
Asserting the Precision of Floating-PointComputations: a Simple Abstract Interpreter1E. Goubault, M. Martel and S. PutotCEA - Recherche Technologique, LIST-DTSI-SLACEA F91191 Gif-Sur-Yvette Cedex, Francee-mail : [goubault,mmartel,sputot]@cea.fr1 IntroductionThe manipulation of real numbers by computers is approximated by oating-point arithmetic, which uses a �nite representation of numbers. This impliesthat a (small in general) rounding error may be committed at each operation.Although this approximation is accurate enough for most applications, there aresome cases where results become irrelevant because of the precision lost at somestages of the computation, even when the underlying numerical scheme is stable.In this paper, we present a tool for studying the propagation of rounding errorsin oating-point computations, that carries out some ideas proposed in [3], [7].Its aim is to detect automatically a possible catastrophic loss of precision, andits source. The tool is intended to cope with real industrial problems, and webelieve it is specially appropriate for critical instrumentation software. On thesenumerically quite simple programs, we believe our tool will bring some veryhelpful information, and allow us to �nd possible programming errors such aspotentially dangerous double/oat conversions, or blatant unstabilities or lossesof accuracy. The techniques used being those of static analysis, the tool will notcompete on numerically intensive codes with a numerician's study of stability.Neither is it designed for helping to �nd better numerical schemes. But, it isautomatic and in comparison with a study of sensitivity to data, brings aboutthe contribution of rounding errors occuring at every intermediary step of thecomputation. Moreover, static analyzes are sure (but may be pessimistic) andconsider a set of possible executions and not just one, which is the essentialrequirement a veri�cation tool for critical software must meet.2 Main FeaturesBasically, the error r � f between the results f and r of the same computationdone with oating-point and real numbers is decomposed into a sum of errorterms corresponding to the elementary operations done to obtain f . An elemen-tary operation introduces a new rounding error which is then added, multiplied1 This work was supported by the RTD project IST-1999-20527 "DAEDALUS" of theEuropean FP5 programme.



etc. by the next operations on the approximated partial result. For example,let x and y be initial data and let us assume that errors are attached to thesenumbers (we assume that we only have three digits of precision). The notationx`1 = 1:01"+ 0:005"`1 indicates that the oating-point value of x is 1:01 andthat an error of magnitude 0:005 was introduced on this value at point `1. Ify`2 = 10:1" + 0:05"`2 then x +`3 y = 11:1"+ 0:005"`1 + 0:05"`2 + 0:01"`3 andx�`3 y = 10:2"+0:0505"`1 +0:0505"`2+0:001"`3+0:00025"& . In x+`3 y, the er-rors terms on x and y are added and this operation, done at point `3, introducesa new error term 0:001"`3 due to the truncation of the result. x�`3 y also intro-duces an higher order error term 0:00025"& due to the factor 0:005"`1 � 0:05"`2 .More generally, a oating-point number f with errors is denoted by an errorseries f"+P`2L !`"` where L is a set of syntactic program points and !`"` isthe contribution to the global error of the error introduced at the point ` 2 Land propagated in the following computations. The tool described in this articleimplements an abstract interpretation [1] based on this model, where the valuef and the coe�cients !` are abstracted by intervals.As shown in Figure 1, the main window of the analyzer displays the codeof the program being analyzed, the list of identi�ers occurring in the abstractenvironment at the end of the analysis and a graph representation of the abstractvalue related to the selected identi�er in the list. Scrollbars on the sides of thegraph window are used to do various kinds of zooms.
Fig. 1. Main window of the analyzer.The graph represents the error series of a variable id and thus shows thecontribution of the operations to the global error on id. The operations areidenti�ed with their program point which is displayed on the X-axis.



In Figure 1, the bars indicate the maximum of the absolute values of theinterval bounds. This enables to assert the correctness of the code, when theerrors have a small magnitude. This kind of graph is well suited to identifysome numerical errors, but other kinds of errors, like cancellations [2], are moreeasily detected by graphs showing relative errors. Di�erent types of graphs canbe drawn by clicking the adequate button in the right-hand side toolbar. Thegraph and program code frames are connected in the graphical user interfacein such a way that clicking on a column of the graph makes the code frameemphasizes the related program block and conversely. This enables the user toeasily identify which piece of code mainly contributes to the error on the selectedvariable. Another interesting feature is that di�erent grains of program points(like code lines or functions) can be selected by clicking the adequate button.Hence, for the analysis of a program made of many functions, the user may �rstidentify which functions introduce the most important errors and next re�ne theresult.In the example of Figure 1, a typical program of an instrumentation sofwareis being analyzed. It is basically an interpolation function with thresholds. Onecan see from the graph at the right-hand side of the code that the only sourcesof imprecision for the �nal result of the main function are: the oating-pointapproximation of the constant 2.999982 at line 20 (click on the �rst bar to outlinethe corresponding line in the C code), which is negligible, the 2nd return line26 (second bar in the graph), and the 3rd return line 28 (third and last barin the error graph), the last two ones being the more important. In fact, usingBUILTIN DAED FBETWEEN (an assertion of the analyzer), we imposed that E1takes its value at the entry of the function between -100 and 100. So the analyzerderives that the function does not go through the �rst return. Then it derivesthat the function can go through the 4th and last return, but the multiplicationis by zero and the constant is exact in the expression returned, so that there isno imprecision due to that case. The user can deduce from this that if he wantsto improve the result, he can improve the accuracy of the computation of the2nd and 3rd return. One simple way is to improve the accuracy of the twosubtractions in these two expressions (using double E1 in particular), whereasthe improvement of the precision of the constant 2.999982 is not the betterway. Notice that the analyzer also �nds that the higher-order errors are alwaysnegligible. It will also be demonstrated that simple looping programs, such aslinear �lters can be proved stable or unstable accordingly by the analyzer, so themethod does also work for loops (to a certain amount of precision).3 ImplementationWe are at a point where we have a �rst prototype of a static analyzer for fullANSI C programs, which abstracts oating-point variables by series of intervals.For the time being, if it can parse all ANSI C, it does not interpret aliases, arraysand struct information on the code. Nevertheless, it is already interprocedural,using simple static partitioning techniques [6].



The analyzer is based on a simple abstract interpreter [4] developed at CEA.The interval representing the oating-point value is implemented using classicaloating-point numbers, and higher precision is used for the errors (necessary be-cause numerical computations are done on these errors, and they must be donemore accurately than usual oating-point). We use a library for multiprecisionarithmetic, MPFR [5], based on GNU MP, but which provides the exact fea-tures of IEEE754, in particular the rounding modes. The interface is based onTrolltech's QT and communicates with the analyzer through data �les.The computational cost of the analysis is really reasonable. To give an idea,on small toy examples, typically a loop including a few operations, the analysistakes less than 0.1 second. On a more complex example of about 500 lines, withno loop, it takes only 45 seconds.4 Conclusion and Future WorkThe current implementation of our prototype already gives some interestingresults on simple programs, which we propose to show during the demo. Con-cerning the threats detected by the analyzer, various reasons like cancellationsor instabilites in loops may contribute to the loss of precision and some phenom-ena are easier to detect with a particular graph representation of the errors. Ininteraction with users, we are working on the best way to represent the manyresults collected by the analysis as well as on the methodology needed to theirtreatment. We also work on improving the precision of the analysis in loops.Because narrowings do not improve the analysis for the error terms, the approx-imation made by widenings must be fairly precise. We also plan to use relationallattices as discussed in [3].References[1] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for staticanalysis of programs by construction of approximations of �xed points. Principlesof Programming Languages 4, pages 238{252, 1977.[2] D. Goldberg. What every computer scientist should know about oating-pointarithmetic. ACM Computing Surveys, 23(1), 1991.[3] E. Goubault. Static analyses of the precision of oating-point operations. InSAS'01, LNCS. Springer-Verlag, 2001.[4] E. Goubault, D. Guilbaud, A. Pacalet, B. Starynk�evitch, and F. V�edrine. A simpleabstract interpreter for threat detection and test case generation. In Proceedingsof WAPATV'01 (ICSE'01), May 2001.[5] G. Hanrot, V. Lefevre, F. Rouillier, and P. Zimmermann. The MPFR library.Institut de Recherche en Informatique et Automatique, 2001.[6] N. D. Jones and S. S. Muchnick. A exible approach to interprocedural ow anal-ysis and programs with recursive data structures. In Proceedings of the 9th ACMSymposium on Principles of Programming Languages, 1982.[7] M. Martel. Propagation of rounding errors in �nite precision computations: asemantics approach. ESOP, 2002.


