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Abstract

The usual epistemic S5 model for a multi-agent system is based on a Kripke frame,
which is a graph whose edges are labeled with agents that do not distinguish between
two states. We propose to uncover the higher dimensional information implicit in
this structure, by considering a dual, simplicial complex model. We show that there
is an equivalence of categories between the usual Kripke models and our simplicial
models. Thus, desirable properties of Kripke models like soundness and completeness
are preserved. What we gain is that we can now study the topological properties of
these models, and try to interpret them in terms of knowledge.
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1 Introduction

The usual Kripke model for epistemic logic S5 is based on a graph whose
nodes are the possible worlds and edges are labeled with agents that do not
distinguish between two worlds. We introduce a new kind of model based
on simplicial complexes. Now, the possible worlds are represented by higher-
dimensional simplexes, and the indistinguishability relation corresponds to how
the simplexes are glued together. Thus, these models have a topological flavor.

We prove that these simplicial models are very closely related to the usual
Kripke models: there is an equivalence of categories between the two structures.
This means that both kinds of model actually contain the same information.
By going from Kripke models to simplicial models, we uncover the topological
structure which is already present, but hidden, in Kripke models. Thus, sim-
plicial models retain the nice properties of Kripke models, such as soundness
and completeness w.r.t. (a slightly modified version of) the logic S5.

Simplicial models have first been introduced in the context of distributed
computing, in order to prove that some distributed tasks cannot be solved
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when processes can crash [6]. Work on knowledge and distributed systems
is of course one of the inspirations of the present work [4], especially where
connectivity [2,3] is used. In [5], we extend these simplicial models to the set-
ting of dynamic epistemic logic [1,7], and study more in-depth the relationship
between knowledge, topology, and distributed computing.

2 A simplicial model for epistemic logic

We describe here the new kind of model for epistemic logic, based on chromatic
simplicial complexes.

Syntax. Let AP be a countable set of propositional variables and A a finite
set of agents. The language LK is generated by the following BNF grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ p ∈ AP , a ∈ A

In the following, we work with n+ 1 agents, and write A = {a0, . . . , an}.
Kripke frames. A Kripke frame M = 〈S,∼〉 over a set A of agents consists of
a set of states S and a family of equivalence relations on S, written ∼a for every
a ∈ A. Two states u, v ∈ S such that u ∼a v are said to be indistinguishable
by a. A Kripke frame is proper if any two states can be distinguished by at
least one agent. Let M = 〈S,∼〉 and N = 〈T,∼′〉 be two Kripke frames. A
morphism from M to N is a function f from S to T such that for all u, v ∈ S,
for all a ∈ A, u ∼a v implies f(u) ∼′

a f(v). We write KA the category of proper
Kripke frames, with morphisms of Kripke frames as arrows.

Simplicial complexes. Given a base set V , a simplicial complex C is a
family of non-empty finite subsets of V such that for all X ∈ C, Y ⊆ X implies
Y ∈ C. We say Y is a face of X. Elements of V (identified with singletons)
are called vertices. Elements of C are simplexes, and those which are maximal
w.r.t. inclusion are facets. The set of vertices of C is noted V(C), and the set
of facets F(C). The dimension of a simplex X ∈ C is |X| − 1. A simplicial
complex C is pure if all its facets are of the same dimension, n. In this case, we
say C is of dimension n. Given the set A of agents (that we will represent as
colors), a chromatic simplicial complex 〈C,χ〉 consists of a simplicial complex C
and a coloring map χ : V(C) → A, such that for all X ∈ C, all the vertices
of X have distinct colors.

Let C and D be two simplicial complexes. A simplicial map f : C → D
maps the vertices of C to vertices of D, such that if X is a simplex of C, f(X) is
a simplex of D. A chromatic simplicial map between two chromatic simplicial
complexes is a simplicial map that preserves colors. Let SA be the category of
pure chromatic simplicial complexes on A.

Theorem 2.1 SA and KA are equivalent categories.

Proof (Sketch). We can canonically associate a Kripke frame to a pure chro-
matic simplicial complex, and vice versa. Let C be a pure chromatic simplicial
complex on the set of agents A. We associate the Kripke frame F (C) = 〈S,∼〉
with S being the set of facets of C and the equivalence relation ∼a, for all a ∈ A,
generated by the relations X ∼a Y (for X and Y facets of C) if a ∈ χ(X ∩ Y ).
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Conversely, consider a Kripke frame M = 〈S,∼〉 on the set of agents
A = {a0, . . . , an}. Intuitively, what we want to do is take one n-simplex
{vs0, . . . , vsn} for each s ∈ S, and glue them together according to the indis-
tiguishability relation. Formally, let V = {vsi | s ∈ S, 0 ≤ i ≤ n}, and equip

it with the equivalence relation R defined by vsi R vs
′

i if and only if s ∼ai s′.
Then define G(M) whose vertices are the equivalence classes [vsi ] ∈ V/R, and
whose simplexes are of the form {[vs0], . . . , [vsn]} for s ∈ S, as well as their
sub-simplexes. The coloring map is given by χ([vsi ]) = ai.

The equivalence is given by the two maps F and G defined above, that we
extend to functors between the two categories. 2

Example 2.2 The picture below shows a Kripke frame (left) and its associ-
ated chromatic simplicial complex (right). The three agents, named b, g, w, are
represented as colors black, grey and white on the vertices of the simplicial
complex. The three worlds of the Kripke frame correspond to the three trian-
gles (i.e., 2-dimensional simplexes) of the simplicial complex. The two worlds
indistinguishable by agent b, are glued along their black vertex; the two worlds
indistinguishable by agents g and w are glued along the grey-and-white edge.

g, w b

F

G

We now decorate our simplicial complexes with atomic propositions to get
a notion of simplicial model. For technical reasons, we restrict to models where
all the atomic propositions are saying something about some local value held by
one particular agent. All the examples that we are interested in will fit in that
framework. Let V be some countable set of values, and AP = {pa,x | a ∈ A, x ∈
V} be the set of atomic propositions. Intuitively, pa,x is true if agent a holds
the value x. We write APa for the atomic propositions concerning agent a.

Kripke models. A Kripke model M = 〈S,∼, L〉 consists of a Kripke frame
〈S,∼〉 and a function L : S → P(AP). Intuitively, L(s) is the set of atomic
propositions that are true in the state s. A Kripke model is proper if the
underlying Kripke frame is proper. A Kripke model is local if for every agent
a ∈ A, s ∼a s′ implies L(s) ∩ APa = L(s′) ∩ APa, i.e., an agent always knows
its own values. Let M = 〈S,∼, L〉 and M ′ = 〈S′,∼′, L′〉 be two Kripke models
on the same set AP . A morphism of Kripke models f : M →M ′ is a morphism
of the underlying Kripke frames such that L′(f(s)) = L(s) for every state s in
S. We write KMA,AP for the category of local proper Kripke models.

Simplicial models. A simplicial model M = 〈C,χ, `〉 consists of a pure chro-
matic simplicial complex 〈C,χ〉 of dimension n, and a labeling ` : V(C) →
P(AP) that associates to each vertex v ∈ V(C) a set of atomic proposi-
tions concerning agent χ(v), i.e., such that `(v) ⊆ APχ(v). Given a facet
X = {v0, . . . , vn} ∈ C, we write `(X) =

⋃n
i=0 `(vi). A morphism of simplicial

models f : M →M ′ is a chromatic simplicial map that preserves the labeling:



4 A simplicial complex model for epistemic logic

`′(f(v)) = `(v) (and χ). We write SMA,AP the category of simplicial models
over the set of agents A and atomic propositions AP .

Theorem 2.3 SMA,AP and KMA,AP are equivalent categories.

Proof (Sketch). We extend the two maps F and G of Theorem 2.1 so that
they preserve the labeling ` and L of atomic propositions accordingly. 2

Example 2.4 The figure below shows the so-called binary input complex and
its associated Kripke model, for 2 and 3 agents. Each agent gets a binary value
0 or 1, but doesn’t know which value has been received by the other agents.
So, every possible combination of 0’s and 1’s is a possible world.

In the Kripke model, the agents are called b, g, w, and the labeling L of the
possible worlds is represented as a sequence of values, e.g., 101, representing
the values chosen by the agents b, g, w (in that order).

In the simplicial model, the agents are represented as colors (black, grey,
and white). The labeling ` is represented as a single value in a vertex, e.g., the
value 1 in a grey vertex means agent g has chosen value 1. The possible worlds
correspond to edges in the 2-agents case, and triangles in the 3-agents case.

01 0 1
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10 0 1

g

w g

w
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011101
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gwbw

gw bw

bg bw

bg

gw
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Example 2.5 Consider now three agents, and a deck of four cards, {0, 1, 2, 3}.
One card is given to each agent, and the last card is kept hidden. The simplicial
model corresponding to that situation is depicted below on the left. The color
of vertices indicate the corresponding agent, and the labeling is its card. In
the planar drawing, vertices that appear several times with the same color and
value should be identified: what we obtain is a triangulated torus.
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Keeping that translation in mind, we can reformulate the usual semantics
of formulas in Kripke models, in terms of simplicial models.

Definition 2.6 We define the truth of a formula ϕ in some epistemic state
(M,X) with M = 〈C,χ, `〉 a simplicial model, X ∈ F(C) a facet of C and
ϕ ∈ LK(A,AP). The satisfaction relation, determining when a formula is true
in an epistemic state, is defined as:

M,X |= p iff p ∈ `(X)
M,X |= ¬ϕ iff M,X 6|= ϕ
M,X |= ϕ ∧ ψ iff M,X |= ϕ and M,X |= ψ
M,X |= Kaϕ iff for all Y ∈ F(C), a ∈ χ(X ∩ Y ) implies M,Y |= ϕ

We can show that this definition of truth agrees with the usual one (which
we write |=K to avoid confusion) on the corresponding Kripke model.

Proposition 2.7 Given a simplicial model M and a facet X, M,X |= ϕ iff
F (M), X |=K ϕ. Conversely, given a local proper Kripke model N and state s,
N, s |=K ϕ iff G(N), G(s) |= ϕ, where G(s) is the facet {vs0, . . . , vsn} of G(N).

Proof. This is straightforward by induction on the formula ϕ. 2

It is well-known that the axiom system S5 is sound and complete with
respect to the class of Kripke models [7]. Since we restrict here to local Kripke
models, we need to add the following axiom (or axiom schema, if V is infinite),
saying that every agent knows which values it holds:

Loc =
∧

a∈A,x∈V
Ka(pa,x) ∨Ka(¬pa,x)

Corollary 2.8 The axiom system S5 + Loc is sound and complete w.r.t. the
class of simplicial models.

Proof. Adapting the proof of [7] for S5, it can be shown that S5 + Loc is
sound and complete w.r.t. the class of local proper Kripke models, adapting
the usual proof techniques. Then we transpose it to simplicial models using
Proposition 2.7. Indeed, suppose a formula ϕ is true for every local proper
Kripke model and any state. Then given a simplicial model and facet (M,X),
since by assumption F (M), X |=K ϕ, we also have M,X |= ϕ by Proposi-
tion 2.7. So ϕ is true in every simplicial model. Similarly, the converse also
holds. 2

3 Conclusions

We have defined a new kind of model for epistemic logic, which uncovers the
topological structure hidden in the usual Kripke models. We have hope that
studying the topological properties of these models will give us information on
the knowledge of the agents; extending the well-known relationship between
common knowledge and connectedness to higher-dimensional properties. In
a companion paper [5], we explore the relationship with distributed comput-
ing, where topological arguments have been used to prove the impossibility of
solving some distributed tasks.
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