Labelled cubical sets and asynchronous
transition systems: an adjunction

Eric Goubault

LIST/DTSI/SLA, CEA Saclay, F-91191 Gif-sur-Yvette, France
Email: Eric. Goubault@cea.fr, Phone: +33 1 69 08 94 72, Fax: +33 1 69 08 83 95

Abstract. We show in this article that “labelled” cubical sets (or Higher-
Dimensional Automata) are a natural generalization of transition sys-
tems and asynchronous transition systems. This generalizes an older
result of [19] which was only holding with precubical sets and subcat-
egories of the classical (see [37]) categories of transition systems and
asynchronous transition systems. This opens up new promises on the
actual use of geometric methods (such as [10]) and on comparisons with
other methods for verification of concurrent programs.

keywords Models for concurrency, semantics, category theory.

1 Introduction

There is a great variety of models for concurrency, as witnessed in [37] for in-
stance. Most of the relationships between these models are known, but the newer
“geometric” models for concurrency, such as cubical sets (HDA in [30] or in [21])
or local po-spaces [11] have not been so well formally linked with older models,
such as transition systems or transition systems with independence. In fact, cu-
bical sets have a notion of generalized transition in their very definition. The idea
of relating these in the style of G. Winskel et al. [37] with operational models for
concurrency dates back to [19], but this was done only between fairly restricted
categories. In this paper we greatly improve previous work by extending it to the
full categories of transition systems (operational model of “interleaving” concur-
rency) and of transition systems with independence (operational model of “true”
concurrency). The main idea is that by relating these models, we can compare
the semantics of concurrent languages given in different formalisms. Moreover,
it is hoped that specific methods for statically analysing concurrent programs
(such as the deadlock detection algorithm of [10] in the case of cubical sets) in
one model can be re-used in the other, giving some nice cross-fertilisations, some
of these being hinted in Section 9.

This paper represents the first step towards formally linking “geometric”
models with other models for concurrency. The links might appear as “intuitive”,
but the formal step we are making unravels interesting phenoma (besides being
necessary for being able to relate semantics given in different styles) such as the
fact that a certain category of labelled cubical sets forms an elementary topos, or

such as the fact that persistent set types of methods for tackling the state-space
explosion problem can be seen as searching for retracts of the state space, in the
algebraic topological sense. We end this article by making some hypotheses on
further relationships, with event structures and Petri nets in particular.

2 Transition systems

Transition systems are one of the oldest semantic models, both for sequential and
concurrent systems. There i1s a convenient categorical treatment of this model,
that we use in the sequel, taken from [37].

Definition 1. A transition system is a structure (S,i,L,Tran) where,

— S s a set of states with initial state ¢
— L is a set of labels, and
— Tran C S x L x S 1is the transition relation

Transition systems are made into a category by defining morphisms to be
some kind of simulation (for then being able to discuss about properties modulo
[weak/strong] bisimulation, see [24]). The idea is that a transition system 73
simulates a transition system 7Ty if as soon as Ty can fire some action a in
some context, then 77 can fire a as well in some related context. A morphism
f Ty — T} defines the way states and transitions of T are related to states
and transitions of 77 making transition systems into a category T'S.

Definition 2. Let Ty = (S, to, Lo, Trang) and Ty = (S1,41, L1, Trany) be two
transition systems. A partial morphism (or morphism in [37]) f: Ty = T4 is a
pair | = (o, A) where,

—0:5) — Sl,

— A Lg = Ly is a partial function. (o, A) are such that
* U(io) = il,

o (s,a,s') € Trang and Xa) is defined implies (o(

/

), Aa),0(s") € Tran,.
Otherwise, if A(a) is undefined then o(s) = o(s').

s
)

As in [37], we can restrict to “total morphisms” i.e. the ones for which A is
a total function by suitably completing transition systems. Just add “idle” tran-
sitions to transition systems, very similar in spirit to the lifting of domains in
denotational semantics [23,29], where partial functions from D to D are consid-
ered total (and strict) from D to Dy (L is a new element such that Vo, L < z).
An idle (or “L-7) transition is a transition * such that % goes from a state s to
the same state s. Consider the following completion Ty = (Sk, %x, L«, Tran,) of
a transition system 7' = (S, ¢, L, Tran), by setting S, = S5, i« =4, L. = LU {*}
and Tran, = Tran U {(s, x,s) | s € S}. Now, a morphism f = (o, A) (with A a
total function) from (7Tp). to (71). such that A(x) = « is the same as a partial
morphism f' from Ty to Ti by identifying * with “undefined”. Conversely, a
partial morphism f = (o, A) from Ty to 71 can be identified with f. = (o, A.),
As(2) = * if and only if A(x) is undefined.

3 Asynchronous Automata

Asynchronous Automata are a nice generalization of Mazurkiewicz traces, and
have influenced a lot other models for concurrency (like transition systems with
independence etc.). They have been independently introduced in [34] and [3].
The idea is to decorate transition systems with an “independence” relation (be-
tween actions) that will allow us to distinguish between true-concurrency and
mutual exclusion (or non-determinism) of two actions. We actually use a slight
modification for our purposes, due to [7], and called “automata with concurrency
relations”:

Definition 3. An automaton with concurrency relations is a quintuple
(S,4, E, Tran,I) where,

(1) S and E are disjoint sets; i € S is a distinguished element (the start state);
Tran s a subset of S x E x S,

(2) Tran is such that whenever (s,e,s'), (s,e,s") € Tran, then s = s"; we
require that for each e € E, there are s,s' € S with (s,e,s') € Tran;
= (Is)ses s a family of wrreflexive, symmelric binary relations I; on
9T = (I,)se l tric b lations I

E; it is required that whenever e1lseq (e1,ea € E), there exist transitions
(s,e1,51), (s,ea,82), (51,€e2,7) and (s2,e1,7) in Tran.

In the sequel, we relax condition (2). A morphism is now a morphism f =
(0, A) of the underlying transition systems such that al;b implies /\(a)fc’r(s)/\(b)
(when A(a) and A(b) are both defined). This makes automata with concurrency
relations into a category, written AC'R. The category of automata with concur-
rency relations over an alphabet E is named AC' Rg.

Similarly to Section 2, we can equivalently consider ACR (and AT'S) to be
built using * transitions and total morphisms. The condition on the independence

relation is then alb = /\(a)fc’r(s)/\(b) when A(a) # * and A(b) # *.

4 Cubical sets

Cubical sets, which are classical objects in combinatorial algebraic topology, see
for instance [33], have been used as an alternative “truly-concurrent” model for
concurrency, in particular since the seminal paper [30] and [36]. More recently
they have been used (in particular the “precubical” ones) in [10] and [11] for
deriving new and interesting deadlock detection algorithms. More algorithms
have been designed since then, see for instance [31], [9] and [12]. Notice that
there is an alternative presentation of HDA [32], which is fairly close to what
would be a labelled version of precubical sets, but not quite; our interest here
is to link concurrent models with standard notions from combinatorial algebraic
topology, hence the use of a different formalism, which moreover gives us a lot
of categorical structure for free.

4.1 “Precubical” sets

Definition 4. A precubical set K is a family of sets {K, | n > 0} with face
maps 0F : K = Kp—1 (0 < i < n—1, a = 0,1) satisfying the following
commutation rules:

089 = 07,09 (i < j)

Elements of K,, are called n-transitions. An simple example of a 2-dimensional
pre-cubical set (which should represent a in parallel with b) is given below:

S3
VN
s1 A S9
AN
S0

where A is a 2-transition, a, b, o', V' are I-transitions and so, s1, s and s3
are all O-transitions (or states). We have 93(A) = a, 9§(A) = a’, 9{(A) = b,
01(A) = V', dy(a) = 95(b) = s0, dj(a) = s1 = Fg('), dy(b) = Fp(a’) = s»
and 01 (b') = 01(a’) = s3. One can readily check the commutation rules of the
definition, for instance,

9501 (A) = (V') = 51 = 95 (a) = 95 05(A)

Let K and L be two precubical sets. Then f = (fo)new is a morphism of pre-
cubtcal sets from K to L if for all n € IN, f, is a function from K, to L, such
that fn, 0 0F = 0% o frq1 (forall i, 0 <i<n).

This forms a category called Y. It is a presheaf category as follows. Let [0°
be the free category whose objects are [n], where n € IN, and whose morphisms
590
are generated by [n — 1] :Z’,l [n] for all n € IN\{0} and 0 < i, < n — 1, such
6j
that 656} =d;_,dF (0 <i<j). Now, the presheaf category Set@)°” of con-
travariant functors from 00° to Set (morphisms are natural transformations) is
isomorphic to the category of precubical sets. This implies, by general theo-
rems ([25] and [27]), that 7° is an elementary topos. Moreover it is complete
and co-complete because Set is complete and co-complete. Also, we will use the
general fact in the sequel that in all categories of presheaves Set?™ like this
one, all elements (which are contravariant functors) are direct limits of so-called
representable functors h” (Yoneda embedding) which to every d € D associate
(x > Homp(x,d)) € SetP™1,

! This is for instance classical in the categorical presentation of simplicial sets, see for
instance [14].

4.2 Cubical sets

Precubical sets are a bit like the category of transition systems with no idle
transitions: paths are transformed by morphisms into paths of the same length.
This is far too strict to be really useful. For instance, simulations (hence bisimu-
lations) cannot be morphisms (respectively spans of open morphisms as in [24])
in general. Also, it is impossible to describe the restriction to some subset of
transitions (projection, restriction in CCS for instance) as a morphism. This
needs a generalization of idle transitions to higher dimensions. There is in fact
a close notion in cubical sets:

Definition 5. A cubical set K is a precubical set together with degeneracy maps
€ Kno1 = Ky (0<i<n—1) satisfying the extra cubical relations:

€i€j = €j416i (1<)
¢jo108 (i <)

Ofe; = €0y (i>7)
Id (i=})

Let K and L be two cubical sets. Then f is a morphism of cubical sets from
K to L if it is a morphism of precubical sets from the underlying precubical sets,
and foy10€; =€ 0 fn (foralln e IN, 0 < j <n)

The corresponding category of cubical sets, 7, is isomorphic to the category
of presheaves Set®” over a small category O (containing generating morphisms
e; [k +1] = [k], 0 < i < k, generating the degeneracies ¢;, besides the J¥ :
[k — 1] — [k]). This latter can be described in a nice way, see [6]. Therefore,
similarly to the case of the category of precubical sets, the category of cubical
sets is an elementary topos, which is complete and co-complete. We do not talk
about cubical sets with connections and compositions here [4], but they have a

great interest for our purposes, see for instance [15].

4.3 Some useful functors

There again, we need two interesting (and quite classical in spirit) functors. Let
T, be the category of T, whose objects are the n-dimensional cubical sets, i.e.
the “cubical sets M with My = () for all k > n”. This category can be seen as
the presheaf category Set(Dsn)DP where (<" is the full subcategory of O where
objects are [p] with p < n. Similarly, we define 7°7, the category of n-dimensional

SyEry°P
precubical sets, seen as the presheaf category Set<(‘:|)) .
Lemma 1. Let T,, (respectively T?) be the function from T (respectively T°)
to T, (respectively Ty), which to every M € T (respectively M € T°) associates
N €7, (respectively N € Y}) with, N([k]) = M([k]) if k <n, N(ej : [k +1] =
[k]) = M (e;) for k < n and N(68 : [k — 1] = [k]) = M (%) for k < n. It defines

a functor, called the n-truncation functor.

The second functor is one which permits to build a natural cubical set from
a precubical set:

Lemma 2. There is a functor “free cubical set from a precubical set” ' : 175 —
T which is left-adjoint to the (obvious) forgetful functor K from T to T°. Simi-
larly, there is a functor “free cubical set of dimension less or equal than n from
a precubical set of dimension less or equal than n”, F, : Y5 — 1, which is
left-adjoint to the (obvious) forgetful functor K, from T, to 1.

The proof uses a special form of Freyd’s special adjoint functor theorem
(which is also some form of Kan extension in presheaf categories), which is
Proposition 1.3. of [14] (see Appendix A).

4.4 Labelled Cubical Sets

One remaining problem now, is that we do not have labels on transitions. This is
easily taken care of by the following trick. Consider the category Y7 of labelled
cubical sets consisting of morphisms [: M — FE| where M is the underlying
“unlabelled” cubical set and F is a “labelling” cubical set.

The morphisms in this category are as usual f = (g, h): ({ : M = E) = (I’ :
M’ — E') with g : M — M’ and h : F — E’ such that the diagram

ML w

|

E— F

1s commutative. By abuse of notation, we will sometimes identify f, ¢ and A in
the following. Of course, T* is the comma category (see [26]) (Idy | Idy). We
will also consider in the following the category T.X of “pointed” labelled cubical
sets, i.e. pairs ([: M — L,s) with [€ Tt and s € M, (the “initial” state)
and morphisms preserving initial states. We call this category, the category of
Higher-Dimensional Transition Systems.

Given an alphabet (“of actions”) X, we can construct a “labelling” precubical
set 13 as follows. Suppose first that we have a total order < on X'; we then set:

— (12, is the set of increasing sequences of length n of letters of X, (or “well-
ordered” words of length n written on X). For instance (1X)g consists of the
empty word and (1X); is X,

— Nay, - a,) = O} ay, -, an) = (ay,---,d;, -, a,) ie., the word where
the ¢th letter has been forgotten,

Then we set !X again, by an abuse of notation, to be the free cubical set
generated by the previous cubical set. Geometrically, 13 is in dimension one the
wedge of a set of loops, one for each o € X (giving the labels for 1-transitions). In
dimension two, it is a wedge of a set of tori, one for each pair (¢, 7) € ¥ x X now
seen as a set (giving the labels for 2-transitions) etc. As an example, consider

Figure 1. On the left hand side, the “unlabelled” cubical set is the one taken as
an example in Section 4.1. On the right-hand side is pictured a torus (this is a
cubical set indeed) in which label a is the small circle, label b is the big circle,

and label a | bis the surface itself. The labelling morphism associates a and o
with a, b and b’ with b and A with a | b.

Fig. 1. A labelled cubical set

5 Some adjunctions

5.1 With transition systems

We prove that some suitable full subcategory of (V'[); is isomorphic to 7T'S.
Consider HT'S to be the category whose objects are the pointed labelled cubical
sets (M, 1 : M — FE, i) such that,

— they are freely generated by precubical sets, i.e. M = F(N), [= F(l') with
!" : N — F morphism of precubical sets,
— they are “strongly-labelled”? i.e. V&, 2’ € My (k > 1),

(80(x) = 80(a"), 0} () = B} (') (VO < i < k) I(2) = (2) = 2 =

and whose morphisms are all morphisms of pointed labelled cubical sets. HT'S]
is the full sub-category of HT'S consisting of pointed labelled cubical sets of
dimension at most one.

As a matter of fact, the categories are defined in quite similar terms. States
of ordinary transition systems are of the same nature as states of labelled cubical
sets and source and target representation of transitions is nothing but a func-
tional interpretation of the relation Tran. This is done formally by constructing
two functors U : T'S — HT'S1 and V : HT'S; — TS inverse of each other, with,

2 This technical condition is necessary for having a smooth relation between the la-
belled graph kind of presentation of a transition system, with a transition relation
kind of presentation; see the proof in the Appendix.

- (F(M),F(l): F(M) = F(E), i) =U(S, A, Tran, j) with,

o My=25,
o My ={ass |a€ A s> s €Tran},
«i=j
o (ass) =s, Oh(ass) =+,
o /=K (T1(1A)),
o l{as) =a,l(s)=1.
- (S, A, Tran, j) = V(F(M),F(l) : F(M) — F(E),{) with,
° S MOa
o j=1,
[] A El,
e 55 s € Tranif Iz € My, such that [(z) = a, 9)(x) = s and J}(x) = &'

(then this # is unique because (F(M), F'(1),4) is strongly-labelled).

Action of the functors on morphisms is as follows,

—if f = (o,A) : (So, Ao, Trang, jo) — (51, A1, Trany,j1) is a morphism of
transition systems then we define U(f) = (U(f)',U(f)?) where U(f)*
F(My) — F(My) and U(f)? : F(Eo) — F(FE;) are the two components
of the morphism, where U(Sy, Ag, Trang, jo) = (F(Mo), F(ly) : F(My) —
F(Eo), '0) U(Sl,Al,Tranl,jl) (F() (11) F(Ml) —)F(El),jl)

Ma)o(s),os) 1f AMa) # *
U(f) (as,sr) = { (63((5'()8); oth(er)vmse ’
U)'(s) =a(s)(ASEM.%)&
ur (o = { 20 A
U(f)*(s) =1 (s € My).
—if f = (% f% : (lo: Mg — Eo,i0) — (i : My — L,i1) is a morphism in
HTSl, then V() () V(lo Mo — Eo,io) — V(ll : M1 — El,il) with
a(s) = [

/
) (for all s state of V(ly : My — Ey, io)),
2
ia) if f*(a) & Im €0 (for all a label in V(Iy : My — FEy, i)

(s
s ={ 7
otherwise

In the sequel we will restrict functors and categories of models so that they

have “fixed labellings”. We call HTS the category of higher-dimensional transi-

tion systems labelled over a fixed cubical set |F for a given (fixed once and for

all in all the following arguments) set of labels . We will no longer mention
these labelling sets. Given this restriction,

Theorem 1. U and V are inverse functors.

Now, in order to compare the category of higher-dimensional transition sys-
tems with ordinary transition systems we only have to look at how to retract
HTS onto its sub-category HT'S;. This boils down to looking at the different
adjunctions we have between 7" and 7} because of the few next lemmas. The
first one tells us that we can lift adjunctions from unlabelled to labelled cases,
and the second one tells us that we can restrict adjunctions (this is useful for
dealing with the “strong labelling condition” of labelled cubical sets).

Lemma 3. Let C and D be two categories and S¢ p be the set of all pairs of
funetors (F,G) with F' : C — D left adjoint to G : D — C. Then all elements of
Sc.p induce elements of Sirac1de),(Idpildp)-

F

Lemma 4. Let C D be a pair of adjoint functors, C' (respectively

D') a full sub-category of C (respectively of D). Suppose that F(C') C D' and
FlCI

G(D') C ', then ('

D' is a pair of adjoint functors.

Gl’D/

We have mainly two different adjunctions between 1" and 7 using 71 (to keep
the underlying ordinary transitions unchanged in the interpretation) among all
the possible ones.

Proposition 1. There are pairs of adjoint functors as follows (for n > 1):

— There 1s a functor Z,, : T, = T left-adjoint to the truncation functor T, :
T — Y. Similarly, there is a functor I7 : T — T° left-adjoint to the
truncation functor T, : T° — TnS. Moreover, T, and T,, commute with the
free functor.

— The truncation functor T, : T — T, (respectively Ty : T° — 1.5) is left-
adjoint to a functor G, : 1, = T (respectively G5 : 17 — T7).

Proof. These are direct applications of Proposition 1.3. of [14] (see Appendix
A).

The intuition about these functors is as follows. Z,, is just some kind of
inclusion functor; it takes a n-dimensional cubical set and forms a cubical set
with exactly the same non-degenerated elements (i.e. those elements which are
not in some Im ¢;); in fact, exactly the same elements in dimension less or equal
than n, but only degenerated elements in dimension strictly bigger than n. Seen
as some kind of abstraction (in the sense of abstract interpretation [5]), it is
a “minimal allocation strategy” abstraction. A n-dimensional cubical set only
prescribes what can happen for degrees of concurrency less or equal than n. 7,
interprets this as being exactly with no (interesting) actions with more than
n processes busy at the same time. On the contrary G, tries to interpret a n-
dimensional cubical set with “maximal allocation strategy” i.e. tries to fill in all
(n + 1)-dimensional holes in a n-dimensional cubical set as imposing that this
should be filled in by a (n+1)-transition, and up and up in all dimensions. There
are “dihomotopy” properties that should be proven about this “resolution” like
functor. This is left for future work.

We notice now that the adjunction (T*L)n TL can be restricted using

n
Lemma 4 to the full sub-categories of free objects generated by precubical sets,

in, respectively, (Y1), and YF. This is due to the fact that (see Proposition 1)
T, and T, commute with the “free functors”. We can restrict this adjunction fur-
thermore, still using Lemma 4, to see that the adjunction still holds with n > 1

when we restrict to strongly-labelled automata. Hence we have the adjunction:

I
HTS; —— HTS. Given that HT'S; and T'S are isomorphic (see Theorem 1),
Ia
th

HTS. Unfortu-

we deduce that we have a pair of adjoint functors: TS

ht
nately, we did not manage yet to “lift” the other adjunction of Proposition 1 to
higher-dimensional transition systems.

5.2 With automata with concurrency relations

We first define functors W,), which will be proven to be inverse functors:
w
ACR = HTS,
Y

(HTSs is the full subcategory of T'X consisting of higher-dimensional transition
systems of dimension less than or equal to two) by,

— (F(P),F(l: P—= L), F(j))=Y(S,i, E,I,Tran) with,

. =i

e Py=25,

o Pr={t;s|s 5 s € Tran},

o [= I{Q(Tz('E)),

o I(tssr) =s, (tss) =5 and l(ts,0) =12,

o P = {abs,s/,s”,u | alsbNas 0 € PrADs s € PLAbg oy € PrANagn o € P},
o O(abs s sny) = ass (or 9Y(abs s 51 u) = as,s, depending on the way

thisis coded in 1E), 8Y(abs s s u) = bs v (or OY(-) = -+ +), Ot (abs s 51 .4)
= by, (respectively, or O (--+) = -++), 93 (abs s s u) = asny (vespec-
tively --+) and {(ab, s s) = (a,b) (respectively - --).

- W(P, P 5 L,j)=(S,i, B, I, Tran) with,
o (54, B, Tran) = V(Tl(P) Tl(l) 7)s

o al;b if there exist z, 2"y, ¢/ € P, C € Py with l(z) = a, (") = a,
l{y) = b, Uy)—baﬂdﬁo()—ﬁo(y)—s () = a(Y), ds(y) =
38(90’),3%(3/)_31(), UC) = (a,b), &(C)_l‘ H(C) =y, (C) =y
and 9} (C) = 2’ (or, respectively, 30(0) =z, 03(C) =y, 91(C) = ¥ and

Ay (C) = o).

Y has the same action on the underlying ordinary transition system of an asyn-
chronous transition system as functor U; we will identify U (S, 7, E, Tran) with
the underlying 1-dimensional skeleton of the higher-dimensional transition sys-
tem Y(S,4, £, I, Tran). Similarly for W which acts as V on the underlying ordi-
nary transition systems, thus we will identify V(P,{: P — L, j) as the underly-
ing transition system of the asynchronous transition system W(P,l: P — L, j).
Y fills in all interleavings of two independent actions by 2-transitions W im-
poses two actions to be independent if and only if there exists a truly concur-
rent execution of them in the higher-dimensional transition system. The action

on morphisms is again easy to define. Let f = (o,A) : (5,4, E,I,Tran) —
(S',¢, B, I' Tran') be a morphism of asynchronous transition systems. Then

g=Y(f) : Y(S,i, E,I,Tran) — Y(S',i, E',I', Tran') is defined by,
— T1(g) = U(f) (by the identification made above),

/\(a)/\(b)g(s)70(51)70(511)70(@ if /\(a) 75 * and /\(b) 75 *

 go(aby yr o) = €0 (/\(a)g(s)yg(s/)) if A(a) # * and A(b) = *
J20s,s%,u 1 (AD)o(s),0(5)) if A(b) # * and A(a) = *
coeo(o(s)) if A(a) = * and A(b) = *

for abs 51 5v o € Y(5,4, E, I, Tran),.

Finally, for ¢ : (P, P AN L,j) = (P, r 4 L’ j') a morphism of (TL)s we

define f = (o,) : W(P, P 4 L,j) = W(P', P —> L’,j') simply by (using the
previous identification) f = V(Ti(g) : T1(P),T1(1), j) — (T1.(P"), T ("), 7).

In the sequel we will again fix once and for all the labelling cubical set used
in our higher dimensional transition systems, to be |E (where E is a set of labels
fixed once and for all). Then again,

Theorem 2. W and Y are well-defined functors. Moreover, Y and W are in-
verse of each other.

Proof. The only difficulty, is to show that the action of these functions on
morphisms are well-defined. For Y| the only thing to check is that the def-
inition in dimension 2 of the underlying precubical set is coherent. We only
check one of the necessary equalities: (taking the same notations as above), for
abs o151 € Y(S', ¢, E' I, Tran’) with A(a) # % and A(b) = * (notice that we
have then o(s") = o(s) and o(s') = o(u)),

3f (gZ(Gbs st s U)) = 3f (GO(A(G)U(S),G(S’)))

(a)cf(s),a(s’) if k= 0, =0
_) €0(8(AB)o(s),0(s)) = €o(o(s)) ifk=0,1=1
B /\(a)o(s),cr(s’) ifk=1,1=0
€0(5AD)o(s),0()) = €o(o(u)) ifk=1,1=1
/\(a o(s),0(s’) k= 0, =0
k _ co(o(s)) ifk=01=1
91 (al (abs,slysllyu)) - A(a)g(su)yg(u) = /\(a)g(s)yg(s/) if k= 1, =0
eo(o(u)) fk=1,1=1

which are equal. The rest of the proof goes along the same lines (see the rest in
Appendix A).

For W we have to check that, for f = (o,A) = V(g : (Pl : P = L,i) —
(P P = L')4), alsb and A(a) # x, A(b) # x implies /\(a)fé(s)/\(b). Sup-
pose alsb in Y(P,l : P — L,i). Then there exist z,z’,y, v € P1 with {(z) = a,
() = a, U(y) = b, l(y') = b and O(x) = () = 5, Dh(x) = (), O} (v) =
d3(z"), 91 (y') = 91 (2'), and we have a C' € Py with {(C) = (a,b), 85(C) = =,
0Y(C) =y, 93(C) = ¢ and 9{(C) = 2’. We know that ¢(C) € P4 and that

(€)= (f(a

0
(f(a), f(b)) since f(a) # * and f(b) # . Similarly, I'(¢(x)) = f(a),

U(g(z") = fla), U(g(y)) = F(b), U'(g(y)) = f(b). Furthermore, because g is a
morphism of cubical sets, 9 (g() = o(s), di(g(x)) = dY(g(¥)),

!
95(9(v)) = 5 (9(2"), 1 (g(y')) = D1 (g(x"), s0 Ma)If () A(b).-

The adjunctions of Proposition 1, in the particular case n = 2, together
with the result of Theorem 2 imply that we have a pair of adjoint functors:
ah
ACR - HTS.
ha

6 Another formulation with scones

In fact, the results of previous section still hold if we restrict slightly the category
of labelled cubical sets we are considering. What we have to notice is that labelled
cubical sets look very much like scones or logical relations [28,1] (T {1):

Definition 6. Let I' : A — D be a functor. Let £ = (D | I') be the scone
(comma category) on I, i.e. the category which has:

— as objects: (d,a, f) where d €D, a € A and f :d — I'(a) is a morphism in
D7

— as morphisms: (s,t) : (d,a, f) = (d',d', f') with s : d = d' is a morphism
inD and t : a — ' is a morphism in A such that the following diagram

commutes:
s

d/

Take A = FinOrd, the category of finite ordinals and increasing maps (i.e.
the base category A of simplicial sets!) D =7 and I" the functor induced by ! as
follows: I'(t)(a1, -+, an) = (t(a1), -, t(an)) where t is an increasing function.
Then the objects of (D | I') are exactly labelled cubical sets whereas morphisms
of (D | I') are those morphisms of labelled cubical sets which are generated by
some “renaming function” between alphabets, i.e. are some I'(t) where ¢ is a
morphism in the category of finite ordinals.

It is easily seen that I" commutes with all limits (in fact I'(X) is deduced
from a nerve construction on X, i.e. is a right adjoint of some functor G as in
Proposition 3). FinOrd is a complete and co-complete topos [18], as is 1. By
[13], we know that (D | I') is a topos.

Notice as well that any Barr-Beck cotriple homology [26] on FinOrd = A
can be lifted onto a Barr-Beck homology theory on (D | I'):

Proposition 2. Let A and D be two cartesian categories. Let I' : A — D
be a functor which commutes with cartestan products and terminal objects. Let
(Lye: L — Id,§: L — L?) be a comonad on A. Then this induces a comonad
(L,&6) on (D} T).

Applying this with A = A, D =7 and ' =!, this implies that any comonad
on A will induce a homology theory on labelled cubical sets, hence on asyn-
chronous transition systems and transition systems. This would allow us to lift
homological reasoning from unlabelled (as in [11] and the beginning of [21])
nicely to labelled automata. We can think of several interesting comonads on A,
for instance, the subdivision comonad:

Definition and lemma 3 — let f: A — A be the functor which to any order
(S, <) associates the order (S', C) with S’ being the set of all linearly ordered
finite and non-empty subsets of S and C 1is the set-theoretic inclusion.

— For Ein A, let dp : f(E) — E be defined by dg ({1 < ---2}) = sup{z1 <

IR l‘k} = XL.
— Let also sg : f(E) = f?(E) be defined by sg({x1 < - ap}) = {{z1}, {21 <
xo}, - {ey < -t} B — dg and E — sg are respectively the co-unit

and the comultiplication of a comonad (f,d,s) (see Appendiz A for a proof).

What do such homology theories classify? By lifting this comonad to sim-
plicial sets, this gives the subdivision comonad, based on the barycentric sub-
division functor: my current hope is that it will classify phenomena linked with
obstructions to refinement of actions. This is left for future work.

7 Application to the state-space explosion problem

Stubborn sets [35], sleep sets and persistent sets [16] are methods used for dimin-
ishing the complexity of model-checking using transition systems. They are based
on semantic observations using Petri nets in the first case and Mazurkiewicz trace
theory in the other one. We believe that these are special forms of “homotopy
retracts” when cast (using the adjunctions we have hinted) in the category of
higher-dimensional transition systems. We hope to make this statement more
formal, through these adjunctions, and use this to design new state-space reduc-
tion methods. Let me explain the intuition behind the scene.

Let T be a set of actions, 7' C E, and p € S be a state. We say that T is
persistent [16] in state p if|

— T contains only actions which are enabled at p, and,
— for all traces ¢ beginning at p containing only actions ¢ out of T', ¢IT'.

Suppose we have a set of persistent actions 7, for all states p in an asyn-
chronous transition system. Then let us look at the following set of traces PT
(identified with a series of states) in (5,4, £, Tran, I') defined inductively [16] as
follows:

— (i) € PT,

t/
—if (p1,...,pn) € PT, then (p1,...,pn,q) € PT where p,
Tran and ¢/ ¢ T, .

q €

Then checking deadlock detection can be made on this subset PT' of traces
instead of the full set of traces of (5,4, E, Tran,I). Also, when (S,i, E, Tran,I)
is acyclic (but it can be modified so that the method works again), PT' is enough
for checking LTL temporal formulas.

We exemplify the method on the process Pb.Pa.Vb.Va | Pa.Pb.Va.Vbh. A
standard interleaving semantics would be as sketched in Figure 2, showing the
presence of deadlocking state 19. One set of persistent sets is:

Ty = {Pa}, Ty = {Pb}, Ts = {Pa, Pb}, Ts = {Pb,Va}, Ts = {Pa,Va},
Tis = 0,

— Ty ={Vb}, Tio = {Va}, Th7r = {Pb}, Tig = {Va}, Tho = {Vb}, To3 =0,

- T7 = {Pb,Vb}, T14 = {Vb}, T15 = {Pb}, T16 = {Pa}, T20 = {Vb}, T21 =
{Va}.

and we show the corresponding traces PT in Figure 3. We have not indicated
the persistent sets corresponding to 3, 4 etc. since in a persistent set search, they
will not be reached anyway, so their actual choice is uninteresting.

In Figure 2 there are 16 paths from 1 to be traversed if no selective search
was used. Six of them lead to the deadlock 13, and 10 (5 above the hole, 5 below
the hole) are going to the final point 23. In Figure 3, one can check that there
are only 8 paths to be traversed if one uses the persistent sets selective search
(3 to state 13, 1 to state 23 below the hole and 4 to state 23 above the hole).

6 20 21 23

c 16 20 21
Vb Vb
[22 7 14 2
Va 8 Va 4
6 =13 18 5 3 18
Pb
5 9 Po
2 17 5 q 12
12 2 17
Pa Pb Pa Vb Va
Pa
1
Pb 3 pa 4vp O0yag 11 !
Fig. 2. Fig.3.

How did we find this set of persistent sets? In the PV case this can be
done quite easily as follows. First the independence relation can be found out

right away. Pz and Py stand respectively for the query for a lock on = and y
(nothing is committed yet) so they are two actions, whatever # and y are which
are independent. But we should rather declare Pz and Vy dependent in general
since: if # = y this is clear, and if # # y this can come from the fact locks on z
and y are causally related (precisely as in the case of Figure 2 with # = a and
x = b). This is slightly different from the more usual case of atomic reads and
writes languages in which the independance relation can be safely determined
as: actions are independent if and only if they act on distinct variables.

The most elaborated technique known in this framework is that of “stubborn
sets” [35], which adapted to the presentation here, can be defined as (taken from
[17):

T, 1s a stubborn set 1n a state s if 7T contains at least one enabled transition
and for all ¢ in 7§, the following two conditions hold:

— if t 1s disabled in s, and ¢; 18 a necessary condition for ¢ to be enabled which
is false in s, then all transitions ¢’ whose execution can make ¢; true are also
in T,

— if ¢ is enabled in s, then all transitions #' such that ¢ and ¢’ are dependent
are also in 75.

The example of persistent set we gave in Figure 3 is clearly a stubborn set. As
one can see as well, the persistent set approach here reduces the 5 paths below
the hole into 1, which is a representant modulo dihomotopy of these 5 dipaths.

In the cubical sets approach, we have at hand a notion of diconnected com-
ponents, first defined in [11], which characterize the “essential schedules” of
executions of a parallel system. They form in fact a partition of the cubical set
(or of its topological counterpart) together with a causal ordering (and an extra
equivalence relation - which T will not detail here). Tt is shown in [22] to be a
category of fractions of the fundamental category of the corresponding cubical
set. Using this approach (there are some algorithms for determining these di-
connected regions, see for instance [31]), one would find the set of 7 diconnected
components and the corresponding graph of regions pictured in Figure 4.

There are 4 dipaths to be traversed in the graph of diconnected regions
to determine the behaviour of this concurrent system (two of them leading to
state 13 being dihomotopic); which looks better than with the persistent sets
approach.

In fact, there are two explanations for this method of diconnected compo-
nents to be better than the persistent set approach. First, in the persistent set
approach, the independence relation does not in general depend on the current
state (even if this might be changed by changing the set of labels), whereas our
notion of independence is having a 2-transition, which depends on the current
state. The second and more important reason is that the diconnected graph
algorithm does determine regions because of global properties, whereas the per-
sistent sets approach uses only (in general syntactic) local criteria for reducing
the state-space.

Conversely, 1t is relatively easy to see the following. For all p state in our
asynchronous transition system (or let us say, by the adjunction of Section 5.2,

16 20 21 23

1 F G
ve| G -
7 14 S
Va
g
6 13 18
m| D | E o —
5| g 12
2 17
Pal A | B c L~
) A B c
- 3 4 10 1

Fig. 4.

in a 2-dimensional cubical set), all traces ¢ composed of actions out of T}, is such
that all its actions are independent with 7},. So any trace from p made up of any
action (those of T, as well as those outside 7},) can be deformed (by dihomotopy,
or “is equivalent to”) into a trace firing first actions from 7, and then actions
out of Tp,. Therefore the selective search approach using only actions from 7T, (for
all p) is only traversing some representatives of the dihomotopy classes of paths.
The persistent search approach is a particular (not optimal in general) case
of dihomotopic deformation. We would like to understand better, through the
adjunction of Section 5.2, the way one could see all these state-space reduction
techniques as finding suitable dihomotopy retracts. This is left for future work.

8 Other adjunctions

In [37] some adjunctions are described between a variety of models for concur-
rency. We hope to be able to lift some of these functors to the case of labelled
cubical sets. In particular, we believe that the equivalence between traces defined
in the category T'L of Mazurkiewicz traces should be mapped onto homotopy
classes of traces in HT'S, therefore the partially commutative monoid defined in
Mazurkiewicz trace theory should be some analog of the fundamental category
in cubical sets (defined for instance in [20]). This is left for future work. The
domain of configurations of an event structure is a dI-domain (stable domain,
a la Berry, see for instance [37]) and we believe that through adjunctions with
HTS (and through the adjunctions between cubical sets and local po-spaces [11],
using the geometrical realization functor), this is linked to the fact that partially
ordered topological spaces are related to some particular forms of Scott domains
(see again [20]). Finally, we believe that there is an equivalence of categories
between some form of higher-dimensional transition systems and general Petri
nets. One of the difficulties is in finding the right notion of independence be-

tween any number of transitions in Petri nets. One possible start is to use the
adjunction between AC'R and Petri nets in [7].

Nevertheless, it is not difficult to produce pairs of adjoint functors between
the category of cubical sets (or precubical sets) and the category of Petri nets,
or the category of “unlabeled” (prime) event structure as defined in [37], but
the problem is to be sure that this is the translation we want, as we tried to
show in this paper, in the case of transition systems, by using Proposition 3. For
instance, let ES be the category of (unlabeled prime) event structures, i.e.,

— objects are prime event structures (F,<,#), where E is a set of events
partially ordered by < called the causal dependency relation and where # C
E x E i1s a symmetric irreflexive relation, the conflict relation satisfying,

o {e//e! < e} is finite (axiom of “finite causes”),
o efte’ and €' < e” implies efte” (conflict is hereditary).

—let S={F, <, #} and §' = {E’, </, #'} be event structures. A morphism of
event structures from S to S’ is a partial function f : F — E’ such that,

o if f(e) is defined then {¢'/e’ < f(e)} C f({e"/e" < e},
o if f(ep) and f(e1) are both defined then f(eg)#f(e1) or f(eg) = fle1)

implies eg#te; or eg = e7.

L

To get an adjunction ES T we only have to find a functor G :

R

O — ES. For instance, one can take:

— G([0)) = 0 and for n > 0, G([n]) is the event structure with exactly n
independent events eq, - -, e,,

— G(8F) : G([n — 1]) — G([n]) associates with each e;, j < i, e; € G([n]) and
for j > i, it associates e;11 € G([n]).

— G(e;) : G([n]) = G([n—1]) associates with e; € G([n]), j < i, ¢; € G([n—1]),

for j > ¢, it associates e;_1 and for j = ¢, it is not defined.

This looks reasonable as we associate with [n] a set of n independent events,
capturing the true-concurrency of the two models in the same way. The problem
is prefixing, which is not preserved by this pair of adjoint functors. In fact, there
is just no causal dependency relation generated at all by L! A solution is to set,

— G([0]) = {*} and for n > 0, G([n]) is the event structure with exactly n
independent events ey, - - -, e, after (in the < order) event ,

— G(8F) : G([n — 1]) — G([n]) associates with e;, j < i, e; € G([n]), for j > 4,
it associates e;11 € G([n + 1]), and with * it associates * if k = 0 otherwise
it 1s undefined.

— (&) 1 G([n]) = G([n—1]) associates with * itself and with each e; € G([n]),
J<i,e; € G([n—1]), for j > 1, it associates e;_q, for j = ¢, it is not defined.

Now one can see that the functor preserves not only colimits but also prefix-
ing. Yet another way of finding an adjunction between ES and 7 is as follows:

— G([n]) is the event structure (p({0,---,n}, C,0),

— G(8F) : G([n—1]) = G([n]) associates with {ay, - - -, ax}, {68 (a1), -, 65 (ax)}
— G(e) : G([n]) = G([n—1]) associates with {ay, -, ar}, {e;(a1), - -, e;(ax)}.

Now, colimits, products and prefixing are preserved. The further discussion
of such adjunctions, together with the development of similar techniques to Petri
nets is left for future work. One important gain would be to transport the meth-
ods used in some subcategories of the category of Petri nets, see for instance [8],
for finding deadlocks, unreachable states etc., to HT'S.

9 Conclusion and further work

We have seen that cubical sets form a complete and co-complete category. This
means that the category of labelled cubical sets (with a fixed alphabet of the
form !FE) is complete and co-complete. Because it is related through left and
right adjoints to transition systems (and asynchronous transition systems), there
are some correspondences between limits and co-limits in these categories. For
instance, products in higher-dimensional transition systems correspond to the
parallel combination (with no interference) of the two higher-dimensional tran-
sition systems (as does the cartesian product of two partially ordered topological
spaces); co-products correspond to non-deterministic choice. Fibred products, i.e.
synchronized products as in the category of ordinary transition systems [2], allow
for nice semantical definitions. This allows also for nice comparison of semantics
through adjunctions.

Last but not least, in [24] is defined an abstract notion of bisimulation. Given
amodel for concurrency, i.e. a category of models M and a “path category”, i.e. a
subcategory of M which somehow represents what should be thought of as being
paths in the models, then we can define two elements of M to be bisimilar if there
exists a span of special morphisms linking them. These special morphisms have
a path-lifting property that we believe would be in higher-dimensional transition
systems a (geometric) fibration property. We thus hope that homotopy invariants
could be useful for the study of a variety of bisimulation equivalences. Some work
has been done in that direction in [32] (and in some sense also in [21]).

References

1. Moez Alimohamed. A characterization of lambda definability in categorical models
of implicit polymorphism. Theoretical Computer Science, 146(1-2):5-23, July 1995.

2. A. Arnold. Systémes de transitions finis et sémantique des processus communicants.
Masson, 1992.

3. M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of
Sussex, 1988.

4. R. Brown and P. J. Higgins. On the algebra of cubes. Journal of Pure and Applied
Algebra, (21):233-260, 1981.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles
of Programming Languages 4, pages 238-252, 1977.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. 8. E. Crans. Pasting Schemes for the monoidal biclosed structure on w-cat. PhD

thesis, 1995.

. M. Droste and R. M. Shortt. Petri nets and automata with concurrency relations —

an adjunction. Droste, Manfred and Gurevich, Yuri /(ed.) Semantics of Program-
ming Languages and Model Theory, Gordon and Breach Science Publ., 1993.

. J. Esparza. Model checking using net unfoldings. Science of Computer Program-

ming, 23(2):151-195, 1994

. L. Fajstrup. Loops, ditopology, and deadlocks. Mathematical Structures in Com-

puter Science, 2000.

L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in concurrent sys-
tems. In Proceedings of the 9th International Conference on Concurrency Theory,
also avaslable at http://www.dmi.ens.fr/ " goubault. Springer-Verlag, 1998.

L. Fajstrup, E. Goubault, and M. Raussen. Algebraic topology and concurrency.
submitted to Theoretical Computer Science, also technical report, Aalborg Univer-
sity, 1999.

L. Fajstrup and S. Sokolowski. Infinitely running processes with loops from a geo-
metric view-point. Electronic Notes in Theoretical Computer Science, Proceedings
of GETCO’00, 2000.

P. J. Freyd and A. Scedrov. Categories, allegories. In North-Holland Mathematical
Library, volume 39. North-Holland, 1990.

P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. In Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, volume 35. Springer Verlag, 1967.
P. Gaucher. Homotopy invariants of higher-dimensional categories and concurrency
in computer science (i). Mathematical Structures in Computer Science, to appear,
2000.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. In Proc. of the Third Workshop on
Computer Aided Verification, volume 575, pages 417-428. Springer-Verlag, Lecture
Notes in Computer Science, July 1991.

P. Godefroid and P. Wolper. Partial-order methods for temporal verification. In
Proc. of CONCUR’93. Springer-Verlag, LNCS, 1993.

R. Goldblatt. Topoi, the categorial analysis of logic. In Studies in logic and the
foundations of mathematics, volume 98. North-Holland, 1984.

E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole
Normale Supérieure, 1995. to be published, 1998, also available at
http://www.dmi.ens.fr/~goubault.

E. Goubault. Géométrie du parallélisme, analyse statique et autres applications.
Technical report, Habilitation & diriger les recherches, Paris Dauphine, to appear,
2001.

E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In
Proc. of CONCUR’92, Stonybrook, New York, August 1992. Springer-Verlag.

E. Goubault and M. Raussen. Dihomotopy as a tool in state space analysis. In
Proceedings of LATIN 02, 2002.

C.A. Gunther and D.S. Scott. Semantic domains. In Handbook of Theoretical
Computer Science. Elsevier, 1990.

A. Joyal, M. Nielsen, and Winskel G. Bisimulation and open maps. In Proc. of
LICS’93. ACM Press, 1993.

J. Lambek and P.J. Scott. Introduction to higher-order categorical logic. In Cam-
bridge studies in advanced mathematics, volume 7. Cambridge University Press,
1986.

26. S. Mac Lane. Categories for the working mathematician. Springer-Verlag, 1971.

27. S. Maclane and I. Moerdijk. Sheaves in Geometry and Logic. Springer-Verlag,
1992.

28. J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In E. Boerger
et al., editor, Computer Science Logic 92, Selected Papers, pages 352—378. Springer
LNCS 702, 1993. Available by anonymous ftp from host ftp.cis.upenn.edu and the
file pub/papers/scedrov/rel.dvi.

29. G. Plotkin. Domains. Technical report, Computer Science Department, Edin-
bourgh, 1984.

30. V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Sym-
postum on Principles of Programming Languages. ACM Press, 1991.

31. M. Raussen. On the classification of dipaths in geometric models for concurrency.
Mathematical Structures in Computer Science, August 2000.

32. V. Sassone and G. L. Cattani. Higher-dimensional transition systems. In Proceed-
ings of LICS’96, 1996.

33. J.P. Serre. Homologie Singuliére des Fspaces Fibrés. Applications. PhD thesis,
Ecole Normale Supérieure, 1951.

34. M.W. Shields. Concurrent machines. Computer Journal, 28, 1985.

35. A. Valmari. A stubborn attack on state explosion. In Proc. of CAV’90. Springer
Verlag, LNCS, 1990.

36. R. van Glabbeek. Bisimulation semantics for higher dimensional automata.
Technical report, Stanford University, Manuscript available on the web as
http://theory.stanford.edu/ rvg/hda, 1991.

37. G. Winskel and M. Nielsen. Models for concurrency, volume 3 of Handbook of
Logic in Computer Science, pages 100-200. Oxford University Press, 1994.

A Proofs

Most proofs are based on a particular case of the existence of Kan extensions,
taken here from [14] (Proposition 1. 3. Page 22):

Proposition 3. Let C be a category with direct limits and G : Set?” 5 C a
functor. Then the following statements are equivalent :

(i) G commutes with direct limits.

(ii) G is left adjoint to a functor D : C — SetP””. Moreover, the functor G —
G o R? is an equivalence of the full subcategory of Hom(SetDoP,C) formed
by the functors G which commute with direct limits on Hom(D,C).

In fact, D is the functor which associates h®(c) o G o P with ¢ € C.

Lemma 1 1s obvious.
Lemma 2:

Proof. 1t suffices to use Proposition 3 with D = 0°, C = Set™"" and functor
w € Hom(D,C) with w([p]) = AP ([p]). This defines F and its right-adjoint K.
It is easy to see that the unit n of the adjunction is in fact the identity natural
transformation n : Id — K o F'. This means that K induces an equivalence of
categories between F(7°) and 7.

The case of cubical sets of dimension less or equal than n is treated in exactly
the same manner.

Theorem 1:

Proof. We now forget about the given labelling set E, even in the definition
of transition systems and labelled cubical sets. Thus, given a transition system

T = (S,i,Tran) € TS we have, U(T) = N where N = F(M,l, j) with,

- MO = Sa

— My ={as 4 |a€ E,s% s € Tran},

— N(as,s) =s, B(ass) =,

—lass) =a,l(s) = 1.

Therefore, V(U(T)) = (S, ¢, Tran’) with,

- S/INQIMQIS,

- =j=1,

— 535 ¢ € Tran’ if 3z € Ny, such that I(z) = a, 93(x) = s and d§(x) = 5.
The only possible # € Ny such that [(z) = a € F is actually # € My, and
the only possible z satisfying all the conditions above is a, ;. Therefore,

s 5§ € Tran' if and only if s = s’ € Tran, hence Tran’ = Tran.
Now, take (M,{,j) € HTSy, then (S,i,Tran) = V(M,L,j) with,
- S= MOa

7.7.:1.’

- A= El\Im €0,
— 535§ € Tran if 3z € M, such that l(z) = a, (x) = s and 9} (x) = .

And then, F(M', ', j'Yy = U(S, i, Tran) with,

— M} =S = M,

— M{ ={ass |a€ A s> €Tran} = M;\Im ¢ (because [is free),
—J=i=]

- ag(ab’,s) =s, aé(s,8') = s

—lass) =a,l(s) = 1.

Therefore, F(M', ', j') = (M,l,j) because M and [are free.

This proof extends readily on morphisms: Let first f: (lp : My — Eop, i) —
({1 : My — FEy,i1) be a morphism of HTS, f = (f1, f2). Then let (o, A) = V(f) :
(So, 10, Trang) — (S1,41, Trany). We have:

) =
— o(s) = f(s) (for all s state of V(Iy : Mg — Eq,i0)),
f?

: (@) 11 7*(a) ¢ Im <o o .
Aa) = { otherwise (for all a label in V(ly : My — Ey,i0))

Let now (g1, 92) = U(c, A). We have,

(00 (an) = { N etgeien T
— U(o, \)(s) = o(s) (s € M),
(o A)*(otherwise ’
(o A)*(

T Ma) ifA() # +
’>‘{eo<1>

— M@)o (s),0(s) is the unique x (because of the determinism condition in H7'S})
going from o (s) = f1(s) to o(s') = f1(s'), with label A(a) = f?(a), hence is
equal to f*(a,),

— when A(a) = *, i.e. when f%(a) € Im €, f1(s) is necessarily in Im €q: (f1, f?)
being a morphism between Iy and [1, we have I (f (as) = f*(lo(as,s)) =
f?(a) € Im €g; In order to have this, it is necessary that f!(as) € Im €.
Furthermore, 05 (f(as /) = f1(s) = o(s) and 9§ ([(as,s)) = o(s') = o(s)
therefore f1(a;) = eo(o(s)) = U(o, A) (as s7)-

Now let f = (o,A) : (So, o, Trang) — (S1,i1,Trany) be a morphism of
labelled transition system and g = U (f). We have,

) = {/\(a)o(s),g(s/ if AMa) # *
: co(o(s)) otherwise ’

bl

Then consider f’ = (', N) =V(g). We have,

=gi(for all 5 state)
{ a) if g»(a) € Im € (for all @ label)

otherwise
Therefore,
— if ga(a) & Im €g, i.e. if A(a) # #, then X (a) = ga(a) = A(a). If not, A'(a) = *
and A(a) = * at the same time.
— o'(s) = q1(s) = o (s).
Lemma 3:

Proof. Let (F,G) € Sep, ! € Home(M,N) and ' € Homp(M', N'). Let now
[€ Homrapyrap)(F(1),1'); this means that f = (fi1, fo) where fi and f, are
morphisms in P which make the following diagram commutative:

" . M

f

So the following diagram is also commutative by functoriality of G

G(/f1)

G o F(M) G(M')

Go F(l) G(l')

G o F(N) G(N')

G(f2)
But the unit 7 of the adjunction between F' and G is a natural transformation,
thus the first square of the following diagram also commutes, entailing that the
outer square itself is a commutative one:

M —"™ GoF(M) Gy G(M')
! Go F(l) G(l')
N— GoF(N)mG(N)

Hence we get naturally, a morphism in Homsa.yra.)(l, G(I')):

A (fi, f2) = (G(f1) o nm, G(f2) o nw)

Similarly in the other direction, we get a morphismin Homrgy, 114y (F(1),1'),

Bl,l’(glagZ) = (earr 0 F(g1), enr 0 F(g2))

where ¢ is the co-unit of the adjunction(F, GG).

We now prove that this is a natural bijection between Homrap 1a,)(F(1),1')
and Homrq.y140)(l, G(I')). The composite of A; ;7 with B;r being the identity
is a direct consequence of the (right) identity 8 page 80 of [26]:

L) For () L3

F(M) F(M)
is the identity natural transformation on F'. This means that the following dia-
gram 1s commutative:

F(nar) €F(M)

FGF(M) F(M)

Hence,

F77M G(f1) r

r /
M) =L perony =Y pouy 2L Mt = g
Similarly, the composite By ;s o A;;r = Id because of (left) identity 8 page 80 of

[26], so we have:

v G GF(fz) a

'y 225 gramy M arony L m o =
Thus (F, G) induces a pair of adjoint functors between (Ide | Idc) and (Idp |

Idp).
Lemma 4:

Proof. The natural bijection between Homp(F(X),Y) and Home(X,G(Y))
naturally restricts to a bijection between Homp (F(X),Y) = Hompz((X),Y)
(D' is full in D) and Home (X, G(Y)) = Home (X, G(Y)) (€' is full in C) for
XeD andY €.

Proposition 1:

Proof. Take as a first instance of Proposition 3 P = 05" and C = Set™” . We
define functor v € Hom(D,C) as follows :

u([p]) = A7 ([p])

Then functor G of Proposition 3 is the functor which commutes with direct
limits and which is such that,

G(hP=" ([p)) = hB([p])

7, of the proposition is therefore this functor G. Its right adjoint D given by the
same proposition is such that (see [14]),

D(c) : a = Home(G(RP(a)), ¢)
l.e. 1n our case, for p < n,

D(e)([p)) = Homy (h7([p]), ¢)
= e([p])
the last equality holding because of Yoneda’s lemma [26]. We recognize D as

being the truncation functor.
Restricting the adjunction to the categories of cubical sets with morphisms

T is a

respecting the initial states is obvious. The adjunction (Y1), =

Ty
direct consequence of Lemma 3.

We proceed in a similar manner for the adjunction Z7, 777 . We define again by
Proposition 3 IS(hDS<n[p]) = hDS[p]. Notice that hDSn[p] = F,(h°<"[p]) and
hB[p] = F(hB [p]), therefore Z,(F(hZ"="[p])) = F(Z5(hB " [p])), hence the
commuting diagram, by taking the direct limit. The proof for the commutation
of the diagram involving 7, is similar.

The last part of the proposition is by taking D = 0O, C = Set@*)” and
functor v € Hom(D, C) as follows,

v(p))([g]) = Homa([g], [p])

which gives as G functor T,. Now, its right adjoint is functor D with (for N €
Set@*")” and [p] € O),

D(N)([p)) = Homr, (T, (k2 ([p])), N)
Theorem 2:

Proof. The only difficulty in the first part, is to show that the action of these
functions on morphisms are well-defined. For Y, the only thing to check is
that the definition in dimension 2 of the underlying precubical set is coher-
ent. We compute first (taking the same notations as above), for abs o s €

Y(s', i, B I Tran'):
— if A(a) # * and A(b) # *
Of (g2(abs,s,57,u)) = OF a)A b)a<s»a<sw,o<s~»o<u>)
ik =0,1=0
e k=01~ 1
)waw)ﬁk:leo
AB)o(e oy iTk=11=1

bl

We also have,

A(a)cf(s),a(s/) if k= 0, =0
A(b)o'(s) a(s”) lf]{7 = 0 l =1

k: = ? bl
gl(al (abs,slysllyu)) - A(a)a(s”),a(u) if k= 1, =0
AD)o(shy o) fh=1,1=1

which are equal.
if A(a) # * and A(b) = # (notice that we have then o(s”) = o(s) and

o(s') = o(u)),

alk(gZ(abs,s’,s”,u)) = alk(Eo(A(Cl)g(s)yg(s/)))
(a)o(s) o(s') fk=0,1=0
— 60(88(/\(17)0(5),0(5”))) = 60(0'(8)) fk=0,1=1
B /\(a)a(s) o(s’) if k= 1, =0
60(83 (/\(b)a(s’),a(u))) = GO(U(U)) k= 1, =1

We also have,

/\(a)a(s),a(s’) lf k’ = 0, l = 0

& _ eo(o(s)) ifk=01=1
gl(ﬁl (abs,slys”yu)) - A(a)o'(s”),o'(u) — A(a)a(s),a(s’) lf]{j = 1’ l = 0
eo(o(u)) fk=1,1=1

which are equal.

if A(b) # * and A(a) = # (notice then that we have o(s’') = a(s)),

af(g2(ab878’78”,U)) = 3#(61(/\(5)0(5)70(511)))
eo(o(s)) itk=0,1=0
A(b)g(N s”) lfk’ == 0, l =1
) ifk=1,1=0
A(b)o'(s o s//) lfk = 1, l = 1

We also have,

gl(as s! :GO(U(S)) lfk’IO,lIO
k _ 91(bs s) = A(0)o(s),0(s) fk=0,1=1
91(31 (Clbs,slysu,u)) = g1(as~ u) — 60(0'(//)) ifh=1,1=0

s
gl(bs’,u) = /\(b)g(s/)yg(u) = /\(b)g(s)yg(su) if k= 1, =1

which are equal.
if AM(a) = # and A(b) = x (notice that then we have o(s) = o(s') = o(s") =

o(u)),
7 (g2(abs s,s7,u)) = Of (coco(c(s)))

eo(o(s)) ifk=0,1=0

_ €0(09(eo(c(5)))) = eo(o(s)) ifk=0,1=1
eo(o(s)) ifk=1,1=0
€0(03(eo(c(s)))) = eo(o(s)) ifk=1,1=1

We also have,

gl(as,s’) = 60(0'(5)) k= 0, =0

ks _ g1(bs s) = €o(a(s)) ifk=01=1
91(31 (Clbs,slysu,u)) = g1(as~,u) — 60(0'(5“) = co(o(s)) ifk=1,1=0
gi(bs) = e(o(s") = eo(o(s)) fk=1,1=1

which are equal.

For W we have to check that, for f = (o,\) = V(¢ : (P,l: P — L,i) = (P, :
P = L' i),

alsh and A(a) # *, A(b) # * implies /\(a)fclr(s)/\(b)

Suppose alb in Y(P,l: P — L,i). Then there exist z,2’,y,y € Py with {(x) =
0, (') = a, {y) = b, (/) = b and O(x) = OB(y) = 5, A}(x) = AB(y), OV(y) =
op(z"y, 01 (y') = 0i(x'), and we have a C' € Py with I(C) = (a,b), 5(C) = =,
0Y(C) =y, 83(C) = ¢ and 91(C) = 2’. We know that g(C) € P4 and that
I"og(C) = (f(a), f(b)) since f(a) # * and f(b) # *. Similarly, I'(¢(x)) = f(a),
U(g(z") = fla), U(g(y)) = F(b), U'(g(y)) = f(b). Furthermore, because g is a
morphism of cubical sets, 92(g(x)) = R(a(y) = o(5), Ohlg(x) = Aoy,
0b9(1) = B(a(x")), O gly) = 07 (9(a")), 50 Ma) Ty, AlD):

It 1s easy to see that these functors restricted to the 1-skeleton are inverse
of each other (this is the consequence of Theorem 1). Now more generally, it is
easy to check that Wo Y = Id.

Finally, for all free 2-dimensional cubical sets (from precubical sets) (P, 1, j),
Y o W(P, 1, j) is naturally equal to (P,/,j).

Proposition 2:

Proof. Let (d,a,f:d— I'(a)) € (D | I'). Define f as in the following pullback

diagram:

i—t rir)
5\ I'(eq)
d 7 I'(a)

and define E(d, a,f:d—I'(a)) = (ci, L(a), fid— I'(L(a))). We first show that
L defines a functor from (D17 to (D)) Let (u,v) be a morphism from
(d,a, f) to (d',d, f'). We have the following commutative diagram because of
the naturality of e:

L{a) —=— L

(')

Hence applying functor I" to last diagram and completing with the pullback
diagrams defining respectively f (on the left) and f' (on the right), we get the
following commutative diagram:

d I'(L(a)) I'(L(d)) < d'
5\ I'(eq) I'(eqr) s’
d 7 I'(a) (o) I'(a") 7 d

In particular, we can read off from this last diagram that we have amap I'(L(t))o
fid— I'(L(a')). We also have a map uo s : d — d’'. These two maps are such
that f' o (uos) = I'(ex) o (I'(L(1)) o f) since by the left two commutative
squares of the diagram above, we have I'(e4) o (I'(L(v)) o f) =1I'(v)ofosand
because (u, v) is a morphism between (d, a, f) and (d',a’, f') in (D] I'), we have
flfou=T(w)ofsol'(v)ofos=fouos.

Therefore, by the universal property of pullbacks, applied to d' being the
pullback of f* and I'e,s, there is necessarily a unique @ : d — d’ such that the
following diagrams are commutative:

d d

ﬂ\ F(L(v))of ﬂ\ uUos

d' — I'(L(d’ B
= T(La) & d

The diagram at the left precisely means that (@, L(v)) is a morphism from

L(d,a, f) to L(d',d', f') in D | I'.

Now we define ¢ : L — Id. In fact, the pullback diagram defining E(d, a, f)
precisely defines a morphism (s, ¢,) from L(d,a, f) to (d,a, f) in D | I', which
is natural (because it is the pullback diagram!) in a.

The definition of § : L — L? is more intricate. The following commutative
diagram is the concatenation of the two pullback diagrams, the topmost one

defining Ez(d, a, f) and the other one defining E(d, a, f):

d I(L*(a))
sl F(EL(G))
i—e r(i)

s I'(eq)

d 7 I'(a)

But we also have a map I'(d,) o fd — I'(L%*(a)) and a map Id : d' — d.
Notice that these two maps are such that ['(ep(q)) o I'(d4) o f = f. This is
precisely due to the “co-unit” equation of the comonad (L, ¢, §) which implies
that F(EL(a)) o] F(éa) = F(EL(a) O(Sa) = F(Id) = Id.

Thus, by the universal property of pullbacks, applied to ci, we necessarily

have a unique morphism u : d — d such that the following two diagrams are
commutative:

d
Id u\ F((Sa)of
d

<
[y —

- +d 2
s! f
This last right diagram shows precisely that (u,d,) is a morphism from
E(d, a, f) to Ez(d, a, f) which is natural in a because it is given as the unique
solution of a universal problem (the pullback diagram).
It is easy to see that the “co-associativity” of 4 is a direct consequence of the

“co-associativity” of §, and similarly that € is the “co-unit” for .

Definition and Lemma 3:

Lemma 5. (f,d,s) is a comonad.

Proof. First, we have to show that for all £ € Ord, djp) o sp = f(dr) o sk
meaning that the “co-multiplication” s with the “co-unit” d is the “co-unit”.

Let FF={x1 < - <} (k> 1) be alinearly ordered non-empty and finite
subset of F| i.e. an element of f(F). We have

sp(F) = {{e1} C{or <ao} C Aoy < ap}} € FF(R))

so dy(py(s5(F)) = (a1 < -2} = F.

Now, f(dg) : f?(E) — f(E) associates to each linearly ordered finite and
non-empty sequence {P; C ---Pi} of linearly ordered finite and non-empty
subsets P; (i = 1,--- k) of E, the linearly ordered finiteand non-empty subset
of B f(dg)({PL C - - Pi}) = {sup P, < ---sup Py }. Therefore,

flde)(se({er < --w})) = flde)({{w} S {wr <@} C - {ar <---2i}})
= {sup({z1}) <---sup({a1 <---2p})}

— {xl < xk}
=F
=di(m(se(F))

The second 1dentity we have to show is that the “co-multiplication” s is associa-
tive, 1.e. for all £ € Ord,

Sf(E) oS = f(SE) oSE
Let F'={zy < - <} (k> 1) be an element of f(E). We have

sp(F) = {{z} C{or <z} C-ov {or < ran}} € F(F(R))

and also,

sy (se(F) ={{{zm} S {e} C{m <@} C- - {{e} C - {an <} })

Now, given A = {P; C --- Py} € f*(E) (where P; € f(E), for i =1,---,n), we
have,

f(se(A) = {se(P1) C - sp(P)}

therefore,
flsp)(sp(F)) ={se({z1}) C ---sp({z1 < - o })}

={{{mpC{{n)C{m<a}} C--{{m} C - {r1 < -2 }}}
= s¢m)(se(l))

