
Modeling Concurrency with GeometryVaughan Pratt yComputer Science DepartmentStanford UniversityStanford, CA 94305pratt@cs.stanford.eduAbstractThe phenomena of branching time and true or noninter-leaving concurrency �nd their respective homes in au-tomata and schedules. But these two models of com-putation are formally equivalent via Birkho� duality,an equivalence we expound on here in tutorial detail.So why should these phenomena prefer one home overthe other? We identify dimension as the culprit: 1-dimensional automata are skeletons permitting only in-terleaving concurrency, whereas true n-fold concurrencyresides in transitions of dimension n. The truly con-current automaton dual to a schedule is not a skeletaldistributive lattice but a solid one. We introduce truenondeterminism and de�ne it as monoidal homotopy;from this perspective nondeterminism in ordinary au-tomata arises from forking and joining creating nontriv-ial homotopy. The automaton dual to a poset scheduleis simply connected whereas that dual to an event struc-ture schedule need not be, according to monoidal homo-topy though not to group homotopy. We conclude witha formal de�nition of higher dimensional automaton asan n-complex or n-category, whose two essential axiomsare associativity of concatenation within dimension andan interchange principle between dimensions.1 BackgroundA central problem in the semantics of imperative com-putation is the construction of convenient models ofcomputation embodying the apparent aspects of bothbranching time and true or noninterleaving or causaly This work was supported by the National ScienceFoundation under grant number CCR-8814921.

concurrency.Milner [Mil80] has made a convincing case for includ-ing the timing of nondeterministic choices in any com-prehensive model of computation, distinguishing lineartime (all choices made at the outset) from branchingtime (choices made on-the-y to take into account thelatest information). Park's notion of bisimulation equiv-alence [Par81] has emerged as a particularly �ne equiv-alence of labeled transition systems, though not so �neas to abandon the idempotence of choice. Two recentcomprehensive yet complementary accounts are givenby Bergstra and Klop [BK89] and their student vanGlabbeek [vG90], with the latter also addressing trueconcurrency in more detail.The most natural computational setting for branch-ing time would appear to be transition systems or stateautomata, where the branching is naturally representedby that of the automaton. These may be \unrolled" toyield synchronization trees so as not to represent otherinformation. However Nielsen, Plotkin, and Winskelhave de�ned event structures as an extension of sched-ules with a conict relation to represent branching time,about which we will have more to say later.Lamport [Lam86] and independently the present au-thor argue against the interleaving model of concurrencyon the ground that \exactly what is interleaved dependson which events of a process one takes to be atomic"[Pra86, p.37]. When a supposedly atomic action is \re-�ned," which from a pragmatic viewpoint can be takento mean \looked at more closely to reveal its substruc-ture," the interleaving model can be seen not to have in-terleaved the subactions, having been forced to commititself in advance to a particular level of granularity. Thisfailure to interleave subactions is characteristic not oftrue concurrency but rather of mutual exclusion. Thusin an interleaving model the truly concurrent executionof two atomic events cannot be distinguished from themutually exclusive execution of those events.Castellano et al [CDP87] formalize this intuition witha simple example showing that interleaving semantics isnot preserved under re�nement (where re�nement is de-�ned as substitution of a complex behavior for an atomic1

behavior), but that partial order semantics is so pre-served.The natural computational setting for true concur-rency is that of schedules or partially ordered sets ofevents. If branching time can be moved from automatato schedules [NPW81], can true concurrency go theother way?Van Glabbeek and Goltz [vGG89] strengthen the re-sult of Castellano et al in several ways. First they givea stronger example to show that step semantics (a formof concurrency intermediate between interleaving andpartial orders, permitting multiple but synchronized ac-tions at each clock tick) is, like interleaving semantics,not preserved under re�nement. Then they extend thelinear time result of [CDP87] to encompass branchingtime. Finally they point to ST-bisimulation, a delight-fully simple extension of the notion of Petri net mark-ing due to van Glabbeek and Vaandrager [GV87] that ispreserved by re�nement yet supports branching time, asan example of a semantics that models true concurrencyand furthermore treats branching time, all without re-quiring partial orders.Now ST-bisimulation comes within striking distanceof the problem we just posed of moving true concur-rency to the automaton model. However Petri nets areneither schedules nor automata, but a symmetric combi-nation of both, in that Petri nets alternate the vertices ofschedules, as transitions, with the vertices of automata,as places.The main contribution of this paper is a geometricmodel of concurrency. This model completes the pas-sage of true concurrency to automata by rede�ning theschedule aspects of a Petri net, namely its transitionsrepresented in Petri nets as vertices, as higher dimen-sional transitions of an automaton! This also yields amodel that is in our opinion mathematically more at-tractive than Petri nets, certainly those with unboundedplace capacities.There are two side contributions. One is a muchneeded tutorial on the duality of schedules and au-tomata around which our introduction has revolved andwhich continues to play a role in the sequel. The otheris the application of n-categories or n-complexes to con-currency theory, as a formalmodel of higher dimensionalautomaton, for which we contend they are more natu-rally adapted than other extant algebraic structures.11Among other recent applications of so-called Australian cate-gory theory to concurrency is an application of enriched categoriesto the abstract modeling of time a la Floyd-Warshall, presentedto a category audience [CCMP91]. We regret not having had theopportunity to present this at POPL-88 or POPL-89.

2 A Geometric Model of Com-putationOur thesis is that both branching time and true con-currency can be described together in a single geomet-ric model. Branching time is represented literally bybranchings of geometric objects, exactly as one wouldpicture it. In particular we treat a transition systemas a one-dimensional space consisting of edges (its tran-sitions) meeting and branching at vertices (its states).True concurrency is represented by dimension: an n-dimensional cell (element of space) is used to representthe concurrent execution of n sequential processes, andits boundaries represent the starting or halting of someof those processes.Our geometric view is closely related on the one handto ST-bisimulation [vGG89], and on the other to C. Pa-padimitriou's geometrical model for database concur-rency control [Pap86, chap.6]. Closer still is M. Shields'proposal to add higher dimensional transitions to au-tomata [Shi85], which D. Murphy brought to our atten-tion too late for inclusion in the POPL-91 version of thispaper. In the light of Shields' work we see the chief con-tributions of the present paper as making a connectionwith homotopy and formally de�ning a suitable notionof higher dimensional automaton.To be cryptically succinct, we propose to extend inter-leaving concurrency to true concurrency by �lling holes,and then to extend true concurrency to branching timeby putting some of those holes back.So what is a hole? Consider two automata, each hav-ing two states and one transition and accepting the re-spective regular sets a and b, each consisting of one unit-length string. With interleaving concurrency the con-current execution of these two automata is their prod-uct, a square whose four sides represent four transitions,accepting the regular set ab + ba as in Figure B0 fourpages hence.This automaton contains a hole, namely the interiorof the square. To formalize this, embed the automaton,treated as a graph, in the Euclidean (real) plane. Forde�niteness locate its states at the lattice points (0; 0),(1; 0), (0; 1), and (1; 1) (the corners of the unit square[0; 1]2; y is oriented negatively in B0). Take the initialstate to be the origin, and take the four transitions tobe the four sides of this square. The hole is then theinterior of the square.To \�ll the hole," take the interior of the square, asurface, as the ninth component of this product automa-ton. The four vertices, qua states, and the four edges,qua transitions, comprise the other eight cells of whatwe shall refer to as a cell complex.These nine cells represent the nine possible \states" ofthe concurrent automaton. Four states are completelyidle (states in the usual sense), four have one constituent2

automaton active, and one has both constituents active.This last may be described as a two-dimensional or \su-per�cial" transition. It provides a notion of \joint tran-sition" of two processes.Van Glabbeek and Vaandrager [GV87] have in-troduced ST-bisimulation, in which not only places(Stellen) of Petri nets but transitions (Transitionen,whence ST) are marked in a state (an assignment oftokens to vertices). (It is extraordinary that this simpleand intuitively clear extension of the notion of Petri netstate has not been proposed before!) The relationshipwith ST-bisimulation may be easily seen by consider-ing the corresponding example for Petri nets. As usuala one-transition automaton becomes a Petri net simplyby converting its transition from an edge to a vertex andadding two edges to represent respectively the pre-eventor input arc and postevent or output arc, each incidenton the one transition. The concurrence of two such netsis \smaller" than that of the corresponding automata,being just their juxtaposition, having for its vertices notthe cartesian product of the vertices of the underlyingnets as was the case for the automata but rather theirdisjoint union.If we mark the initial place of each of the two compo-nents of this juxtaposition and then play the usual \to-ken game," we obtain four possible markings of places,corresponding to the four vertices of the square au-tomaton. If however we extend the token game as inST-bisimulation to permit transitions to be marked,we obtain an additional four markings each involvingone transition (the four edges of the square), togetherwith a single marking involving both (the interior of thesquare), completing the promised correspondence.There are three trivial generalizations we can makeimmediately. First we may increase the number of au-tomata executing concurrently. With three automatawe obtain a cube in the obvious way, with four a 4-cube, etc. We refer to the d-dimensional elements ofsuch a complex as d-cells, with 0-cells or points corre-sponding to the old notion of state, 1-cells or edges theold notion of transition, and the higher-dimensional cellsconstituting a new notion of concurrent transition.Second, we may let the i-th automaton, for 0 � i < d,run for mi transitions, provided its graph forms a chainso that it accepts just one string, of length mi. Our unitcube then expands to a larger complex of size Qimi.Third, we may label transitions. If we associate alpha-bet �i with the i-th sequential automaton for 0 � i < d,we may label its edges in the standard way for automata.To extend this to higher dimensions we require for eachsubset of this set of d alphabets the alphabet formed asthe product of that subset, yielding 2d alphabets. Eachn-cell is then labeled with an n-tuple of labels from theappropriate alphabet, namely that corresponding to thesubset of automata whose activity is represented by the

cell. All completely quiescent states (0-cells) are labeledwith the unique 0-tuple, indicating the absence of activ-ity. 1-cells are labeled with 1-tuples, as in an ordinaryautomaton. 2-cells are labeled with pairs (a; b) indicat-ing the joint execution of transitions a and b, and so onfor higher dimensions.Less trivial is the next generalization, which imposesorder constraints. For any two transitions of di�erentautomata we may require that one not start until theother has �nished, a precedence constraint. We shallcall such a collection of constraints a schedule, the termused in (inter alia) the Macintosh world for PERT chartsor pomsets.With this generalization the second trivial generaliza-tion now becomes redundant, since we can achieve thee�ect of a sequential automaton havingm transitions byusingm concurrent one-transition automata constrainedto execute in a speci�ed sequential order. To simplifythe model we therefore withdraw generalization two.This restricts our basic automata to single-transitionautomata, more conventionally called events. We maynow describe each precedence constraint as holding be-tween such events i and j, without having to furtherspecify a particular transition within each event. Theseconstraints, which we write as i < j, then amount toa partial ordering of the set (or multiset in the labeledcase) of d events.We saw already that the square (2-cube) had ninecells. More generally the d-cube has 3d cells. The num-ber three arises as the possible states of an event: initial,transition, �nal, or 0; T; 1 for short. Each cell can thenbe identi�ed as a d-tuple over f0; T; 1g = 3. The stan-dard interpretation of i < j is to exclude all cells savethose whose j-th event is 0 or whose i-th event is 1.In place of f0; T; 1g we may take the unit interval[0; 1] on the real line, whose interior (0; 1) correspondsto T alone and whose endpoints are the correspondinglynamed elements of f0; T; 1g. Then the d-cube becomesthe unit cube [0; 1]d in d-dimensional Euclidean spaceRd, having a continuum of points rather than just 3d.Now one quite reasonable interpretation of i < j is torestrict to the polyhedral subspace of the cube consistingof those points whose i-th coordinate is greater thantheir j-th coordinate. This corresponds to permittingevents i and j to run concurrently but without lettingj get ahead of i. For any partial ordering of eventsthis subspace is convex and can be easily shown to havevolume k=d! where k is the number of linearizations ofthe partial order, being the (essentially) disjoint unionof k tetrahedra one per linearization.However this is not the proper analog in Rd of sub-spaces of 3d, since it cuts faces into tetrahedra. Theappropriate real-valued analog further restricts the sub-space to those points such that either the j-th coordinateis 0 or the i-th coordinate is 1. But this is exactly how3

we expressed the condition for 3d. In fact i < j was in-terpreted without mentioning T at all, being expressedsolely in terms of the initial and �nal states of an event,regardless of what structure we impart to its interior.Unlike the interpretation of i < j in the previous para-graph, the subspace of Rd given by the standard inter-pretation is not convex. However, as will be seen to beimportant shortly in our approach to nondeterminism,it contains no holes.3 Schedule-Automaton DualityWith this last generalization we have passed from un-scheduled to scheduled activity, the latter being theessence of the pomset model [Gra81, Pra82]. From amathematical perspective we have passed (at least inthe �nite case) from the Birkho�-Stone duality betweensets (of events, as points of a �nite discrete topologi-cal space) and Boolean algebras (of states) to the muchricher Birkho� duality between posets (still of events)and distributive lattices (still of states).The Birkho� duality is becoming better known in theCS community of late. However there remains consid-erable confusion in both the mathematical and CS lit-erature over the di�erence between Birkho� duality andStone duality, perpetrated in our opinion by an unwar-ranted enthusiasm for topological methods to the ex-clusion of combinatorial. It is very helpful to see thesedistinctions clearly when working with our geometricalmodel of concurrency. Hence we give here an overviewof this duality and its application to concurrency.Sequential computers alternately work during a tran-sition and then rest up at a state. This scenario is con-ventionally rendered as a graph whose vertices representeither transitions or states. If transitions then we havea PERT chart or schedule, and the edges of the graphdenote precedence relations, possibly labeled with dura-tions indicating bounds on the time from one transitionto the next. If states then we have a machine or au-tomaton whose edges are transitions from state to state,possibly labeled with attributes of the transition. Butwhich picture is the right one?The Petri net answer is neither: transitions and statesshould be granted equal rights by both being vertices.These then serve as respectively the conjunctive and dis-junctive elements of an intriguing logic of concurrency.The duality theory answer is both: for at least a cer-tain class S of schedules and class A of automata theydepict the same scene because S and A are equivalent.Not isomorphic, which would imply a 1-1 correspon-dence between the elements of S and A, but equivalentin the sense of a 1-1 correspondence between the isomor-phism classes of S and A. (This is exactly the categorytheoretic notion of equivalence.)Here is a simple special case of this equivalence.

A �nite schedule S that is just an unordered set of njobs (transitions) to be done in parallel is very easy tocompile into an automaton. The automaton is just thepower set 2S , drawn in the standard way with the emptyset at bottom as the start state and S at top as the�nal state, and edges between just those sets di�eringby exactly one job, with that job labeling that edge. Forthe automaton to be in state Y means that the set ofjobs done thus far is Y . This is the Hasse diagram of itslattice, i.e. the smallest DAG whose transitive closure isthe inclusion order � between subsets. This lattice is ofcourse a Boolean algebra, meaning a distributive latticewith a complement operation.It is helpful to regard the states of the automaton as2n bit vectors of length n, with bit x being 1 in stateY just when job x has run by the time that state isreached. Then the set operations Y [Z and Y \ Z arebit vector operations such that in each bit position theyare just _ and ^.Decompilation is traditionally harder than compila-tion, but in this case decompilation is just as easy ascompilation. Given such an automaton A, form itspower automaton 2A, consisting of certain sets of statesof A.Now if an automaton were simply a set of states,2A would mean the power set of A. But that wouldbe huge|and fortunately wrong. The right way toform the power widget 2W of a widget W is to takeall widget maps from W to 2. This works providedthere's a sensible way to construe 2 as a widget. Theautomaton A is a lattice, and luckily the poset 2 isschizophrenic enough to be also the lattice 0 � 1 of truthvalues. Hence we take for 2A all lattice maps (homo-morphisms) from A = 2S to 2, meaning functions thatpreserve the lattice structure, i.e. f(;) = 0, f(S) = 1,f(Y [Z) = f(Y)_ f(Z), and f(Y \Z) = f(Y)^ f(Z).It can be easily seen that preserving this much impliespreserving complement as well, so these are also Booleanalgebra maps.So what maps does this give us? One function thatsatis�es the desired conditions above is the predicate fxthat tells of each state whether job x has run yet. Butlooking at A as 2n bit vectors, this is just the functionthat watches bit x. As long as bit x works reliably,when Y [Z is formed bit x will appear to be computingYx _ Zx, and dually for \. But this is what the aboveconditions require. So these functions are lattice maps.They are in fact the n projections of 2X onto 2, 2X beingthe product of n copies of 2. That they are di�erent canbe seen by their behavior on singleton states. Hencethese maps form a set isomorphic to X, that is, havingcardinality jXj. That it is only isomorphic and not equalis why the duality is only an equivalence and not anisomorphism!And these are all the lattice maps there are from A4

to 2. For f can't be 0 on every singleton or it wouldmake f(S) = 0, S being �nite. But f can't be 1 ontwo or more singletons since that would make f(;) = 1.So f must be 1 on exactly one singleton fxg. But nowf(fxg \ Y) = f(fxg) ^ f(Y) = f(Y) whence f(Y) = 1exactly when x 2 Y , making f = fx.But the theorem is that decompilation back to sched-ules works for an isomorphism class of automata, so wearen't allowed to refer to states as singletons per se.However this is no problem: we can spot the singletonsby context as being just those states immediately fol-lowing the start state, namely the atoms of the Booleanalgebra. So we revise the above argument to work forall automata isomorphic to 2S by substituting \atom"for \singleton."So we now have a 1-1 correspondence between all iso-morphism classes of �nite sets and some set of isomor-phism classes of �nite Boolean algebras. But the readerwell knows (though it is some work to prove) that every�nite Boolean algebra is isomorphic to the power set ofsome �nite set, and so we have the promised equivalence.But this very special case of Birkho�-Stone duality isas boring as the natural numbers, since the �nite sets fallinto isomorphism classes according solely to their car-dinality n, one class per number, and correspondinglythere is just one isomorphism class of Boolean algebrasof cardinality 2n.So the picture so far is that if schedules are just un-ordered sets of jobs, there is, up to isomorphism, justone schedule of each size n and one matching automa-ton of size 2n.This duality can now be spiced up in two essentiallyorthogonal ways, a combinatorial one due to G. Birkho�[Bir33] and a topological one due to M. Stone [Sto36].Remarkably, that these ways were orthogonal passed un-noticed until pointed out by H. Priestley in 1970 [Pri70].Keeping everything �nite, Birkho� duality generalizesthe discrete schedules to partially ordered schedules, andgeneralizes the automata to distributive lattices. On theother hand, keeping the automata Boolean, Stone dual-ity generalizes everything to the in�nite case. In orderto allow every Boolean algebra to be viewed as the com-pilation of some schedule Stone generalizes schedules ofjobs to schedules of sets of jobs called (nowadays) Stonespaces. Instead of running individual jobs one must nowrun sets of jobs at a time, and only in those combina-tions that are permitted. The automaton produced bycompiling such a schedule will now be a proper Booleansubalgebra of the power set of the set of all jobs in theschedule, due to the schedule restrictions eliminatingsome states, e.g. those containing only �nitely manyjobs.Stone did extend his Boolean duality to distributivelattices [Sto37], but purely topologically rather than viathe more natural blend of order and topology devised

by Priestley. As Rota put it, \Stone's representationtheorem of 1936 for distributive lattices closely imitatedhis representation theorem for Boolean algebras, and asa consequence turned out to be too contrived." [Rot73]Priestley simply equips the schedule with bothBirkho�'s partial order and Stone's topology to make ita partially ordered Stone space, a set bearing two struc-tures, that of a partial order and that of a topology,Stone's in this case. The partial order deals with theabsence of complementation, generalizing Boolean alge-bras to distributive lattices, and dually on the scheduleside, sets to posets. The Stone topology, which resideson the schedule side, caters to the phenomenon wherebya countably in�nite Boolean algebra, and by the sametoken a distributive lattice, can have a countably in�nitesubalgebra not isomorphic to its parent, by forbiddingthose combinations of jobs (i.e. subsets of X) corre-sponding to missing elements of said subalgebra.Thus Birkho�'s and Stone's halves of this beautifulduality theory are essentially independent. Both halveshave potential computational signi�cance. Birkho� du-ality is relevant to scheduling, the main thrust of thispaper. Stone duality is relevant to continuous situa-tions, e.g. parallel solutions to stock-cutting problemswhere the regions can get arbitrarily small without everbecoming points. It may also prove fruitful in reasoningabout large systems where the number of jobs makes ituneconomical or infeasible for a scheduler to deal withindividual jobs, forcing it to batch them, the chief di�-culty here being that of translating the logic of in�nitydown to large but �nite numbers.For our geometry-of-concurrency purposes howeverwe currently have no application for Stone duality. Inthis paper we focus on schedules structured by a par-tial order, and hence on Birkho� duality, a �nite andpleasantly combinatorial phenomenon.2Finite posets are far less boring than �nite sets.Whereas the number of isomorphism classes of sets ofeach cardinality goes 1; 1; 1; 1; 1; 1;1; . . . the correspond-ing sequence for posets goes 1; 2; 5; 16; 63; 318; 2045;So when you are scheduling 7 jobs, there are 2045 di�er-ent ways to schedule them, one of which is the discreteorder, no precedence constraints, at one extreme andanother of which is the linear order (this is only up toisomorphism, or we would have 7! linear orders) at theother.Despite this enormously richer software library (andthis is before we've labeled the vertices to say what eachjob does, being only up to isomorphism), the story aboutschedules and automata remains almost completely un-2Some say topology should become pointless, others that it al-ways was. Poincar�e, the father of combinatorial topology, saidof Cantor's Mengenlehre that it was a disease from which latergenerations would regard themselves as having recovered. It is asporting bet that we will recover sooner from the internal com-bustion engine.5

changed! To compile S form A = 2S . To decompile Aback again form S = 2A.It will become clear shortly that these de�nitions asthey stand are time reversing in both directions. Wecouldn't see this before because sets and Boolean alge-bras are both isomorphic to their duals. We �x thisby reversing the input to each exponentiation. Thuswe actually compile with 2Sop and decompile with 2Aop ,where Xop denotes the order dual of X.Remarkably, nothing about our reasoning for un-ordered schedules needs be changed until we get to thematter of whether there are any other maps besides thefx's. The arguments involving singletons are no longersound, because there may now be fewer singletons, inthe extreme case only one if some job has to go �rst.But we achieve the same e�ect by taking, for each x,the state fyjy � xg (a so-called principal order idealbecause it is generated by one element, x), clearly inA. This state is the earliest moment at which x couldhave run. To make this abstract (remember, we claimonly an equivalence, not an isomorphism), the analog of\atom" is now obtained by noticing that these states areexactly those that aren't the union, or rather join sincethis is going to be for lattices, of two smaller states, i.e.they are join-irreducible. The states we've picked can'tbe so represented because x has to be in one of themand there is no smaller such state. Those we left outare not principal and hence have at least two maximalelements, in which case they can be represented as theunion of the principal order ideals generated by each oftheir maximal elements.We now observe that our fx's are all distinct becauseeach �rst becomes true at its own join-irreducible state.Furthermore when we compare the fx's coordinatewiseby inclusion we �nd fx � fy (which we can read as \ifx has happened then y has happened") just when y � xin S. So this ordering of the fx's coincides with theoriginal order on S, showing that 2A is isomorphic tothe original poset S.This equivalence of the classes of �nite posets and�nite distributive lattices is actually a contravariantequivalence of categories. This means that the corre-spondence between posets and lattices extends to theirmaps, with \contravariant" meaning that correspond-ing arrows go in opposite directions, i.e. the poset mapf : p ! q corresponds to a lattice map f 0 : q0 ! p0between the corresponding lattices.The adjacent �gure contains two diagrams, one inthe category of �nite posets, on the left, the other onthe right in the category of �nite distributive lattices.Each diagram has seven objects A through G, primedon the right. The six poset maps on the left, numbered1 through 6, go down while the corresponding latticemaps on the right go up.Object A is a one-job schedule while A0 is the corre-

sponding one-transition automaton. The map 1 : A !B is an inclusion which adds job b while the correspond-ing map 10 : B0 ! A0 is a projection, projecting out b.2 : B ! C is an augmentation of the discrete order inB to a linear order in C. This constraints knocks outthe bottom left corner of B0, represented by an inclu-sion 20 : C0 ! B0. C0 is the top and right edges of B0,straightened out. Now a new element c is added in onthe left; the relevant piece of the diagram is a coproductE whose inclusions are maps 3 and 4. The dual of a co-product is a product; 30 : E0 ! C0 projects out c while40 : E0 ! D0 projects out a and b. Now 5 augmentswith a � c, again knocking out a corner. Finally 6 addstwo new elements, d after b and e spliced in between aand c.

dd d d ddd
d
d dd dd dd ddd d

dd d
dd d ddd ddd ddd ddd

ddd ddd
ddd d dd???
-666??
6???��= ��>6
?- -? ??--

--- --
- -- ?--- ??? ?- --
--? ?-??-- ??FE DCBA

65 4321
ce

a
ddbb ccc eee dba cc bba cbba ba a

dba c ba c ba cba ba a bb aac c c
G

A'B'C' D'E'F'G'
1' 2'3' 4'5'6'One may well imagine that distributive lattices wouldbe harder to visualize than Boolean algebras. This neednot be so. The key to visualizing a distributive lattice2Sop is to interpret the precedence constraints of S in2Sop . What each constraint x � y does is to delete allstates violating that constraint, namely those containingy but not x. The remaining states retain their originalpositions, preserving the geometry of the cube. Thus a�nite distributive lattice is simply an eroded cube.One immediate application of dualities of this kind isthat it maps colimits to limits in passing from schedulesto automata. This follows from the manner in which du-ality is obtained as the exponentiationDx, for a suitable6

dualizing object D, in the category of posets, yieldingfor example Dx+y = Dx �Dy . Casley et al [CCMP91]outline a language for concurrency a number of whoseoperations are describable as colimits in a category ofschedules; these are therefore carried to the correspond-ing limits in the dual situation. The language is de�nedfor schedules having various notions of time, such asreal-valued time3, set-valued time, and causal-accidentaltime, with posets having merely truth-valued (0 and 1)time.4 Event Structures.The next generalization takes us to the event structuremodel [NPW81].4 Here we specify a symmetric irreex-ive binary relation i#j on events, whose meaning is thatnot both of i and j may run. In the presence of schedul-ing we require that i#j and j < k imply i#k, that is,conict is a persistent condition. An event structure isthen such a set (V;<;#), V being the set of events.The e�ect of the scheduling order < was to erode thecorresponding automaton by deleting certain cells, con-verting it from a cube or Boolean algebra to a distribu-tive lattice. (Every �nite distributive lattice arises inthis way.) The e�ect of conict # is to further erodethe automaton, this time only from the top down (aconsequence of the persistence of conict), deleting justthose cells such that for some i#j neither the i-th norj-th component of that cell is 0, corresponding to statesin which both i and j are either running or have halted5.In these generalizations the �lled-in holes of a givendistributive lattice have not themselves added any in-formation, since they can be reconstructed from thedistributive lattice by �rst passing to its dual poset,taking this to be a scheduling of events, and construct-ing the �lled-in lattice from the poset by the proceduregiven above, as a subspace of either 3d or Rd as desired.However event structures currently provide the largestknown class of schedules to date that we are aware offor which this holds.5 Monoidal HomotopyWe now de�ne a preliminary notion of monoidal homo-topy and use it as the basis for a de�nition of \true3In�nitesimally�ne interleavinglooks like true concurrencyun-til one notices it is taking time L1 or x+ y. Truly concurrent realtime requires only L1 or max(x;y), a theme developed in futurework.4As Girard [Gir87] has noticed to good e�ect in developing thenotion of coherent space, this generalization can be made inde-pendently of the preceding one.5Without scheduling these are Girard's coherent spaces, orrather coherent algebras if we adhere to the duality theorists' nam-ing convention for such dualities.

nondeterminism." It is expected that a more formal no-tion of monoidal homotopy will be able to be based onthe n-complex model of higher dimensional automatapresented in the concluding section.A �nite distributive lattice is both conuent andsimply-connected in the following sense. Given any two(ascending) paths in the lattice (de�ned as just the ver-tices they pass through, the edges can be inferred), thelattice property uniquely determines two vertices, re-spectively the meet and join of the union of those paths,in turn determining (not uniquely) extensions of thepaths to those points to give them a common beginningand end, this being conuence. And the distributivityproperty uniquely determines the appropriate �lling-inof the \holes" in the lattice, yielding a simply-connectedspace through which the two paths may be continuouslydeformed into each other in the intuitively obvious way,provided we regard this space as Euclidean, i.e. a subsetof Rd rather than 3d. By suitably de�ning the discreteanalog of continuous deformation we may achieve thesame e�ect in 3d, addressed below, but for now our in-tuition with Euclidean space will su�ce.In topological language, any two paths with commonendpoints in such a simply-connected space are auto-matically homotopic, an equivalence relation on paths[Bro88, Whi49, Whi78]. They become nonhomotopicwhen a hole appears somewhere in the space betweenthem to inhibit their deformation into one another.Homotopy is ordinarily studied for spaces the move-ments in which form a group under composition, wherehomotopy is inhibited only by holes. The typical irre-versibility of computation however calls for a monoid.This in turn calls for a generalization of the notion ofhomotopy from group-homotopy to monoid-homotopy,leading to other ways of inhibiting homotopy. For nowwe settle for the following stopgap notion, de�ned onlyfor our present setting of distributive lattices.Given two ascending paths p; q in a distributive latticeL having common endpoints, and given a subspace Xof the Euclidean �ll-in of this lattice, we say that p andq are group-homotopic with respect to X when they arehomotopic inX in the standard sense of topology. Giventwo ascending paths p; q not necessarily having commonendpoints, we say that p and q are monoid-homotopicwith respect to X when they extend to paths that aregroup-homotopic with respect to X.This generalizes homotopy by permitting paths with-out common endpoints, the application of which will beapparent shortly. Henceforth by \homotopic" we shallmean monoid-homotopic.We think of decisions involving choices between pathsas essential just when the paths are not homotopic, andhence of �lled-in distributive lattices as deterministic orchoiceless automata. Nondeterminism is the conditionin which there exist paths not homotopic to each other;7

we think of the choice between nonhomotopic paths asan essential decision.Conict introduces nondeterminism into distributivelattices, by selectively destroying conuence in the for-ward (upward) direction, by making \notches" in the\top" of an automaton. Two paths on opposite sides ofsuch a notch are committed to their respective sides andcannot be extended upward to group-homotopic paths,there being no join to extend to; hence they are nothomotopic in our broader sense. (Since the e�ect ofpersistence is to limit notching to the top, making suchan automaton an order ideal of the distributive latticeit was obtained from, it follows that for conict it wouldmake no substantial di�erence if we restricted the de�-nition of monoid-homotopy just to paths with commonbeginnings, since any two paths can be extended to havea common beginning.)6 Bene�ts of a Geometric ModelThe biggest advantage for us of this geometric perspec-tive is that it makes the duality of schedules and au-tomata more convincing. If by leaving two events un-ordered we have supposedly represented their true con-currency, how do we then explain the automaton dual tothis discrete poset, namely the four-state four-transitionsquare already discussed? The latter is exactly the au-tomaton one would expect the interleavingmodel to pro-duce!One answer to this puzzle is to say that such asquare always indicates true concurrency, and to rep-resent ij + ji (namely the mutual exclusion of i and j)by not letting the ij and ji branches rejoin when done.Our answer is instead to �ll in the square to indicatetrue concurrency and simply leave it hollow to indicatemutual exclusion.We see this approach as having the following bene�ts.(i) Naturality. Lines, surfaces, and volumes, attachedto each other in possibly branching ways, are familiarand easily visualized concepts, requiring relatively littlemathematical sophistication to at least begin to appre-ciate.(ii) Flexibility. A greater variety of situations maynow be represented. For example we now can choosewhether ij and ji are to rejoin immediately, a littlelater, or never. For reason (iii) (complexity) we willin general prefer the �rst, but we may on occasion �ndit meaningful to \rip upwards" a little or a long way.(iii) Complexity. An m � n rectangle contains onlymn squares but �m+nm � paths (between adjacent latticepoints) from start to end. Even if we associate informa-tion with every square (e.g. by forbidding some), thegeometric representation of this information is of poly-nomial size in the sides whereas the interleaving repre-sentation, in terms of the paths, is of exponential size.

(iv) Continuity. Tearing a picture into little stripsis an inherently discontinuous operation. Decomposinga d-dimensional space as a set of paths through it issomewhat akin to identifying a TV picture with its one-dimensional representation as a sequence of scan lines.A TV serviceman who never saw a screen but only thescan lines laid end to end may �nd this perspective nat-ural, but certainly not a viewer.We programmers tend to be more like servicementhan viewers. Years of thinking about individual in-struction sequences have conditioned us to believe thatthe sequence is the correct object of study. If instead wewere to assemble many such sequences, properly aligned,into a single picture, the resulting shapes that would ma-terialize would make it much easier to reason about ourprocesses.(v) Algebraic structure. Geometry is an \alge-braically mature" subject, and we are optimistic thatsome of this algebra will rub o� on our geometricallybased model of computation. Thus far we have in factelicited some algebraic structure, but mainly from thatof event structures via duality. We are presently work-ing on replacing this convenient but limited derivationwith an elementary development of homology based onmonoids instead of groups to yield what we feel will bea more comprehensive and convincing algebrization. Tobe more precise, we base it not exactly on monoids butrather on their generalization to n-categories [Ehr63] fol-lowing roughly the lines of Street [Str87], as more ap-propriately expressing the dimensional aspect.7 Extensions of Event Struc-turesDespite the fact that event structures were introducedmore than a decade ago [Win80], there have been no fur-ther generalizations of event structures where the dual-ity has been maintained. Yet there are many phenomenaof computation each describable with a suitable exten-sion of this model, some of which we give now. Thusfar we have been able to make these extensions only onthe algebra or automaton side of the duality, where thehigher-dimensional cells are described explicitly. Therole of the cells in making these extensions may onceagain be made inessential, albeit almost certainly stillconvenient, if a suitable extension of the duality can befound, a problem we return to later.Although event structures themselves reside on thetopology side of the duality, the completeness of theduality up to this point permits us to extend startingfrom either side. All extensions considered here will beto the algebra or automaton side, where the nature ofthe higher-dimensional cells, of dimension two and up,is clear.8

Mutual Exclusion. The mutual exclusion of events iand j is the condition that i and j not overlap. In ST-bisimulation terms it is the naturally expressed condi-tion that in no state are transitions i and j both marked.The corresponding requirement for the geometric modelis of course that no cell exist whose i-th and j-th compo-nents are both T (for the discrete or 3d model) or bothin the open interval (0; 1) (for the Euclidean model).As de�ned here mutual exclusion is not persistent. Wemay have i#j and j < k without i#k since k may notneed the resource that i and j are presumably competingfor. After i and j are done, in whichever order, the twobranches of the computation may rejoin, correspondingto the rest of the computation not remembering the or-der.A persistent version of the mutual exclusion of i andj can be de�ned using two copies of each of i and j,arranged as ij + ji, with each of the two events of ij inconict with each of the two events of ji. Persistence ofconict means that the commitment to one of ij or jiis permanent; two paths making this decision di�erentlycannot subsequently rejoin.This brings us to the question, to persist or not topersist?One advantage of persistence is that it permits ourgeometrical model to be dispensed with. However tothe extent that geometry o�ers the several bene�ts weclaimed earlier, all of which are compromised more orless seriously by insisting on persistence, this is at thesame time a serious disadvantage of persistence.For example persistence destroys the complexity ad-vantage of geometry. If the computation keeps splittinginto alternatives without ever rejoining, its size growsexponentially. Rejoining permits a much smaller modelof a given computation when there is much branching.(The dauntingly many alternative parallel universes ofscience �ction may similarly be dramatically reduced innumber, say to around 10120 as a match for the numberof particles in any one such universe.)It is also particularly distressing to see a local mutualexclusion requirement, which we can represent with justa small hole, be blown up into a giant tear in the fabricof the computation simply due to the requirement ofpersistence.For these and similar reasons we prefer not to insiston persistence, and to permit the expression of nonde-terminism not only by absence of conuence (the statusquo) but also by the presence of holes even where con-uence is possible (our proposed extension to the statusquo).Communication. Consider a rectangle representingtwo processes X and Y running in parallel. A commu-nication from X to Y consists of a transmission T byX and a receipt R by Y . These two events togetherdetermine a point in the rectangle, which we may think

of as the communication. Taking this point as the ori-gin, divide the rectangle into four quadrants. Think-ing for the moment in terms of computations beingone-dimensional paths, a particular computation pathpasses through three of these, avoiding the quadrantin which the message would have been received be-fore it was transmitted. The middle quadrant the pathpasses through, diagonally opposite the excluded quad-rant, represents the period during which the message isin transit.The e�ect of many communications is to erode theupper left (early X and late Y) and lower right (lateX and early Y) regions of the rectangle, creating twojagged boundaries each representing the places whereone process must wait for messages from the other. Theboundaries are suggestive of teeth, suggesting the whim-sical term \jaws of communication." We refer to thespace between the jaws as the communication corridor.In the interior of the corridor there is no waiting formessages; computation may ow unimpeded.As the rate of exchange of messages increases the cor-ridor narrows (the jaws close). If this corridor were atube with liquid owing through it, we would expectsuch narrowing to impede the ow. In fact we see justsuch an e�ect, attributable to the high cost of commu-nication.But we need not think of a computation as a speci�cpath through the corridor, we can broaden it to reectour ignorance of its exact position, just as we would dofor the trajectory of a car on a highway, the accuracyof which depends on the application. In the limit wemay think of the whole corridor as the computation. Ifit contains no holes or failures of conuence (i.e. persis-tent conicts) we regard it as a deterministic computa-tion. Otherwise it is nondeterministic, with the essenceof the nondeterminism residing in homotopy classes (theequivalence classes of paths induced by homotopy).The concern of branching time is then with the detailsof just where the homotopy classes paste together, sincepasted regions represent regions preceding (or follow-ing) where the classes diverge (or converge). Synchro-nization trees are the one-dimensional case of this wherewords are pasted together along a common initial seg-ment, a one-dimensional pasting. In general pasting cantake place not just along curves but across surfaces andthrough volumes etc. The pasting need not necessarilybe the maximal such, otherwise branching time wouldconvey no information not already in linear time. At afork earlier decisions correspond to earlier suspension ofpasting, and dually at a join.9

8 Directed Cell Complexes andn-Dimensional AutomataThus far the discussion of geometry has relied on aninformal intuition about geometry which might be char-acterized as pastings of fragments of Euclidean spaceoriented somehow to represent the irreversibility of com-putation. This intuition is formalized in the followingnotion of higher dimensional automaton.A sequential automaton or transition system is agraph6 whose vertices denote states and whose edges de-note transitions. One vertex q0 is distinguished as thestart state and a set F of vertices constitutes the �nalstates. The edges are labeled with elements of a set �.The linear-time meaning of this automaton is de�ned interms of paths in the graph, each determining an ele-ment of ��. The automaton accepts those elements of�� that are determined by some path from q0 to a statein F . Two such automata are linear-time-equivalent ortrace-equivalent when they accept the same subset of��.In geometric terms such an automaton is a one-dimensional cell complex whose one-dimensional cells or1-cells are its transitions and whose 0-cells are its states.We would like a model whose de�nition reduces in the1-dimensional case to the above combinatorial notion ofdirected graph, and which captures the geometric intu-itions of the foregoing discussions.Algebraic topology o�ers a range of models to selectfrom, such as CW-complexes and simplicial complexes.But as far as we have been able to tell, all the extantnotions of cell complex in algebraic topology assume re-versible geometry too early in their development, anddepend too heavily on structural properties of groups, topermit their easy adaptation to the irreversible case. Wewould be delighted to have a pointer to a counterexam-ple. The following notion of higher dimensional automa-ton takes its inspiration not from algebraic topology butinstead from the geometry of n-categories [Ehr63].Ordinarily we de�ne an automaton as an edge-labeledgraph, and de�ne its operation in terms of the pathsin that graph and the operation of path concatenation.However we could just as well start with the paths anddispense with the underlying graph. When passing fromdiscrete to continuous automata, whose every state tran-sition can be decomposed as a concatenation of shortertransitions, this is in fact necessary since they have nosuitable underlying graph.For qualitatively di�erent reasons we shall similarlynot start from the underlying graph when passing fromone-dimensional to higher-dimensional automata. Theproblem is not that suitable underlying graphs cannot6We allow multiple edges from one vertex to another. In somecircles the term multigraph is used to distinguish these from thekind where E � V 2 .

exist, as with continuous automata, but that a suitablenotion of n-graph has proved elusive, and only halfway-decent notions have emerged to date. The most success-ful of these would appear to be M. Johnson's notion ofpasting diagram [Joh87]. However it seems to us thathis de�nition presently requires both simpli�cation andgeneralization in order to constitute a workable notionof n-graph. Hence as an interim measure we de�ne ann-complex to be an n-category, with the eventual goal ofrede�ning it so that it refers to the underlying n-graphwhen that notion is fully operational.Proceeding top-down, we �rst de�ne the notion ofconcurrent automaton in terms of that of complex, pro-vide a motivational interlude, then de�ne complex.An n-automaton A = (Q;�; �; S; T) consists of n-complexes Q and �, an n-map � : Q ! �, and subsetsS; T of (the underlying set of) Q. The m-language ac-cepted by A is the subset of � consisting of those �(x)for x in Q such that sm(x) 2 S and tm(x) 2 T wheresm; tm are the m-th boundary operators of Q.Before de�ning complexes let us touch ground mo-mentarily. Our 5-tuple de�nition parallels the tra-ditional de�nition of an automaton as (Q;�; �; q0; F)[HU79], consisting of state set Q, symbol set �, tran-sition function �, start state q0, and �nal state set F ,along with the usual de�nition of accepted language.With the following adjustments the traditional de�ni-tion matches ours in the case n = 1;m = 0.View the transitions de�ned by traditional � as apair (E; �) where E is a set of unlabeled edges and� : E ! � labels them. Rename Q to V for vertices,move E in with V to form a graph (V;E) and recycleQ as Q = (V;E). Now revamp � as a 1-graph with onevertex and with edge set old �. Interpret � : Q ! �as the obvious graph map. Finally replace (Q;�; �) by(Q�;��; ��) where Q� is the set of paths in Q, �� is asalways the free monoid on �, and �� : Q� ! �� is thecorresponding extension of � : Q ! � from paths oflength 1 to all paths. Take S = fq0g and T = F . Thisgives us the desired 1-automaton (Q�;��; ��; S; T). Wethen renameQ;�; � one more time so as to dispense withthe �'s. This is the translation of a standard automatoninto our framework.We now continue with our top-down de�nitions. Fol-lowing Street [Str87], we de�ne an n-complex in termsof 1-complexes and 2-complexes.An n-complex, or small n-category, is a set bearingthe structure of n 1-complexes C0; . . . ; Cn�1, such thatfor all i < j, (Ci; Cj) is a 2-complex.It remains to de�ne i-complex for i � 2. In the follow-ing the s; t; � terminology is taken from Street [Str87];we have taken some liberties with the wording of hisde�nition but not its content. Note that this de�nitionof a 1-complex is as a homogeneous category, namelyone where the object-morphism distinction is not made;10

the objects can be recovered as any of either the rangeor �xpoints of either s or t, or as the identities of �.Homogeneity simpli�es the extension to n-categories.A 1-complex C = (P; s; t; �) consists of a set P of (ab-stract) paths, two boundary operations s; t : P ! P ,and a binary operation � : P 2 ! P of path concatena-tion. The domain P 2 � P 2 of � is the set of consecutivepairs (x; y) in P 2, namely those for which tx = sy. Fur-thermore the following conditions must be satis�ed.(i) s(P) = t(P) def= P0, constituting the 0-cells of C,while P1 = P , the 1-cells of C. (So P0 � P1 = P .)(ii) x 2 P0 implies sx = x = tx. (Hence s and t areidempotent, and st = t = tt, ss = s = ts.)(iii) For all (x; y) 2 P 2, s(x � y) = s(x) and t(x � y) =t(y).(iv) (Identities.) x 2 P0 implies for all (x; y) in P 2,x � y = y, and for all (y; x) in P 2, y � x = y.(v) (Associativity.) For all (x; y) and (y; z) in P 2,x � (y � z) = (x � y) � z.A 2-complex C = (P; s0; t0; �0; s1; t1; �1) is a pair(C0; C1) of 1-complexes C0 = (P; s0; t0; �0), C1 =(P; s1; t1; �1) on a common set P such that(i) P0 � P1 where Pi = si(P), the set of i-cells.(Hence s1t1 = t1 but s0t1 = s0, and P0 � P1 � P2 = P .)(ii) (Interchange.) (w�1x)�0(y�1z) = (w�0y)�1(x�0z)when all terms are de�ned.Referring to our de�nition of n-complex(C0; . . . ; Cn�1) then reveals it in more detail to be astructure C = (P; s0; t0; �0; . . . ; sn�1; tn�1; �n�1) everypair (Ci; Cj) of which for i < j is a 2-complex. Evi-dently P0 � P1 � . . . � Pn = P .An n-map or n-functor of n-complexes C;C0 is a ho-momorphism; equivalently, a function f : P ! P 0 be-tween their underlying sets such that f : Ci ! C 0i is afunctor for 0 � i < n (i.e. on the 1-complex at eachdimension).It is intuitively clear that associativity is the essentialaxiom of concatenation in one dimensional irreversiblegeometry. The straightforward extension of this to twodimensions is that a matrix can be formed as a column ofrows, and that vertical composition of columns is asso-ciative, and dually it can be formed as a row of columns,with horizontal composition of rows being associative.But there is more to it than that. The same ma-trix can be assembled row by row or column by column.While this has the same avor as associativity, it is notformal associativity in the sense that vertical compo-sition of columns or horizontal composition of rows isassociative. We therefore require a separate axiom fromassociativity. This is the function of the interchange lawin irreversible geometry.An example of a 2-complex is a polygonal decomposi-tion of a simply connected region of the Euclidean planeR2. The edges of the decomposition form a directedacyclic graph having a single source vertex and a single

sink vertex, as hence do the edges of any of the poly-gons. This partitions every boundary of a polygon xinto halves s1x and t1x, start and terminal, both lead-ing from a common source s0x to a common sink t0x.If two polygons share an edge then that edge must be-long to the start of one and the terminal of the other.It may be veri�ed that any two such polygons x; y forwhich tix = siy for i 0 or 1 together form a polygonmeeting these conditions. (Under these conditions thetwo halves of the boundary of a polygon may touch re-peatedly, but if the whole region is 2-connected|no cutpoint|they can never cross.) Hence the set of all sim-ply connected polygons that can be assembled from theelementary polygons of the decomposition constitutes a2-complex under the compositions x �0 y and x �1 y.The interchange law is evidently sound in this model.What is less obvious is that it is complete in the sensethat any two ways of assembling a polygon from elemen-tary polygons (which will take the form of two terms inthe language consisting of constants naming polygonsand the two compositions) can be proved to give thesame polygon using just the two associativity axioms(one for each composition) and the interchange axiomunder the standard rules of equational logic. This wasclaimed by Kelly and Street [KS74], and was more re-cently extended by John Power to all n-complexes (toappear). The idea of the proof for n = 2 is that ifw�1x and y�1 z denote the same polygon x, with sourceS = s0x and sink T = t0x, then each term partitionsthat polygon via a cut from S to T . If these two cuts donot cross each other then they bound a region w \ z orx \ y with source S and sink T leaving two outside re-gions of the polygon with that source and sink, and onethen proves equality of those regions separately by in-duction, completing with one application of associativityfor �1. Otherwise several island regions are produced,and interchange can then be used to represent each ofthese regions as one region from S to T by extending itout to S and T with 1-cells, and then concluding withapplications of associativity of �1.This shows that n-complexes capture the essence ofordinary geometry of cells, though without its reversibil-ity, ruled out here by directing all edges and surfaces.(This is in contrast to orienting them, where a directionis speci�ed but each edge has an inverse.) As the ear-lier sections argue informally, it is just such irreversiblecellular geometry that is needed for a geometric modelof concurrency.This completes the de�nition of higher dimensionalautomaton and the acceptance criterion most closelycorresponding to language acceptance. This induces acongruence on the class of such automata. We leave thefurther study of this model and associated congruenceand the pursuit of other acceptance criteria and congru-ences to subsequent communications.11

References[Bir33] G. Birkho�. On the combination of subal-gebras. Proc. Cambridge Phil. Soc, 29:441{464, 1933.[BK89] J.A. Bergstra and J.W. Klop. Processtheory based on bisimulation semantics.In Proc. REX School/Workshop on LinearTime, Branching Time and Partial Order inLogics and Models for Concurrency, pages50{122, Noordwijkerhout, The Netherlands,1989. Springer-Verlag.[Bro88] R. Brown. Topology: A geometric accountof general topology, homotopy types and thefundamental groupoid. Halsted Press, NewYork, 1988.[CCMP91] R.T Casley, R.F. Crew, J. Meseguer, andV.R. Pratt. Temporal structures. Math.Structures in Comp. Sci., 1(2):179{213, July1991.[CDP87] L. Castellano, G. De Michelis, andL. Pomello. Concurrency vs interleaving: aninstructive example. Bulletin of the EATCS,31:12{15, February 1987.[Ehr63] C. Ehresmann. Categories structurees. Ann.Sci. Ecole Norm. Sup., 80:349{425, 1963.[Gir87] J.-Y. Girard. Linear logic. Theoretical Com-puter Science, 50:1{102, 1987.[Gra81] J. Grabowski. On partial languages. Funda-menta Informaticae, IV.2:427{498, 1981.[GV87] R.J. van Glabbeek and F.W. Vaandrager.Petri net models for algebraic theories ofconcurrency. In Proc. PARLE, II, LNCS259, pages 224{242. Springer-Verlag, 1987.[HU79] J.E. Hopcroft and J.D. Ullman. Introduc-tion to Automata Theory, Languages, andComputation. Addison-Wesley, 1979.[Joh87] M. Johnson. Pasting Diagrams in n-Categories with Applications to CoherenceTheorems and Categories of Paths. PhDthesis, Dept. of Pure Mathematics, SydneyUniversity, October 1987.[KS74] G.M. Kelly and R. Street. Review of theelements of 2-categories. In LNM 420.Springer-Verlag, 1974.[Lam86] L. Lamport. On interprocess communi-cation. Distributed Computing, 1:77{101,1986.

[Mil80] R. Milner. A Calculus of CommunicatingSystems, LNCS 92. Springer-Verlag, 1980.[NPW81] M. Nielsen, G. Plotkin, and G. Winskel.Petri nets, event structures, and domains,part I. Theoretical Computer Science, 13,1981.[Pap86] C. Papadimitriou. The Theory of DatabaseControl. Computer Science Press, 1986.[Par81] D. Park. Concurrency and automata on in-�nite sequences. In Proc. Theoretical Com-puter Science, LNCS 104, pages 167{183.Springer-Verlag, 1981.[Pra82] V.R. Pratt. On the composition of pro-cesses. In Proceedings of the Ninth AnnualACM Symposium on Principles of Program-ming Languages, January 1982.[Pra86] V.R. Pratt. Modeling concurrency with par-tial orders. Int. J. of Parallel Programming,15(1):33{71, February 1986.[Pri70] H.A. Priestley. Representation of distribu-tive lattices. Bull. London Math. Soc.,2:186{190, 1970.[Rot73] G.-C. Rota. The valuation ring of a dis-tributive lattice. In Proc. Univ. of HoustonLattice Theory Conf. Dept. of Math., Univ.of Houston, 1973.[Shi85] M. Shields. Deterministic asynchronous au-tomata. In E.J. Neuhold and G. Chroust,editors, Formal Models in Programming. El-sevier Science Publishers, B.V. (North Hol-land), 1985.[Sto36] M. Stone. The theory of representations forBoolean algebras. Trans. Amer. Math. Soc.,40:37{111, 1936.[Sto37] M. Stone. Topological representations ofdistributive lattices and brouwerian logics.�Casopis P�est. Math., 67:1{25, 1937.[Str87] R. Street. The algebra of oriented sim-plexes. Journal of Pure and Applied Algebra,49:283{335, 1987.[vG90] R. van Glabbeek. Comparative Concur-rency Semantics and Re�nement of Actions.PhD thesis, Vrije Universiteit te Amster-dam, May 1990.[vGG89] R. van Glabbeek and U. Goltz. Partial ordersemantics for re�nement of actions|neither12

necessary nor always su�cient but appro-priate when used with care. Bulletin of theEATCS, 38:154{163, June 1989.[Whi49] J.H.C Whitehead. Combinatorial homotopyI. Bull. Amer. Math. Soc., 55:213{245, 1949.[Whi78] G.W Whitehead. Elements of HomotopyTheory. Springer-Verlag, 1978.[Win80] G. Winskel. Events in Computation. PhDthesis, Dept. of Computer Science, Univer-sity of Edinburgh, 1980.

13

