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Machines only compute with finite-precision arithmetic, using for instance IEEE 754 floating-
point number, an approximation of the mathematical real number field. Also, data that programs
process are not always known with precision. There are hopefully a number of means to deal with
this: a careful mathematical design of the algorithmics involved, the use of alternative arithmetics,
the study of the effect on the algorithm of this imprecision, and of uncertainties of its inputs and
parameters. For the last point, different methods have been designed, among which interval and
stochastic methods. Our approach is slightly different [4]. We start with a source code written
in C, assertions describing the range of inputs, their imprecision errors, and possibly the range of
the gradient of their values, and we automatically compute, i.e. by a tool, an over-approximation
of the range of all variables known at the end of the code, and of their imprecision errors. The
latter have two sources: the propagation of the initial imprecision errors, and the errors due to
the IEEE 754 semantics of floating-point computations. This is based on abstract interpretation
[3], which ensures the correctness of the approach. We only describe in this abstract some of the
basic ideas of the underlying mathematical model computing these over-approximations, the full
model will be developped in the final version of the paper.

Our mathematical model describing the propagation of errors for sets of executions of a code is
based on ideas from affine arithmetic [2]. Affine arithmetic is an improvement of interval arithmetic
allowing to take into account linear correlations. Typically, if x takes its values in [0,1], x − x

computed in interval arithmetic is [-1,1]: the information that the two x in this expression have
the same value in [0,1] is lost. In affine arithmetic, a noise symbol εi, lying in [-1,1] is introduced
to represent the fact that x is not known exactly. The sharing of noise symbols between variables
expresses correlation. We write here x̂ = 0.5 + 0.5εi. Then x̂ − x̂ is found to be zero.

However, affine arithmetic is only modeling real numbers, not floating-point numbers. In
the model we propose, we use it both to over-approximate the result of the computation in real
numbers, and the error between the real result and the floating-point result.

Moreover, we want to indicate, at the end of a computation, the source of errors in the program:
for that, in the decomposition of errors using affine arithmetic, the terms have a meaning (which
will be detailed in the following) and are not only used for expressing correlations.

Let x be the variable resulting from a computation, fx an over-approximation of the set of
floating-point values resulting from this computation, rx an over-approximation of the set of real
values resulting from the same computation in real numbers, and ex an over-approximation of the
error committed between the floating-point and the real computations. Moreover, we decompose
the error onto a first-order error term, in which we want to detail contributions from all operations,
and a higher-order error term, which is most of the time negligeable, but which we still want to
bound, although without detailing all sources of errors. We write

fx = rx + ex
1

+ ex
ho

At each operation corresponds a label. Some of these operations introduce uncertainties on the
value (for example an input given in an interval, or a non linear operation), we note them i ∈ I :
a noise symbol εi ∈ [−1, 1] is created for each of these labels, and the sets of real values taken by
x is expressed as a sum

rx = αx
0

+
⊕

i∈I

αx
i εi,
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where the αx
i coefficients express the propagation on x of the initial uncertainty introduced at

point i.
Some operations (most of them) introduce new rounding errors, we note them l ∈ L. Of course,

I and L are in general not disjoint. The rounding error committed at some operations can be
computed very accurately, this is the case when the floating-point result of this operation is known
exactly (i.e. not in an interval), these points are noted by l ∈ L1, and no noise symbol needs to be
created. In other cases, the new rounding error is bounded by a centered interval, which can easily
be rewritten as a new noise symbol ηl multiplied by a real coefficient, these points are denoted
l ∈ L2. We then write the first order error

ex
1

=
⊕

l∈L1

txl +
⊕

l∈L2

t′
x

l ηl +
⊕

i∈I

t′′
x

i εi + βx
0

+
⊕

p∈P

βx
p ϑp

In this expression, the terms txl and t′
x
l ηl have already been described, they represent the first-

order error associated to operation l. The other terms are useful for modelling the propagation of
first-order error terms after a multiplication, when an error has been multiplied by a value. For
example, the term t′′

x×y
i εi comes from the multiplication of txl by α

y
i εi (and its symmetric), and

thus represents the uncertainty on the global first-order error due to the uncertainty on the value
at label i. The multiplications εiηl cannot be represented in our linear forms, we then use new
noise symbols ϑp to model these terms.

Finally, multiplying errors introduce higher-order errors, which are modelled by the following
form, where linear correlations are also kept :

ex
ho = (txh +

⊕

l∈L2

t′
x

h,l ηl +
⊕

i∈I

t′′
x

h,i εi +
⊕

p∈P

βx
h,p ϑp).

Note that this model may be used to propagate initial errors on some variables, and is well
suited to sensitivity analysis. Indeed, the coefficients of the model give information of how a given
error is propagated in further operations.

A tool (FLUCTUAT) is built on this model. In order to show its usefulness, consider the follow-
ing program, implementing a simple linear recursive filter of order two, where a new independant
input E between 0 and 1 is read at each iteration (notation: E=[0,1.0]):

double S,S0,S1,E,E0,E1; int i;

S=0.0; S0=0.0; E=[0,1.0]; E0=[0,1.0];

for (i=1;i<=...;i++) {

E1=E0; E0=E; E=[0,1.0]; S1=S0; S0=S;

S = 0.7*E-E0*1.3+E1*1.1+S0*1.4-S1*0.7; }

The FLUCTUAT tool implementing the modelisation of values and errors in three different
domains, interval arithmetic, a relational model of values (but not relational on errors [5]) and the
model briefly described above gives the following comparative results:

- interval arithmetic based model: S is found to be in [-5.6e44,5.6e44], and global error in
[-1.8e+31,1.8e+31] (1.93 seconds, 13MB)

- relational analysis on the values only [5]: S is found to be in [-1.09,2.76], and global error in
[-3.6e+29,3.6e+29] (10 s, 32MB)

- our relational model on values and errors: S is found to be in [-1.09,2.76], and global error in
[-1.1e-14,1.1e-14] (5.2 s, 27MB)

Suppose each input has an error in [0,0.001]. Of course, any non-relational model (interval
arithmetic for instance) gives an infinite error on the output. With our relational model on
values and errors, we still obtain S in [-1.09,2.76], but with a stabilized error on the output in
[-0.00109,0.00276]. In fact, here the relative error can be shown (in the model) to less or equal to
1: this filter does not amplify the initial errors (sensitivity analysis in the floating-point numbers,
and not only in the real numbers).

Finally, we refer to [1] for some examples of industrial codes (mostly control software) we have
been able to verify with FLUCTUAT up to now. Current work includes application to scientific
codes.
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A Complements to the abstract

The evolution of the estimated range of the value and error on S in the example we used in the
abstract, is shown in Figure 1: these ranges converges in about 100 iterations.

Value in [-1.09,2.76] Error in [-1.1e-14,1.1e-14]

Figure 1:

References

[1] E. Goubault, S. Putot, P. Baufreton and J. Gassino Static Analysis of the
Accuracy in Control Systems : Principles and Experiments. Submitted. See
http://www.di.ens.fr/˜goubault/GOUBAULTpapers.html

[2] J. Stolfi and L. H. de Figueiredo. An introduction to affine arithmetic. TEMA Tend. Mat.
Apl. Comput., 4, No. 3 (2003), pp 297-312.

[3] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Symbolic
Computation, 2(4), 1992, pp 511-547.

[4] S. Putot, E. Goubault and M. Martel. Static analysis-based validation of floating-point com-
putations. In LNCS 2991, Springer-Verlag, 2004.

[5] S. Putot, E. Goubault. Static Analysis of Numerical Algorithms In Proceedings of Static
Analysis Symposium, 2006, Springer-Verlag.

3


