsome level of concurrency without compromising the consistency. A particular execution ofa set of transactions is said to be serializable if it has the same e�ect on the database assome serial execution of the same transactions. A transaction system is said to be safe if anynon-deadlocked execution of it is serializable.It is important to be clear about what it means for two transactions to \have the same ef-fect". Suppose that record a is a single variable which happens to have the value 2 and thattransaction T1 is the operation a := a + 2 while T2 is the operation a := 2a. Well, T1 and T2certainly have the same e�ect on the record a; the value of a is 4 no matter which transaction isapplied. However, this is an accident of the particular state of the database and the particularoperations in the transactions. What is meant by \have the same e�ect" is that the databaseshould be the same independently of its initial state and of the particular operations in thetransactions.Two phase locking is a rule for ensuring safety. It is very simple to state: each transaction mustacquire all its locks before relinquishing any. In other words each transaction goes through twophases: in the �rst phase, the growing phase, it acquires all its locks and in the second phase, theshrinking phase, it gives them all back. What happens within each phase is unimportant andlocks can be acquired and given up in any order. Two phase locking is a popular, albeit rathervenerable, method; see [1, Chapter 3] and the references cited therein for further information.The transaction system in (1) is not two phase locked since T1 acquires the lock for record cafter relinquishing the lock for record b. However, since the record c is not shared, it is not hardto see that the system is still safe. 2PL is not a necessary condition for safety. The system (2) isalso not two phase locked but this example is not safe, as Lipski and Papadimitriou point out,[13, x5.3]. One of the basic results in database theory is that \2PL is safe": any transactionsystem which is two phase locked is necessarily safe. Note that we are not concerned withdeadlock problems. The transaction system in (1) certainly has a deadlock. It is up to thescheduler either to detect this in advance and to schedule the transactions so as to avoid itor to wait for the deadlock to occur and roll back the execution (ie: to run time backwards).Deadlock detection and recovery are important issues for database engineers but they do notconcern us here; see [1] for more information.Why does 2PL work? It is at this point that ideas from topology become useful. Considertwo paths of a transaction system which are homotopic. To make this precise, think of a pathas a continuous function, � : I ! Rn, where I = [0; 1] is the closed unit interval. Two paths,� and �, are said to be homotopic if there exists a continuous function F : I � I ! Rn suchthat F (x; 0) = �(x) and F (x; 1) = �(x) for all x 2 I. All our homotopies will keep the endpoints �xed: F (0; t) = F (0; 0) = F (1; 0) and F (1; t) = F (1; 0) = F (1; 1) for all t 2 I. Supposethen that � and � are execution paths (ie: paths which correspond to actual executions of thesystem) and that � and � are homotopic through a homotopy which does not encroach on anyforbidden region. That is, F (I � I) does not intersect any forbidden region. In this case thetwo executions must have exactly the same eventual e�ect on the database. Why? Since the4

homotopy does not cross a forbidden region, I claim that it cannot alter the order in which thetransactions access a shared record. If this is the case then clearly each execution must havethe same eventual e�ect on the database.The claim requires a little extra justi�cation. To see why it must be so, assume that Ti andTj are two transaction which both access record a. Assume further, without loss of generality,that i < j. Consider what we get when we project the transaction system onto the i and jaxes. That is, consider the projection � : Rn ! R2 given by �(~x) = (xi; xj). Note that �is monotonic. The two execution paths project to two execution paths from (0; 0) to (1; 1).The original homotopy between the paths in Rn also projects to a homotopy in R2. Thishomotopy must avoid the box in the unit square with corners (Pa; Pa) and (V a; V a), for ifnot, the original homotopy would intersect the forbidden region for record a. (Why?) Butthen it must be the case that the projected paths both go around \on the same side" of the2-dimensional box with corners (Pa; Pa) and (V a; V a). The situation is illustrated below.Note the importance of keeping the end points �xed during the homotopy.

- TiPaV a...
1 6Tj

Pa V a� � � 1
a

It follows that Ti and Tj must access a in the same order on both execution paths: eitherTi acquires the lock for a �rst on both paths (if the paths go below and to the right) or Tjacquires the lock �rst on both paths (if the paths go to the left and above). Since this is truefor all pairs of transactions and all shared records, the claim made above is justi�ed.Serializability requires that a path have the same e�ect as some serial execution of the trans-actions. The serial executions correspond to going around the one dimensional \boundary",or \1-skeleton of the cubical complex" as a topologist would say, executing one transactioncompletely before going on to another. We can now begin to understand the signi�cance oftwo phase locking. Let ci denote a number on the i-th coordinate axis that lies between thetwo phases of the corresponding transaction. That is, it occurs after all the P actions andbefore any of the V actions. Such a number can always be found by virtue of the two phaselocking condition. It is easy to see that the point with coordinates (c1; � � � ; cn) must lie in thecentre of each forbidden region. But now consider a radial projection from this point onto theboundary of the unit cube. Because of the \star shaped" property of forbidden regions, whichwe described above, this radial projection provides a homotopy, keeping the end points �xed,which carries any non-deadlocked execution path into the boundary of the unit cube. You justslide the path along the ray away from ~c until the path reaches the boundary; see the picturein (3) below.One point to bear in mind is that this sliding does not necessarily give rise to a path whichrepresents an execution: the path may no longer be composed of steps parallel to the co-5

ordinate axes. It is at this point that we make use of the non-discrete nature of the underlyingtopological space.Once the path is in the boundary of the unit cube, it can be broken up into a number of segmentseach of which lies in a face of the cube. These segments no longer start and end in the cornersbut this will not a�ect the remainder of the argument. Each face of the cube corresponds to atransaction system obtained from T1; � � � ; Tn by omitting one of the transactions, say Tk, eitherbefore Tk has started (for the face containing points with xk = 0) or after Tk has �nished (forthe face containing points with xk = 1). We can repeat the argument using as a centre for theradial projection either(c1; � � � ; ck�1; 0; ck+1; � � � ; cn) or (c1; � � � ; ck�1; 1; ck+1; � � � ; cn)according to which face we are in. Proceeding in this way by iterated radial projections, weend up eventually in the 2-skeleton with faces of dimension two, corresponding to some pairof transactions from the original set. The forbidden regions in this case are convex and it isparticularly easy to see how the radial homotopy works. We have sketched it below.

-1

61
t@@@@@@@I ���������	

(3)
Any path segment is moved outwards by the homotopy into the 1-skeleton. Note that the pointson the boundary are left �xed by the radial projection. It follows that we can �t together allthe various segments to end up, �nally, with a path that stays within the 1-skeleton.At this point we are essentially �nished. However, we have to pay the price for our temerityin using continuous methods. The path that we �nally end up with may not represent a validexecution of the system. Suppose that � is our original path and that ! is the �nal path atthe end of the iterated radial projections. It is quite possible that !(t), as t runs from 0 to1, goes along an edge in a negative direction, corresponding to time running backwards. It isinstructive to imagine some staircase execution path superimposed on the unit square in (3)and to work out what happens to it under the radial projection. You will quickly observe that!(t) can wobble about all over the place. How do we get around this?Choose one of the coordinate axes, say i. We are going to observe what happens to !(t) whenwe project the path onto this axis. Let � : Rn ! R be the projection �~x = xi. (I will omit6

brackets from the argument of � for clarity.) What can we say about �!(t)? The path ! isobtained by successive radial projections in various faces of the unit n-cube. These projectionshave the following nice property. If ~y is obtained from ~x by radial projection from ~u, then ~y, ~xand ~u lie on a straight line in the order in which I have just written them. But � is a linear andorientation preserving function. It follows that �~y, �~x and �~u must also lie on a straight line(which is obvious!) and in the same order (which is the important point). Since the centres ofthe radial projections are chosen consistently, we deduce the following:��(t) � ci =) �!(t) � ��(t) and ��(t) � ci =) �!(t) � ��(t):We can now work out what happens to �!. It can oscillate for a long time in the interval[0; ci). It must eventually go through the point ci, since, after all, �! must eventually reach1. However, once it has passed ci, it can never return because the original path �, beingmonotonic, never does so. The same behaviour occurs in each direction i 2 f1; � � � ; ng. Itis now easy to see that by a homotopy, still keeping the end points �xed, we can move ! toremove all the \wobbles". We are left with a path which corresponds to a bona �de serializedexecution. We deduce that 2PL is safe.3 Discussion of the proofI have omitted some of the details in the above proof but the reader should have no di�cultyin �lling in the gaps. I have not seen it published anywhere but that may well be due to myignorance of the literature. I expect it is now well known, at least among the experts citedbelow. My apologies in advance to anyone whom I fail to mention.The fact that homotopy of paths implies equivalence (in the sense that of having the same e�ecton the database) was �rst pointed out by Yannakakis, Papadimitriou and Kung, but only forsystems in dimension 2, [19] and [13, Theorem 1]. They also gave a characterisation of safety indimension 2 by requiring that a \convex closure"1 of the forbidden regions be connected, [19,Theorem 3]. This characterisation does not extend to higher dimensions because connectednessof the closure no longer guarantees safety, [13, x5.3]; indeed, (2) is a counterexample. Indimension 2, the 2PL condition forces the forbidden regions to have a connected closure andthis gives a geometric intuition for why 2PL works, [19, x4]. However, this intuition fails inhigher dimensions. As we have seen, a better intuition is that 2PL provides a common pointfrom which a radial homotopy is possible. This works in all dimensions.The characterisation of safety in dimension 2 was later used by Lipski and Papadimitriou togive an elegant O(n log n log log n) algorithm for checking safety in two transaction systemswith n records, [13].The paper by Yannakakis, Papadimitriou and Kung contains much more. They give a char-acterisation of safety in any dimension and use this to prove not only that 2PL is safe (inany dimension) but also that other forms of locking, such as Tree Locking, are safe. However,homotopy plays no role in this.It is interesting to speculate on whether a homotopical characterisation of safety is possible.The proof in x2 establishes rather more than I stated. Consider the complement of the forbidden1This is not the convex closure commonly used in mathematics. See [13] or [19] for precise details.7

regions within the unit cube. In general, this topological space will not be connected althoughit will have a �nite number of components. Let C denote the component which contains theorigin. C must contain the 1-skeleton since the origin is in the 1-skeleton and no part of the1-skeleton can be in a forbidden region. Otherwise, the corresponding transaction would havea hard time making progress! The proof in x2 establishes that C deformation retracts ontothe 1-skeleton. We recall that if i : A � X is the inclusion of a subspace then X is said todeformation retract onto A if there exists a continuous function p : X ! A such that pi ishomotopy equivalent to 1A, the identity function on A. The inductive argument given in x2made use of successive radial homotopies and these can be patched together to give such adeformation retraction. Note that this is not any old deformation retraction: it has furtherproperties which were important to the �nal proof of safety. Does this give us a characterisationof safety? In other words, is safety equivalent to the 1-skeleton being a specialised deformationretract of C?Let me know if you �nd out.It is a pity that the proof in x2 is not more widely available because it provides an immediateintuitive understanding of why 2PL works. I was once approached by a colleague at Hewlett-Packard who had been implementing a database system. He had been reading about lockingmechanisms and serializability but had had a hard time understanding the theory behind twophase locking. When he saw the proof above he said \But that's obvious!" and went awaymuttering disgustedly about people who made things more di�cult than they had to be.There are good reasons for this di�culty. The topological ideas above work nicely on thisparticular problem but it is hard to see how to export them to other situations. A standardway of deducing the two phase locking theorem is given in [1, x3.3]. It is based on the Seri-alizability Theorem, [1, Theorem 2.1], which gives a necessary and su�cient condition for asingle execution to be serializable. This is analogous to the homotopy of paths condition estab-lished in x2. I should point out that modern database theory has moved on considerably fromsimple-minded transaction systems like those described above. Nowadays one must contendwith distributed databases, nested transactions, multiple versions, replication, recovery fromaborts, etc. The recent book by Lynch, Merritt, Weihl and Fekete, [14], gives an account of themodern approach which is based on the Atomicity Theorem, [14, Theorem 5.24], a substantialgeneralisation of the classical Serializability Theorem.Is there a homotopy theoretic analogue of the Atomicity Theorem?The proof of 2PL in x2 illustrates how topological ideas can be used to reason about concur-rency. The state of a system is represented by a point in some topological space; an executionof a system by some path in the same space. Non-determinism is catered for by the possibil-ity of several paths from initial state to �nal state. Homotopy indicates when executions areequivalent in some appropriate sense and the topology of the space dictates the properties andbehaviour of the system. The spatial qualities of this representation arise from the commuta-tivity of independent actions. (To put it another way, the holes in the space arise from mutualexclusion.) Commutativity has appeared in various guises in concurrency. To give just oneexample, Valmari, Godefroid, Wolper and others, [18], have used it to circumvent the stateexplosion problem. Commutativity is applied at each state, or locally, as a topologist wouldsay, to show that certain paths need not be searched (because they are equivalent, in somesense, to paths which are searched). It is tempting to think of this as a form of homotopicalcollapsing, leading to an equivalent, but smaller, topological space.8

Can this be made precise?The possibility of a comprehensive theory of homotopy and concurrency is very attractive, atleast to me. (The fact that I was an algebraic topologist before I got interested in concurrencyhas absolutely no bearing on this.) The spatial representation of behaviour is very intuitive,as we have seen. Admittedly, this intuition falls o� quickly with increasing dimension. How-ever, geometrical thinking has often shown the way forward when analysis and algebra (andlogic?) have proved inadequate to the task. Poincar�e, the father of algebraic topology, wasdeeply inuenced to develop \qualitative methods" by the intransigence of nonlinear di�eren-tial equations to the standard methods of analysis. Since Poincar�e's time a large number ofpowerful mathematical tools have been developed to study homotopical properties. It wouldbe tremendously exciting if these tools could be put to use to prove deeper results about con-currency. We might be able to give my engineering colleague at Hewlett-Packard a few moretheorems like \2PL is safe" to carry around with him as mental building blocks for designingcomputer systems. The work of Herlihy et al, which I cited in the Introduction, suggests thatthis possibility is not as far-fetched, nor as far away, as one might have thought.AcknowledgmentsA number of people suggested that I write up the 2PL proof after seeing it sketched ontablecloths and scraps of paper at various venues. I am very grateful to Mogens Nielsen forproviding a suitable opportunity for doing so and for putting up with my homotopical attitudetowards deadlines (stretched but not broken!). My thanks also to Eric Goubault for manystimulating conversations and to Maurice Herlihy for sending me copies of his latest papers.References[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery inDatabase Systems. Addison-Wesley, 1987.[2] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asyn-chronous computation. In Proceedings 25th Annual ACM STOC, 1993.[3] S. D. Carson and P. F. Reynolds. The geometry of semaphore programs. ACM TOPLAS,9(1):25{53, 1987.[4] S. Chaudhuri. More choices allow more faults: set consensus problems in totally asyn-chronous systems. Information and Computation, 105:132{158, 1993.[5] E. G. Co�man, M. J. Elphick, and A. Shoshani. System deadlocks. ACM ComputingSurveys, 3(2):67{78, 1971.[6] E. W. Djikstra. Co-operating sequential processes. In F. Genuys, editor, ProgrammingLanguages, pages 43{112. Academic Press, 1968.[7] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossibility of distributed consensuswith one faulty process. Journal of the ACM, 32:374{382, 1985.9

[8] E. Goubault. Domains of higher dimensional automata. In E. Best, editor, CONCUR'93.Springer LNCS 715, 1993.[9] E. Goubault and T. P. Jensen. Homology of higher dimensional automata. In W. R.Cleaveland, editor, CONCUR'92. Springer LNCS 630, 1992.[10] M. Herlihy. A tutorial on algebriac topology and distributed computation. Draft availablefrom herlihy@crl.dec.com, 1994.[11] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks.In Proceedings 25th Annual ACM STOC, 1993.[12] M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-freecomputation. In Proceedings 26th Annual ACM STOC, 1994.[13] W. Lipski and C. H. Papadimitriou. A fast algorithm for testing for safety and detectingdeadlocks in locked transaction systems. Journal of Algorithms, 2:211{226, 1981.[14] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann,1994.[15] V. Pratt. Modeling concurrency with geometry. In Proceedings 18th ACM Symposium onPOPL, 1991.[16] M. Saks and F. Zaharoglou. Wait free k-set agreement is impossible: the topology ofpublic knowledge. In Proceedings 25th Annual ACM STOC, 1993.[17] R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Draft availablefrom rvg@cs.stanford.edu, 1991.[18] P. Wolper and P. Godefroid. Partial order methods for temporal veri�cation. In E. Best,editor, CONCUR'93. Springer LNCS 715, 1993.[19] M. Yannakakis, C. H. Papadimitriou, and H. T. Kung. Locking policies: safety andfreedom from deadlock. In Proceedings 29th IEEE Symposium on FOCS, pages 286{297,1979.

10

