
Weakly Relational Domains for Floating-Point

Computation Analysis

Eric Goubault, Sylvie Putot

CEA Saclay, F91191 Gif-sur-Yvette Cedex, France
{eric.goubault,sylvie.putot}@cea.fr

1 Introduction

We present new numerical abstract domains for static analysis of the errors
introduced by the approximation by floating-point arithmetic of real numbers
computation, by abstract interpretation [2]. The analysis follows the floating-
point computation, and bounds at each operation, the error committed between
the floating-point and the real result. These new domains extend a former domain
[3], [5], based for each variable on the abstraction of the floating-point value by
an interval, and of the error by a sum of intervals decomposing the provenance
of the total error along the control points (or groups of points) in the source
code.

The idea of this former domain is to provide some information on the source
of errors in the program. The origin of the main losses of precision is most
of the time very localized, so identifying the operations responsible for these
main losses, while bounding the total error, can be very useful. But it does not
allow to improve the accuracy of the total error on one variable, compared to
the much less costly floating-point plus total error version - it can prove even
worse some times. Indeed, the correlations between variables are not used for a
tighter computation values or of errors, and the method suffers from the classical
drawbacks of intervals.

Resembling forms, though used in a very different way, were introduced in the
interval community, under the name of affine interval arithmetic [1], precisely
in order to overcome the problem of loss of correlation between variables in
interval arithmetic. But in affine arithmetic, the use of a sum of coefficients is
only a means for getting more precision in the dynamic computation of bounds
for the real value of a variable, and these coefficients have no meaning.

The new domains we propose combine the interest of providing information
on the source of errors, with the possibility to use linear correlations between
variables also for improving the approximation. We propose to use these corre-
lations on one hand for the computation of errors, which could be done for a
cost very comparable to the existing approximation. And on the other hand, we
propose to use a form close to affine interval arithmetic for the computation of
floating-point value, except that this form must suit floating-point computations
instead of real computations. This approximation is much more expensive than
interval arithmetic, but comparable to the approximation used for the errors.



2 Eric Goubault, Sylvie Putot

The ideas presented here are still preliminary. In particular, they are not
fully experimented yet. We also limit our study to the case where exactly one
label i ∈ L is associated to each node of the control flow graph of the program.

2 New domain for the errors

The domain introduced in [3], [5], abstracts the real value of a variable x by

x = fx +
∑

i∈L∪{os}

ωx
i εi . (1)

where the floating-point number fx, and the real error terms ωx
i , are abstracted

by intervals, and εi is a formal variable associated to label i. Errors of order
higher than one are grouped in one term associated to point os. In this domain,
the error terms ωx

i express both the rounding error committed at point i, and
its propagation during further computations on variable x. Thus the fact that a
same rounding error can be propagated on different variables, is lost.

The idea here is to distinguish the rounding error from its propagation. Vari-
able x is represented by :

x = fx +
∑

i∈L

txi .γiζi + ωx
osεos ,

where fx ∈ F is the floating-point value, abstracted either by an interval or
as presented in section 3; γi ∈ R is a symbolic variable associated with the
rounding error committed at point i; txi ∈ R expresses the propagation of error
γi on current variable x; ζi is a formal variable associated to label i; and ωx

osεos

is the higher order error term. An abstract environment thus consists of such a
formal sum for each variable, together with a set of intervals giving the range of
the rounding errors γi.

Let ↓◦ (x) denote the error committed by rounding x to a floating-point
number, the addition for example writes:

z = x +l y = fz +
∑

i∈L

(txi + tyi ).γiζi + (ωx
os + ωy

os)εos + ↓◦ (fx + fy)
︸ ︷︷ ︸

γl

ζl,

The error due to the rounding of fx + fy to a floating-point number can be
bounded by an interval, it defines the range of γl. The corresponding coefficient
txl is initialized to 1. In further computations, the txl express the linear corre-
lations between variables on which error γl is propagated. They are abstracted
by intervals, of width usually small, due to rounding errors in the analysis or
unions.

3 New domain for the floating-point value

Linear correlations between variables can be used directly on the errors or on
the real values of variables, but not on floating-point values. We thus propose



Weakly Relational Domains for Floating-Point Computation Analysis 3

to decompose the floating-point value f of a variable resulting from a set of
operations, in the real value of this set of operations r(f), plus the sum of errors
δ(f) accumulated along the computation, f = r(f)+ δ(f). Other proposals have
been made to overcome this problem, most notably [6]. Our approach is different,
in that [6] linearizes the expressions1, whereas we do not need to.

- We use affine interval arithmetic [1] to compute accurately the real part
r(f), keeping track of linear correlations between variables:

r(f) = {αf
0 +

n∑

i=1

αf
i θiϕi, θi ∈ [−1, 1]} ⊂ [r−(f), r+(f)],

where αf
i , 0 ≤ i ≤ n are real numbers, θi, 0 ≤ i ≤ n are symbolic variables,

with value in [−1, 1]. The assignment of a constant interval at label l, f =l [a, b],
is written

r(f) = (a + b)/2 + (b − a)/2 θlϕl

to express the fact that r(f) takes one value in this interval. For example, sup-
posing (a+ b)/2 and (b− a)/2 are represented exactly, f − f will be found equal
to 0. Indeed, the addition of two affine forms is computed componentwise:

r(f + g) = (αf
0 + αg

0) +
∑

i∈L

(αf
i + αg

i )θiϕi .

In the multiplication, the non linear part creates a new term αlθlϕl:

r(f×lg) = αf
0αg

0+
∑

i∈L, i6=l

(αf
i αg

0+αg
i α

f
0 )θiϕi+(|αf

l αg
0+αg

l α
f
0 |+

∑

i∈L, j∈L

|αf
i αg

j |)θlϕl .

We do not discuss here the case of division, or union or intersection operators,
that can not systematically be done componentwise. In these cases, using the
centered form with only one symbol θl can be an acceptable compromise.

- For the error, we do not use the sum of errors as computed in section 2.
Indeed, we do not just bound the error due to the successive roundings on the
whole interval. We also want to compute the errors on the bounds, in order to
get much tighter result in some cases (see example at the end of the section).

We note δf
− and δf

+ the errors due to the successive roundings committed on the
bounds r−(f) and r+(f). The set of floating-point numbers represented by f is
the interval

γ(f) = [r−(f) + δf
−, r+(f) + δf

+].

However, with affine interval arithmetic, the bounds of the set resulting from
an arithmetic operation f.g are not necessarily got from the bounds of f and
g as in classical interval arithmetic. Thus, we also need the maximum error δf

M

committed on the interval [r−(f), r+(f)].

1 A floating-point expression is transformed into a linear expression in the real field
with interval coefficients.



4 Eric Goubault, Sylvie Putot

We describe very briefly the principle of the propagation of errors: for an
operation h = f.g, for example if the maximum of r+(h) is got from bounds of f
and g, then the error δh

+ is computed using the errors on these bounds, otherwise
using the maximum error on the intervals. To this must be added the new round-
ing error due to the conversion to a floating-point of the sum of this real result
and previous errors. This error can be computed quite accurately for the bounds.

Note that an other way to use affine arithmetic for the computation of
floating-point values, without the burden of an extra error term δ(f), would
be to use directly the affine form r(f), but with floating-point instead of real

coefficients αf
i . Instead of bounding them using higher precision numbers, we

would bound them using floating-point number with outward rounding (it is not
possible to use the current rounding mode for each coefficient, because the sum
of rounded intermediate results is not equal to the rounded sum). The result
would be similar to the formulation proposed here, but in which we would use
only the maximum error on intervals. We show this on the example that follows.

Consider the computation y = x − a ∗ x, for a < 1 such that a/2 is not a
floating-point number, and starting with x ∈ [0, 1]. With interval arithmetic, we
get y ∈ [−a, 1]. If this computation, followed by x = y, is in a loop, the loop will
be found unstable and the fixpoint over-approximation unacceptable.

Consider now the affine interval arithmetic with floating-point coefficient,
supposing the initial value of x can be associated to label 1. Here, x can be rep-
resented without over-approximation by x = 1

2
+ 1

2
θ1ϕ1. It is not the case for ax:

we note f− the nearest floating-point value smaller than a/2, and f+ the nearest
floating-point value greater than a/2. Then a∗x = [f−, f+]+ [f−, f+]θ1ϕ1, and
y = [1

2
− f+, 1

2
− f−] + [1

2
− f+, 1

2
− f−]θ1ϕ1. Then the values of y are found

in [f− − f+, 1 − 2f−], which is better than with interval arithmetic, but the
property that y is greater than 0, crucial to the study of the loop, is still lost.

Finally, we consider affine interval arithmetic with real coefficients, plus the
rounding error. Variable x is again represented by r(x) = 1

2
+ 1

2
θ1ϕ1, with no

error. The real result of the multiplication is r(ax) = a
2

+ a
2
θ1ϕ1, and supposing

that we use higher precision numbers to abstract the real numbers, a
2

is known
exactly. The error when rounding the lower bound of the result (0) is 0, and
the error on the upper bound (a), is also 0. The maximum rounding error is
of the order of the unit in the last place of a. The real value of y is r(y) =
1−a
2

+ 1−a
2

θ1ϕ1. The lower bound of r(y) is reached for θ1 = −1, that is from
the lower bound of the set containing r(x) and the upper bound of r(ax), thus
δy
− = 0. We get in the same way δy

+ = 0, the maximum error on ax is not used.
And the floating-point value of y is in [0, 1 − a].

4 Conclusion

We have presented in this paper preliminary ideas about two new weakly rela-
tional abstract domains, one for the safe computation of invariants describing



Weakly Relational Domains for Floating-Point Computation Analysis 5

the range of floating-point computations, and the other, on the estimates of the
contributions of floating-point operations to imprecision errors with respect to
an ideal real number semantics. Other variations using correlations between val-
ues and errors, for example by means of relative error, could also be used, and
should be developped elsewhere.

The computations using these two domains are independent, except by the
fact that the rounding error at one point is computed using the bounds for the
floating-point result at this point. Nevertheless, the computation rules of the do-
main of errors and floating-point values have noticeable similarities. There seems
to be a formal link, yet to be fully understood, between some of the propagation
coefficients appearing in the two domains. These domains are probably part of a
broader picture, namely that they might be linked to a more general semantics,
through abstraction and concretization pairs. This should be investigated in the
near future.

References

1. J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics. In SIBGRAPI’93, Recife, PE (Brazil), October 20-22, 1993.

2. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Symbolic Computation, 2(4):511–547, 1992.

3. E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, number 2126 in LNCS, Springer-Verlag, 2001.

4. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations : a simple abstract interpreter. In ESOP’02, LNCS, Springer 2002.

5. M. Martel. Propagation of roundoff errors in finite precision computations : a
semantics approach. In ESOP’02, number 2305 in LNCS, Springer-Verlag, 2002.

6. A. Miné. Relational Abstract Domains for the Detection of Floating-Point Run-
Time Errors. In ESOP’04, number 2986 in LNCS, Springer-Verlag, 2004.

7. S. Putot, E. Goubault and M. Martel. Static Analysis-Based Validation of Floating-
Point Computations. In LNCS 2991, Springer-Verlag, 2004.


