Homotopy and Concurrency

Jeremy Gunawardena

BRIMS, Hewlett-Packard Labs
Filton Road, Stoke Gifford
Bristol BS12 6QZ, UK
jhcg@hplb.hpl.hp.com

September 13, 1994

appearing in the
Bulletin of the EATCS, 54, 184-193, October 94

Abstract

In this paper we give a homotopy theoretic proof of a well-known result in database
engineering: that 2-phase locking is safe. The proof gives an immediate intuitive reason
for why the 2-phase locking condition implies safety. We point out a number of interesting
open questions regarding the interplay between homotopy and concurrency.

Keywords: Homotopy theory, serializability, 2-phase locking, concurrency theory

1 Introduction

What has homotopy got to do with concurrency? At first sight it seems unlikely that there
should be any relationship between these two subjects. After all, homotopy theory is about
continuous objects while concurrency typically deals with discrete structures. In this paper I
will try to show that, on the contrary, there may be a very natural relationship between the
two.

Instead of making a lot of abstract statements about homotopy and concurrency I would like to
work through the proof of a theorem which all database engineers learn at their Mother’s knee:
that “two phase locking is safe”. This result has been of considerable practical significance and
still remains an important weapon in the database engineer’s arsenal. The proof which I shall
give is very simple and only makes use of homotopy in the most elementary way but it does
give us a concrete example of the potential relationship between homotopy and concurrency.

In recent years a number of people have used ideas from homotopy theory and algebraic
topology to study concurrency. Vaughan Pratt, [15], Rob van Glabbeek, [17], Eric Goubault
and Thomas Jensen, [8, 9], have developed a theory of “higher dimensional automata” as
a semantic framework for true concurrency. In a different direction, Soma Chaudhuri, [4],
Michael Saks and Fotios Zaharoglu, [16], Elizabeth Borowsky and Eli Gafni, [2], Maurice
Herlihy and Nir Shavit, [10, 11, 12], have found important generalisations of the classical
Fischer, Lynch and Patterson Theorem, [7], using arguments from combinatorial and algebraic
topology. Serious discussion of these contributions would exceed my brief here. This paper is
an appetizer; the main course awaits those who are tempted to follow the pointers.

2 Two phase locking is safe

Imagine a centralized database acted upon concurrently by a finite number of transactions. In
order to ensure that different transactions do not attempt to update the same record at the
same time, each record is protected by a lock, or semaphore. A transaction which wishes to
access a record must first acquire the lock and by doing so will lock out the others. We shall
assume that each transaction consists of a sequence of record accesses known in advance. Of
course a transaction might do some complicated operations on the data which it accesses but
we are only interested in its interaction with the database and not on the details of what it does
with the data. Using Djikstra’s P,V notation for semaphores, [6, §3.2], we can conveniently
write down a transaction in the form of a string like

PaPbVaPcVcVb

where Pa denotes the acquisition of the lock for record @ and Va denotes the act of relinquishing
it. Note that in any prefix of such a string, the difference between the number of occurrences
of Pa and the number of occurrences of Va, is either 0 or 1. For our purposes we can assume
that a transaction only accesses a record at most once.

The execution of a set of transactions is modelled by some interleaving of the individual P
and V actions in each transaction. This is standard interleaving semantics and you can easily
write down a CCS expression which captures the behaviour. Alternatively, you can imagine a
scheduler sitting between the transactions and the database and choosing non-deterministically
at every step which transaction should go next.

There is a simple geometric way of representing such semaphore programmes which goes back
to Djikstra. Think of the sequence of P and V actions in a transaction as being represented
by a sequence of real numbers. Which sequence of real numbers does not really matter. The
important point is that the ordering of P and V actions in the transaction is faithfully captured
by the numerical ordering on the corresponding numbers. It is convenient to assume that each
transaction starts at the number 0, then performs all its record accesses and finally finishes at
the number 1. Hence each P and V action is represented by some real number in the interval
(0,1). If there are n transactions, 1, --, 7, then we can think of T; as being represented by
the ¢-th coordinate axis in Euclidean space R". The state of the system at any time is then
represented by a point in R™ whose coordinates correspond to the actions which have just been
executed by each transaction. The system consisting of the two transactions

Ty = PbPaVbPcVaVc
Ty = PaPbVaVb

can be represented by the geometric figure below.

b
1
Vbr b~~~ =
| | (1)
Vaf | gm---to---y
| |
| |
| |
o l |
| |
e |
| |
Par L= - J
| | | | | | T
Pb Pa Vb Pc Va Ve 1 !

The big square box in the picture represents the unit cube {# € R" | 0 < z; < 1}. The
time evolution of the system describes a path leading from the origin, (0,---,0), to the point
(1,---,1). Such execution paths are constrained to always increase in each coordinate; time
cannot go backwards. They also have a staircase structure in that they consist only of linear
segments parallel to the co-ordinate axes. Each segment corresponds to the execution of one
of the transactions.

The locks on the records delineate certain “forbidden” regions of space which the system cannot
enter. In two dimensions these forbidden regions take the form of boxes, or rectangles. The
example above shows two such boxes, indicated in “dashed” outline, corresponding to the two
records, a and b, which are accessed by both transactions. The record ¢ which is accessed by
T but not by 75 does not give rise to a forbidden region, for obvious reasons.

The execution paths of the system must lie outside the forbidden regions. Of course, it is
possible for an execution path to get itself into a situation from which it cannot progress
further. For instance, the two forbidden regions in (1) demarcate a corner, with coordinates
(Pa, Pb), which will trap any path that goes diagonally outwards from the origin. Once the
path has reached this corner it cannot progress without either violating one of the forbidden
boxes or running time backwards. This corresponds to a deadlock.

This geometric way of representing the behaviour of semaphore programmes seems to have
first appeared in [5] where it is attributed, without reference, to Djikstra. It is sometimes
referred to as a “progress graph”. The problem of detecting deadlocks in such systems has
generated some elegant work which exploits the underlying geometry; see, for instance, the
paper by Carson and Reynolds, [3]. Semaphore programmes are more subtle than one might
think at first sight, especially when there are more than two transactions. An useful example
to think about is the following

T, = PxPyPzVazPwVzVyVw
T, = PuPvPzVuPzVoVaVz (2)
T3 = PyPwVyPuVwPuvVuVo

which is due to Lipski and Papadimitriou, [13, §5.3], and is discussed further by Carson and
Reynolds, [3, Appendix]. This example is deadlock free but proving this is not easy.

In dimensions higher than two, the forbidden regions are no longer simple rectangular boxes.
Drawing these regions even in dimension three is beyond my TEX expertise but it is quite easy
to describe them. It will be helpful to use the standard partial order on vectors in R™ which
comes from the product ordering on R: # < i if x; < y; for all 1 < i < n. If Z < ¢ then the
box with corners # and ¢ is just the region {7 | # < ¥ < ¢/}. Forbidden regions are made up
of such boxes in the following way. Suppose that we have n transactions 17,---,7T;, and that
a is a record which is accessed by some subset of transactions whose subscripts lie in the set
S C{1,---,n}. For each pair i,j € S with ¢ # j, consider the box with corners & and § where

o {o if k ¢ {i,5} amd g — {1 it k ¢ {i,5}

Pa otherwise Va otherwise.

Clearly, ¥ < ¢ since no transaction can relinquish a lock without first acquiring it. The
forbidden region corresponding to the record a is then the union of such boxes obtained from
all possible choices of distinct ¢,j € S. There are hence p(p — 1)/2 boxes making up each
forbidden region, where p is the cardinality of S.

In dimension two there is only one box for each shared record, as in (1) above and the forbidden
regions are convex. This is no longer the case in higher dimensions but the forbidden regions
are, at least, “star shaped”. To make this precise let us use the same notation as in the previous
paragraph and consider the box with corners @ and b where
{0 ifk ¢S {1 ifk ¢S
ap = b, =

. d = .
Pa otherwise an Va otherwise.

It is easy to see that this box is contained in each box which makes up the forbidden region.
I shall call this box the “centre” of the forbidden region. It has the following simple property.
Suppose that i is in the centre of some forbidden region and that ¢/ is also in the same forbidden
region. Then the line segment joining « to ¥ lies entirely in the forbidden region. This is easy

to see since ¥ must lie in one of the boxes which make up the forbidden region and any box is
convex. This is what I mean by “star shaped”.

So far I have not explained what two phase locking is about. Database engineers are much
concerned with ensuring the consistency of a database in the face of multiple transactions
accessing the same records for different purposes. A simple way of ensuring such consistency
is to force the transactions to execute in series, one after the other. The trick is to allow
some level of concurrency without compromising the consistency. A particular execution of
a set of transactions is said to be serializable if it has the same effect on the database as
some serial execution of the same transactions. A transaction system is said to be safe if any
non-deadlocked execution of it is serializable.

It is important to be clear about what it means for two transactions to “have the same ef-
fect”. Suppose that record a is a single variable which happens to have the value 2 and that
transaction 77 is the operation a := a + 2 while T is the operation a := 2a. Well, T7 and T5
certainly have the same effect on the record a; the value of @ is 4 no matter which transaction is
applied. However, this is an accident of the particular state of the database and the particular
operations in the transactions. What is meant by “have the same effect” is that the database
should be the same independently of its initial state and of the particular operations in the
transactions.

Two phase locking is a rule for ensuring safety. It is very simple to state: each transaction must
acquire all its locks before relinquishing any. In other words each transaction goes through two
phases: in the first phase, the growing phase, it acquires all its locks and in the second phase, the
shrinking phase, it gives them all back. What happens within each phase is unimportant and
locks can be acquired and given up in any order. Two phase locking is a popular, albeit rather
venerable, method; see [1, Chapter 3] and the references cited therein for further information.

The transaction system in (1) is not two phase locked since T} acquires the lock for record ¢
after relinquishing the lock for record . However, since the record c is not shared, it is not hard
to see that the system is still safe. 2PL is not a necessary condition for safety. The system (2) is
also not two phase locked but this example is not safe, as Lipski and Papadimitriou point out,
[13, §5.3]. One of the basic results in database theory is that “2PL is safe”: any transaction
system which is two phase locked is necessarily safe. Note that we are not concerned with
deadlock problems. The transaction system in (1) certainly has a deadlock. It is up to the
scheduler either to detect this in advance and to schedule the transactions so as to avoid it
or to wait for the deadlock to occur and roll back the execution (ie: to run time backwards).
Deadlock detection and recovery are important issues for database engineers but they do not
concern us here; see [1] for more information.

Why does 2PL work? It is at this point that ideas from topology become useful. Consider
two paths of a transaction system which are homotopic. To make this precise, think of a path
as a continuous function, o : I — R", where I = [0, 1] is the closed unit interval. Two paths,
« and [, are said to be homotopic if there exists a continuous function F : I x I — R such
that F(x,0) = a(x) and F(z,1) = B(x) for all € I. All our homotopies will keep the end
points fixed: F(0,t) = F(0,0) = F(1,0) and F(1,t) = F(1,0) = F(1,1) for all t € I. Suppose
then that o and 3 are execution paths (ie: paths which correspond to actual executions of the
system) and that o and are homotopic through a homotopy which does not encroach on any
forbidden region. That is, F/(I x I) does not intersect any forbidden region. In this case the
two executions must have exactly the same eventual effect on the database. Why? Since the

homotopy does not cross a forbidden region, I claim that it cannot alter the order in which the
transactions access a shared record. If this is the case then clearly each execution must have
the same eventual effect on the database.

The claim requires a little extra justification. To see why it must be so, assume that 7; and
T; are two transaction which both access record a. Assume further, without loss of generality,
that ¢ < j. Consider what we get when we project the transaction system onto the 7 and j
axes. That is, consider the projection 7 : R" — R? given by n(#) = (z;,x;). Note that 7
is monotonic. The two execution paths project to two execution paths from (0,0) to (1,1).
The original homotopy between the paths in R™ also projects to a homotopy in R2. This
homotopy must avoid the box in the unit square with corners (Pa, Pa) and (Va,Va), for if
not, the original homotopy would intersect the forbidden region for record a. (Why?) But
then it must be the case that the projected paths both go around “on the same side” of the
2-dimensional box with corners (Pa,Pa) and (Va,Va). The situation is illustrated below.
Note the importance of keeping the end points fixed during the homotopy.

T;

1
S
I I
Pal L- -2

L 1 T

Pa - Va 1 !

It follows that 7; and 7; must access a in the same order on both execution paths: either
T; acquires the lock for a first on both paths (if the paths go below and to the right) or Tj
acquires the lock first on both paths (if the paths go to the left and above). Since this is true
for all pairs of transactions and all shared records, the claim made above is justified.

Serializability requires that a path have the same effect as some serial execution of the trans-
actions. The serial executions correspond to going around the one dimensional “boundary”,
or “l-skeleton of the cubical complex” as a topologist would say, executing one transaction
completely before going on to another. We can now begin to understand the significance of
two phase locking. Let ¢; denote a number on the ¢-th coordinate axis that lies between the
two phases of the corresponding transaction. That is, it occurs after all the P actions and
before any of the V' actions. Such a number can always be found by virtue of the two phase
locking condition. It is easy to see that the point with coordinates (ci,---,c,) must lie in the
centre of each forbidden region. But now consider a radial projection from this point onto the
boundary of the unit cube. Because of the “star shaped” property of forbidden regions, which
we described above, this radial projection provides a homotopy, keeping the end points fixed,
which carries any non-deadlocked execution path into the boundary of the unit cube. You just
slide the path along the ray away from ¢ until the path reaches the boundary; see the picture
in (3) below.

One point to bear in mind is that this sliding does not necessarily give rise to a path which
represents an execution: the path may no longer be composed of steps parallel to the co-

ordinate axes. It is at this point that we make use of the non-discrete nature of the underlying
topological space.

Once the path is in the boundary of the unit cube, it can be broken up into a number of segments
each of which lies in a face of the cube. These segments no longer start and end in the corners
but this will not affect the remainder of the argument. Each face of the cube corresponds to a
transaction system obtained from 77, ---,7,, by omitting one of the transactions, say T, either
before T} has started (for the face containing points with x; = 0) or after T has finished (for
the face containing points with z; = 1). We can repeat the argument using as a centre for the
radial projection either

(c1, 51,0, Chg1, - Cp) or (c1, s ety L Chgty o5 Cn)

according to which face we are in. Proceeding in this way by iterated radial projections, we
end up eventually in the 2-skeleton with faces of dimension two, corresponding to some pair
of transactions from the original set. The forbidden regions in this case are convex and it is
particularly easy to see how the radial homotopy works. We have sketched it below.

1
Any path segment is moved outwards by the homotopy into the 1-skeleton. Note that the points
on the boundary are left fixed by the radial projection. It follows that we can fit together all
the various segments to end up, finally, with a path that stays within the 1-skeleton.

At this point we are essentially finished. However, we have to pay the price for our temerity
in using continuous methods. The path that we finally end up with may not represent a valid
execution of the system. Suppose that « is our original path and that w is the final path at
the end of the iterated radial projections. It is quite possible that w(t), as ¢ runs from 0 to
1, goes along an edge in a negative direction, corresponding to time running backwards. It is
instructive to imagine some staircase execution path superimposed on the unit square in (3)
and to work out what happens to it under the radial projection. You will quickly observe that
w(t) can wobble about all over the place. How do we get around this?

Choose one of the coordinate axes, say i. We are going to observe what happens to w(t) when
we project the path onto this axis. Let 7 : R" — R be the projection 7& = x;. (I will omit

brackets from the argument of 7 for clarity.) What can we say about 7mw(t)? The path w is
obtained by successive radial projections in various faces of the unit n-cube. These projections
have the following nice property. If i is obtained from & by radial projection from #, then ¥, &
and lie on a straight line in the order in which I have just written them. But « is a linear and
orientation preserving function. It follows that 7%/, 7 and 7@ must also lie on a straight line
(which is obvious!) and in the same order (which is the important point). Since the centres of
the radial projections are chosen consistently, we deduce the following:

ma(t) < ¢ = ww(t) < malt) and wa(t) > ¢ = ww(t) > wa(t).

We can now work out what happens to mw. It can oscillate for a long time in the interval
[0,¢;). It must eventually go through the point ¢;, since, after all, 7w must eventually reach
1. However, once it has passed c;, it can never return because the original path «, being
monotonic, never does so. The same behaviour occurs in each direction i € {1,---,n}. It
is now easy to see that by a homotopy, still keeping the end points fixed, we can move w to
remove all the “wobbles”. We are left with a path which corresponds to a bona fide serialized
execution. We deduce that 2PL is safe.

3 Discussion of the proof

I have omitted some of the details in the above proof but the reader should have no difficulty
in filling in the gaps. I have not seen it published anywhere but that may well be due to my
ignorance of the literature. I expect it is now well known, at least among the experts cited
below. My apologies in advance to anyone whom I fail to mention.

The fact that homotopy of paths implies equivalence (in the sense that of having the same effect
on the database) was first pointed out by Yannakakis, Papadimitriou and Kung, but only for
systems in dimension 2, [19] and [13, Theorem 1]. They also gave a characterisation of safety in
dimension 2 by requiring that a “convex closure”! of the forbidden regions be connected, [19,
Theorem 3]. This characterisation does not extend to higher dimensions because connectedness
of the closure no longer guarantees safety, [13, §5.3]; indeed, (2) is a counterexample. In
dimension 2, the 2PL condition forces the forbidden regions to have a connected closure and
this gives a geometric intuition for why 2PL works, [19, §4]. However, this intuition fails in
higher dimensions. As we have seen, a better intuition is that 2PL provides a common point
from which a radial homotopy is possible. This works in all dimensions.

The characterisation of safety in dimension 2 was later used by Lipski and Papadimitriou to
give an elegant O(nlognloglogn) algorithm for checking safety in two transaction systems
with n records, [13].

The paper by Yannakakis, Papadimitriou and Kung contains much more. They give a char-
acterisation of safety in any dimension and use this to prove not only that 2PL is safe (in
any dimension) but also that other forms of locking, such as Tree Locking, are safe. However,
homotopy plays no role in this.

It is interesting to speculate on whether a homotopical characterisation of safety is possible.
The proof in §2 establishes rather more than I stated. Consider the complement of the forbidden

!This is not the convex closure commonly used in mathematics. See [13] or [19] for precise details.

regions within the unit cube. In general, this topological space will not be connected although
it will have a finite number of components. Let C denote the component which contains the
origin. C' must contain the 1-skeleton since the origin is in the 1-skeleton and no part of the
1-skeleton can be in a forbidden region. Otherwise, the corresponding transaction would have
a hard time making progress! The proof in §2 establishes that C deformation retracts onto
the 1-skeleton. We recall that if ¢ : A C X is the inclusion of a subspace then X is said to
deformation retract onto A if there exists a continuous function p : X — A such that pi is
homotopy equivalent to 14, the identity function on A. The inductive argument given in §2
made use of successive radial homotopies and these can be patched together to give such a
deformation retraction. Note that this is not any old deformation retraction: it has further
properties which were important to the final proof of safety. Does this give us a characterisation
of safety? In other words, is safety equivalent to the 1-skeleton being a specialised deformation
retract of C'?7

Let me know if you find out.

It is a pity that the proof in §2 is not more widely available because it provides an immediate
intuitive understanding of why 2PL works. I was once approached by a colleague at Hewlett-
Packard who had been implementing a database system. He had been reading about locking
mechanisms and serializability but had had a hard time understanding the theory behind two
phase locking. When he saw the proof above he said “But that’s obvious!” and went away
muttering disgustedly about people who made things more difficult than they had to be.

There are good reasons for this difficulty. The topological ideas above work nicely on this
particular problem but it is hard to see how to export them to other situations. A standard
way of deducing the two phase locking theorem is given in [1, §3.3]. It is based on the Seri-
alizability Theorem, [1, Theorem 2.1], which gives a necessary and sufficient condition for a
single execution to be serializable. This is analogous to the homotopy of paths condition estab-
lished in §2. I should point out that modern database theory has moved on considerably from
simple-minded transaction systems like those described above. Nowadays one must contend
with distributed databases, nested transactions, multiple versions, replication, recovery from
aborts, etc. The recent book by Lynch, Merritt, Weihl and Fekete, [14], gives an account of the
modern approach which is based on the Atomicity Theorem, [14, Theorem 5.24], a substantial
generalisation of the classical Serializability Theorem.

Is there a homotopy theoretic analogue of the Atomicity Theorem?

The proof of 2PL in §2 illustrates how topological ideas can be used to reason about concur-
rency. The state of a system is represented by a point in some topological space; an execution
of a system by some path in the same space. Non-determinism is catered for by the possibil-
ity of several paths from initial state to final state. Homotopy indicates when executions are
equivalent in some appropriate sense and the topology of the space dictates the properties and
behaviour of the system. The spatial qualities of this representation arise from the commuta-
tivity of independent actions. (To put it another way, the holes in the space arise from mutual
exclusion.) Commutativity has appeared in various guises in concurrency. To give just one
example, Valmari, Godefroid, Wolper and others, [18], have used it to circumvent the state
explosion problem. Commutativity is applied at each state, or locally, as a topologist would
say, to show that certain paths need not be searched (because they are equivalent, in some
sense, to paths which are searched). It is tempting to think of this as a form of homotopical
collapsing, leading to an equivalent, but smaller, topological space.

Can this be made precise?

The possibility of a comprehensive theory of homotopy and concurrency is very attractive, at
least to me. (The fact that I was an algebraic topologist before I got interested in concurrency
has absolutely no bearing on this.) The spatial representation of behaviour is very intuitive,
as we have seen. Admittedly, this intuition falls off quickly with increasing dimension. How-
ever, geometrical thinking has often shown the way forward when analysis and algebra (and
logic?) have proved inadequate to the task. Poincaré, the father of algebraic topology, was
deeply influenced to develop “qualitative methods” by the intransigence of nonlinear differen-
tial equations to the standard methods of analysis. Since Poincaré’s time a large number of
powerful mathematical tools have been developed to study homotopical properties. It would
be tremendously exciting if these tools could be put to use to prove deeper results about con-
currency. We might be able to give my engineering colleague at Hewlett-Packard a few more
theorems like “2PL is safe” to carry around with him as mental building blocks for designing
computer systems. The work of Herlihy et al, which I cited in the Introduction, suggests that
this possibility is not as far-fetched, nor as far away, as one might have thought.

Acknowledgments

A number of people suggested that I write up the 2PL proof after seeing it sketched on
tablecloths and scraps of paper at various venues. I am very grateful to Mogens Nielsen for
providing a suitable opportunity for doing so and for putting up with my homotopical attitude
towards deadlines (stretched but not broken!). My thanks also to Eric Goubault for many
stimulating conversations and to Maurice Herlihy for sending me copies of his latest papers.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[2] E. Borowsky and E. Gafni. Generalized FLP impossibility result for ¢-resilient asyn-
chronous computation. In Proceedings 25th Annual ACM STOC, 1993.

[3] S.D. Carson and P. F. Reynolds. The geometry of semaphore programs. ACM TOPLAS,
9(1):25-53, 1987.

[4] S. Chaudhuri. More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation, 105:132-158, 1993.

[5] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM Computing
Surveys, 3(2):67-78, 1971.

[6] E. W. Djikstra. Co-operating sequential processes. In F. Genuys, editor, Programming
Languages, pages 43-112. Academic Press, 1968.

[7] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32:374-382, 1985.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Goubault. Domains of higher dimensional automata. In E. Best, editor, CONCUR’95.
Springer LNCS 715, 1993.

E. Goubault and T. P. Jensen. Homology of higher dimensional automata. In W. R.
Cleaveland, editor, CONCUR’92. Springer LNCS 630, 1992.

M. Herlihy. A tutorial on algebriac topology and distributed computation. Draft available
from herlihy@crl.dec.com, 1994.

M. Herlihy and N. Shavit. The asynchronous computability theorem for ¢-resilient tasks.
In Proceedings 25th Annual ACM STOC, 1993.

M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free
computation. In Proceedings 26th Annual ACM STOC, 1994.

W. Lipski and C. H. Papadimitriou. A fast algorithm for testing for safety and detecting
deadlocks in locked transaction systems. Journal of Algorithms, 2:211-226, 1981.

N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann,
1994.

V. Pratt. Modeling concurrency with geometry. In Proceedings 18th ACM Symposium on
POPL, 1991.

M. Saks and F. Zaharoglou. Wait free k-set agreement is impossible: the topology of
public knowledge. In Proceedings 25th Annual ACM STOC, 1993.

R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Draft available
from rvg@cs.stanford.edu, 1991.

P. Wolper and P. Godefroid. Partial order methods for temporal verification. In E. Best,
editor, CONCUR’93. Springer LNCS 715, 1993.

M. Yannakakis, C. H. Papadimitriou, and H. T. Kung. Locking policies: safety and
freedom from deadlock. In Proceedings 29th IEEE Symposium on FOCS, pages 286-297,
1979.

10

