
Domains of Higher-Dimensional AutomataEric GoubaultLIENS, Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris Cedex 05, FRANCE,email:goubault@dmi. ens.frAbstract. We carry on the program set up in [GJ92] by giving constructionsof \domains of higher-dimensional automata (HDA)" on which we can de�nethe truly-concurrent semantics of parallel languages, much in the style ofdomain theory (see [GS90]). In [GJ92] we gave a semantics for CCS-likelanguages. In this article, we show how to extend the technique to languageswith real states, while keeping nice algebraic de�nitions. In particular, we arestill able to compute local invariants which can decide a few computationalproperties of interest. For being used as actual computational de�nitions, thesemantics is denotational (i.e. compositional); for being precise enough whenit comes to studying the dynamic behaviour of programs, the denotationsare higher-dimensional automata, which are no more than an operationalbehaviour (in the style of operational semantics, see [Plo81]). We concludeby giving the semantics of a small shared-memory imperative language.1 IntroductionIn [Pra91], Vaughan Pratt advocated a model of true concurrency based on geomet-ric ideas. We presented in [GJ92] an elaboration on this idea, using basic homologicalalgebra to formalize it. In this article, we recast this work in a slightly more generalframework, enabling us to give a good account of the labelling and to get an analo-gous of events (see [Win88]) to �t in our setting. Then, we carry on by de�ning thecomputational properties which can be interpreted as properties of the geometry ofHDA. Among them, we consider deadlocks, divergence and serialization. Techniquesborrowed from homological algebra are used to extract the information, as in [GJ92].We refer the reader to [Gou93] for seeing them at work with applications to a fewbranching-time semantic equivalences, generalizing results of [GJ92] about bisimula-tion equivalence. Then, we describe the categorical properties of higher-dimensionalautomata. It appears that they have a very rich structure: the category of HDA iscomplete, co-complete and is monoidal closed. This is enough for de�ning semanticdomains in the style of domain theory, but this time, much more adapted to parallellanguages. We end up by giving the semantics of a small shared-memory imperativelanguage.2 Higher-dimensional automata2.1 Basic de�nitionsThe unlabelled case Higher-dimensional automata are a natural generalizationof \standard" automata (see [HU79]). They are built as sets of states and transi-tions between states, but also as sets of 2-transitions between transitions, and moregenerally n-transitions between (n-1)-transitions. Transitions (or 1-transitions) areusually depicted as segments, that is, one-dimensional objects, whereas states are just

points, i.e. 0-dimensional objects. It is therefore natural to represent n-transitions asn-dimensional objects, whose boundaries are the (n-1)-transitions from which theycan be �red, and to which they end up. n-transitions represent the concurrent ex-ecution of n sequential processes. Examples (1), (2) and (4) show HDA which arealso standard automata. Example (4) is the interleaving of a and b, and expressesa di�erent behaviour than example (3). Example (3) below shows a 2-transition A,which is the truly-concurrent execution of processes a and b.Example 1. (1) 1 a> � (2) ?� �	1 a� ��b �� @ a0@R �b �� @ a0@R(3) 1 A
 (4) 1
@a @R � b0�� @a @R � b0��� �But this 2-transition can be �red from a or from b at any time, thus the beginning ofA is in some way a and b. Similarly, the end of A is a' and b'. One may want also toadd coe�cients (like integers) to transitions to keep track of the number of times wego through them. This motivates the introduction of free modules (or vector spaceswhen the coe�cients form a �eld) generated by states and transitions, and sourceand target boundary operators acting on them.Let then R (the coe�cients) be a commutative integral and unitary ring (see [Lan84]).In general, for the sake of simplicity, R will be a �eld (in [GJ92], R was ZZ2) so thatR-module is R-vector-space.De�nition1. A (unlabelled) higher dimensional automaton (HDA) is a free R-module M with two gradings associated to two boundary operators, that is, consistsof:{ a decomposition: M=�p;q2ZZMp;q , such that 8p; q, Mp;q \ (�r+s6=p+qMr;s) = 0.{ two di�erentials @0 and @1, compatible with the decomposition, giving M a struc-ture of bicomplex: @0 :Mp;q �!Mp�1;q@1 :Mp;q �!Mp;q�1@0 � @0 = 0; @1 � @1 = 0; @0 � @1 + @1 � @0 = 0:@0 is called the source boundary operator and @1 is the target boundary operator.When we want to specify the domain and codomain of these boundary operators,we write @p;q0 for @0 : Mp;q �! Mp�1;q and @p;q1 for @1 : Mp;q �! Mp;q�1. IfMp;q\Mp0 ;q0 = ; when (p,q) 6=(p',q'), that is, when M is a free bigraded bidi�erentialR-module, then M is said to be an acyclic HDA. If M is a �nite-dimensional module,then M is called a �nite state automaton. For x inMp;q, we say that x is of dimensionp+q, denoted by dimx=p+q. Elements of dimension 0 are called states, elements ofpositive dimension n are n-transitions, elements of negative dimension n are n-events.First condition of de�nition 1 amounts to saying that elements of M have a uniquedimension (states are distinct from n-transitions). Hence, for de�nitions which onlyinvolve a submodule of elements of a given dimension, we use an indexation by aunique integer, as in [GJ92].

Remark: A \standard" unlabelled automaton can be given the structure of a (unla-belled) higher-dimensional automaton. Let (A,�,�,I,F) be an automaton; Q is a setof states, � is a set of transitions, � is the transition relation, � � }(A�� �A), I isthe set of initial states, F is the set of �nal (or accepting) states. De�ne M by:M0 isthe free module generated by A, M1 is the free module generated by �. Let DF bethe set DF = fa 2 A= 6 9�; a0; (a; �; a0) 2 � and a 62 Fg (it is the set of deadlocks ofthe automaton). Let DI = fa0 2 A= 6 9�; a (a; �; a0) 2 � and a0 62 Ig (\false" initialstates). Then,@0(�) = a,def (9a0 2 A; (a; �; a0) 2 �) ^ (a 2 AnDI)@1(�) = a0 ,def (9a 2 A; (a; �; a0) 2 �) ^ (a0 2 AnDF)This construction projects all deadlocks onto 0 and all \false" initial states onto 0.We picture the algebraic de�nition of the automata of example 1 (the symbol �denotes the direct sum of its two arguments, see [Lan84]):(1) M0;1 = (a) @0> M�1;1 = (1)@1_ @1_M0;0 = (�) @0 > M�1;0 = 0with @0(a) = 1 and @1(a) = �, is an acyclic �nite state HDA. It comes fromthe standard automaton (A;�; �; I; F) with A=f1; �g, � = fag, � = f(1; a; �)g,I = f1g and F = f�g.(2) M0;1 = (a) @0> M�1;1 = (1)@1_ @1_M0;0 = (1) @0 > M�1;0 = 0with @0(a) = 1 and @1(a) = 1, is a �nite state HDA which is not acyclic.(3) M1;1 = (A) @0> M0;1 = (a)� (b) @0> M�1;1 = (1)@1_ @1_ @1_M1;0 = (a0) � (b0) @0> M0;0 = (�)� (�) @0 > M�1;0 = 0@1_ @1_ @1_M1;�1 = (
) @0 > M0;�1 = 0 @0> M�1;�1 = 0with @0(A) = a � b, @1(A) = a0 � b0, @0(a) = @0(b) = 1, @1(a) = @0(b0) = �,@1(b) = @0(a0) = � and @1(a0) = @1(b0) =
. It is an acyclic �nite state HDA.(4) M0;1 = (a)� (b) @0> M�1;1 = (1)@1_ @1_M1;0 = (a0) � (b0) @0> M0;0 = (�)� (�) @0 > M�1;0 = 0@1_ @1_ @1_M1;�1 = (
) @0 > M0;�1 = 0 @0> M�1;�1 = 0

with @0(a) = @0(b) = 1, @1(a) = @0(b0) = �, @1(b) = @0(a0) = � and @1(a0) =@1(b0) =
. It is an acyclic �nite state HDA.De�nition2. A path (of length n) in a HDAM is a sequence of elements of B=fbig,a given basis of M (\elementary transitions"), p=(pi)0�i�n such that:p0; pn 2M0 dimpi � 08i; @0(pi+1) = �j�jbj; with 9k; bk = pi and �k 6= 0 or8i; @1(pi) = �j�jbj; with 9k; bk = pi+1 and �k 6= 0A n-dimensional path is a path whose elements are of dimension lower (or equal) thann. Paths in automaton (3) of example 1 are sub-paths of (1,a,�,b',
), (1,b,�,a',
),(1,a,A,b',
), (1,a,A,a',
), (1,b,A,a',
) and (1,b,A,b',
).De�nition3. Let r,s be two integers. Let f be a function between two HDA (M;@0; @1)and (M 0; @00; @01), union of linear functions fi;j :Mi;j ! M 0i+r;j+s (f is bigraded). Thenf is called a morphism (of HDA) of degree (r,s) if the fi;j verify:8i; 8x 2Mi+1;j ; fi;j(@0(x)) = @00(fi+1;j(x)):8i; 8x 2Mi;j+1; fi;j(@1(x)) = @01(fi;j+1(x)):A morphism of degree 0 will just be called a morphism (see [Lan84]).Now, we have categories � of HDA with morphisms of degree 0, and a full subcate-gory �a of acyclic HDA.The labellingDe�nition4. A labelled HDA (over L) is a pair (M,l) composed of an unlabelledHDA M, and a morphism l: M�!L. A morphism f: (M,l) �!(M',l') of labelled HDAis a morphism of HDA between M and M' such that l'�f=l.Hence the category of labelled HDA over L is the slice category (see [FS90]) �=L. Thecategory of labelled acyclic HDA is the subcategory of �=L formed by the restrictionof � to �a. The action of l is to fold together all elements which have the same label.In most cases, all states are mapped onto a unique state of L.Example 2. let L be the HDA such that L0 = (1), L1 = (a) � (b) with @j(a) =@j(b) = 1. Let M be the HDA of (4) of example 1. De�ne a module homomorphisml by l(a)=l(a')=a, l(b)=l(b')=b and l(1)=l(�)=l(�)=l(
)=1. Then l is a morphism,and (M,l) is a labelled HDA over L.2.2 HomologyDe�nition5. For (Q,@0,@1) a HDA, we de�ne two sequences of homology (see forinstance [ML63]) modules 1:{ Hi(Q; @0) = Ker@i0=Im@i0{ Hi(Q; @1) = Ker@i1=Im@i11 Ker denotes the kernel of an application, and Im the image of an application.

An element of Ker@ij is an i-cycle, and an element of Im@i+1j is an i-boundary. Anelement of Hi(Q; @0) is called a branching of dimension i. An element of Hi(Q; @1)is called a merging of dimension i. We write H�(T; @j) forLk�0Hk(T; @j):Example 3. { For automaton (1) of example 1, we have:H0(M;@0) = (�),H0(M;@1) =(1), and the other homology modules are null.{ For automaton (2), all the homology modules are null.{ For automaton (3), we have: H0(M;@0) = (
), H0(M;@1) = (1), and the otherhomology modules are null.{ For automaton (4), we have: H0(M;@0) = (
), H0(M;@1) = (1), H1(M;@0) =(b � a), H1(M;@1) = (b0 � a0), and the other homology modules are null. Thebranching (b-a) of dimension one expresses the fact that in (4) there is a non-deterministic choice between actions a and b. The merging (b'-a') shows thatafter the actions b' and a', the system goes to a same (idle) state.If f: (M;@0; @1)! (M 0; @00; @01) is a morphism then f induces a module homomorphismf� : H�(M;@j)! H�(M 0; @0j) (j=0,1). This de�nes homology as a functor.3 A few computational propertiesWe express here a few properties of interest in terms of homology, in the spirit of[GJ92]. We refer to [Gou93] for details.3.1 Initial and �nal states, deadlocks, and divergenceWe have already de�ned branchings and mergings in all dimensions. Branchingsprovide a measure of non-determinism in all dimensions, and distinguish the trulyconcurrent execution of processes from their (non-deterministic) interleaving. Forinstance, automaton (3) has no branching of dimension 1 whereas automaton (4)has one (the non-deterministic choice between a and b). Mergings \reduce" the non-determinism of an automaton. There are also interesting interpretations of elementsof the homology modules in the lowest dimensions:De�nition6. We call �nal (or accepting) state of an HDA M any elementary stategenerating H0(M;@0).Example 4. Consider the (standard) automaton (A,�,�,I,F) with A=fu; v; wg,�=fa; bg,I=fug, F=fvg and �=f(u; a; v); (u; b; w)g. Then, using our translation for standardautomata, the associated HDA is M, with:M0 = (u)� (v) � (w) M1 = (a) � (b)and, @0(a) = u = @0(b), @1(a) = v, @1(b) = 0 Obviously, H0(M;@0) = (v) = (thus Fgenerates H0(M;@0)), H1(M;@0) = (a)� (b), H0(M;@1) = (u) and H1(M;@1) = (b).De�nition7. We call initial state of an HDA M any state generating H0(M;@1).Consider the automaton of last example. We have seen that H0(M;@1) = (u): u isthe initial state of M. Now we come to deadlocks and \initial" deadlocks (or \false"initial states).

De�nition8. An elementary n-transition leading to (or is) a deadlock in a HDAM is a generator of Hn(M;@1). The word deadlock is given to the one transitionswhich deadlock M (for n greater than one, we say n-deadlock).In example 4, b is a transition leading to a deadlock.De�nition9. A n-transition leading to (or is) an initial deadlock in an HDA M isa generator of Hn(M;@0). Again, the word initial deadlock is given to 1-transitions.If M does not have any initial deadlock then all states of M are reachable, and alltransitions can be �red. In this case, we say that M is path-connected. Dually, if Mdoes not have any deadlock, then all states are co-reachable. Then,De�nition10. A HDA M diverges if and only if H0(M;@0) = 0 (it does not haveany �nal state).Automaton number 2 in example 1 diverges.Dually, an HDA co-diverges if it has no beginning.3.2 SerializationA concurrent program is serializable if it \gives the same result" as a sequentialexecution of it. This is a highly geometric property for HDA: this means that allpaths can be deformed continuously into another. More formally, we must de�ne anotion of homotopy:De�nition and lemma 1 An abstract 1-cycle of length m+n is an HDA describedgeometrically as: �1 c2> : : :�n�1�c1 �� @ cn@RCn;m =1 �n@d1 @R � dm���1 d2> : : :�m�1Then,De�nition11. An elementary 1-cycle of length m+n in a pointed HDA (Q,d) (d2Q0)2 is a morphism i : Cn;m �! Q such that i(1)=d.Let Q' be: t3�d �� I@ c0@t1 A t2I@c @ � d0��t02 d is generally chosen among the initial states

Let now f1 and g1 be the morphisms of HDA from C2;2 to Q', de�ned by (prototypesof being \elementarily equivalent"):f1(c1) = f1(d1) = c; f1(c2) = f1(d2) = dg1(c1) = g1(d1) = d0; g1(c2) = g1(d2) = c0De�nition12. Let i: Cn;m �! P and j: Cn;m �! P be two elementary cycles inP. We say that i and j are elementarily equivalent (or that there exists an elemen-tary transformation from i to j or from j to i) if and only if there exist (non null)morphisms r and s such that the following diagram is commutative:Cn;m=r(C2;2) j > P=s(Q0)^ ^Cn;m i > P < j Cn;m^ ^ ^r s rC2;2 f1 > Q0 < g1 C2;2where the columns are exact.r and s identify the di�erence between i and j (i=j on Cn;m=r(C2;2)). The di�erenceis �lled by a 2-transition (s(A)). This formalizes the idea that two cycles are equiv-alent if one can be deformed through 2-transitions into the other. The re
exive andtransitive closure of the relation \is elementary equivalent to" is called homotopy.Homotopy then extends to paths with common beginnings and endings.De�nition13. An unlabelled HDAM is serializable if and only if all one-dimensionalpaths of maximal length are homotopic.This shows that M is serializable if and only if the \fundamental monoid" of M, i.e.the monoid of maximal paths modulo homotopy, is trivial. For instance, automatonnumber three in example 1 is serializable, whence automaton number four in example1 is not. This extends naturally to the labelled case.De�nition14. A labelled HDA (M,l) is serializable if and only if for all maximalone-dimensional paths p, q, there exists q' such that l(q)=l(q') and p is homotopicto q'Obstructions to serializability in HDA can be found in H1(M;@0), because this isprecisely the presence of holes, as in automaton (4), which prevents the deformationsof paths. We can also give a general notion of \serializability on n processors",obstructions of which can be found in Hn(M;@0). It generalizes the problem ofserializability (n=1) to the following question: is a program \equivalent" to someimplementation on a machine with n processors ?4 Constructions4.1 Limits and Colimits0 is the zero object in categories � and �a, that is, is both their initial and termi-nal object. We can also de�ne cartesian products, coproducts, and equalizers and

coequalizers in � . Thus, � is �nitely complete and �nitely co-complete. In partic-ular, amalgamated sums exist in � . The amalgamated sum of X and Y over Z isdenoted by X`Z Y . Cartesian products correspond to some form of synchronizedproduct. Coproducts are choice operators. Equalizers and coequalizers are used tomodel communication. To abbreviate the semantical constructions, we de�ne a spe-cial operation on HDA generated by some module:De�nition and lemma 2 Let A be a submodule of an HDA M. Then there existsa smallest sub-automaton of M containing A, denoted by Clos(A). We de�ne anoperation + on submodules of M, by:A+ B = Clos(A) aClos(A)\Clos(B) Clos(B):+ corresponds to the geometrical operation of connected sum.Direct limits and inverse limits (i.e. colimits - resp. limits - whose underlying diagramis a directed poset, see [FS90]) exist in the category of modules (see [Lan84]). Thisentails that they exist in � and �a. Therefore,Proposition15. � is complete and co-complete.4.2 Tensor product and Hom functorDe�nition16. Let M1 and M2 be two HDA. De�ne a R-module T by: Tp;q =�k;lM1;p�k;q�l
 M2;k;l and two operators (j=0,1) by @j(x
 y) = @j(x)
 y +(�1)(dimx)x
 @j(y), that is,@n;mj = �p+r=n;q+s=m(@p;qj [M1]
 Id+ (�1)p+qId
 @r;sj [M2])Then T is a HDA.This construction is the tensor product of the two complexes associated withM1 andM2 (see [Mas78]). The reader can verify that it is actually a tensor product in thecategory � (see for instance [FS90]. It corresponds to the truly parallel compositionof processes with no communication.We de�ne the action of F on morphisms f: X �! Y by:F (f) : F (X) �! F (Y); F (f)(x
m) = f(x)
mF(f) is a morphism, because @i(f(x)
m) = @i(f(x))
m+(�1)dim f(x)f(x)
@i(m) =F (f)(@i(x)
m+(�1)dimxx
@i(m)) = F (f)(@i(x
m)). Therefore, for M an HDA,(:
M) and (M
 :) are endofunctors on � and �a.De�nition and lemma 3 Let P and Q be two R-bicomplexes. We de�ne Hom(P,Q)as the HDA whose objects of bidegree (r,s) are:Hom(P;Q)r;s = Yi;j2ZZHom(Pi;j; Qi+r;j+s)(where Hom(Pi;j; Qi+r;j+s) is the R-module of R-linear maps from Pi;j to Qi+r;j+s)and whose boundary operators are:@i(fj;k) = @i[Q] � fj;k � (�1)r+sfj;k � @i[P]for i=0,1, and fj;k being the (j,k) component of some f in Hom(P;Q)r;s.

Now, Hom is a contravariant functor in its �rst argument, and a covariant one inits second argument. Let f: P �! P' be a morphism of HDA. Then Hom(f,Q):Hom(P',Q) �! Hom(P,Q) is the morphism such that Hom(f,Q)(h)=h�f. If g: Q�! Q' is a morphism, then Hom(P,g): Hom(P,Q) �! Hom(P,Q') is the morphismde�ned by Hom(P,g)(h)=g�h.Proposition17 (Monoidal closedness).Hom(P
 Q;R) �= Hom(P;Hom(Q;R)) � (P
 Q;R) �= � (P;Hom(Q;R))and the map eval: Hom(P,Q)
P ! Q with eval(ffig
x)=fdimx(x) is a morphism.For f an object of dimension n of Hom(P,Q), we say that:if n>0 then f increases the degree of parallelism (by n) andif n<0 then f decreases the degree of parallelism (by n).Example 5. Let a be an elementary object of dimension n in a HDA M. Supposefa(x) = a
 x is well de�ned on M. Then dimf=n and @j(f) = f@j(a).Let (1) be the HDA generated by a state 1, and with null boundary operators.De�nition18. Let M be an HDA. Then the HDAM� = Hom(M; (1)) is called thedual of M. Elements of M� are called functionals.Let < :; : > be the bilinear form de�ned on M by < x; y >= y�(x). We come now tothe description of the dual of an HDA.Lemma19. Let M be a �nite state automaton with basis B=fbig. Then M� hasbasis B�, dimb� = �dimb. Moreover, if the boundary operators of M� are denotedby @�0 and @�1 , then: 8x; y 2 B;< @i(x); y >=< x�; @�i (y�) >where < x; y > denotes the usual inner product < x; y >= �ixiyi, if x = �ixibi andy = �iyibi.The operators @�0 and @�1 are respectively called the end boundary operator andthe start boundary operator. Notice that for M a �nite state automaton, M andM�� are isomorphic (i.e. this is a duality). By analogy with [Pra92], the dual oftransitions, which bear information and change time, are events, which bear time andchange information. Thus, the (standard) boundary operators describe the temporalbeginning and ending of events, whereas the dual boundary operators describe theinformation we have at the source, and the information we have at the target.Example 6. The dual of automaton (1) in example 1 is:M0;1 = 0 @0> M�1;1 = (1�)@1_ @1_M0;0 = (��) @0> M�1;0 = (a�)In this HDA, we have one 1-event namely a�, \waiting for transition a to be �red".The \information" beginning of 1� is a�, the \information" end of �� is a�.

Homology behaves quite well with respect to colimits and tensor products. In par-ticular, it commutes with direct sums and direct limits, and commutes in most cases(for instance when R is a vector space) with the tensor product. For more gen-eral amalgamated sums, we have to use the Mayer-Vietoris sequence (see [ML63]).Finally, for the Hom functor, we have the universal coe�cient theorem. All thesetechniques, we have no time to discuss here enable us to compute the di�erent in-variants of section 3 in an inductive manner, for each application of the di�erentconstructions seen above.5 Semantic domainsIn this section, we wish to give a compositional (or denotational) semantics for someparallel languages, with denotations being HDA, that is, describing the \higher-dimensional" traces of programs.5.1 General principles { ground domainsFirst, we have to de�ne domains for values, and de�ne real states.Let V be a set (of values). We write V for the HDA whose states are generated byV, and whose boundary operators are null. We have already seen an example of thisconstruction, for V=f1g; V was written (1). This construction will be applied for setsof values like IN, or Bool=ftt;� g. Notice that it is again a functorial construction:if f is a function between two sets V and V', then f (sometimes abbreviated by f),the linear extension of f, is a morphism of degree 0 between V and V 0.The same construction can be carried out for any relation on sets of values. Forinstance, let us consider a relation R(x,y) on V�V. Construct a \relation" R onV
V , with value inBool by R(x; y) =def R(x
y) = (tt), R(x; y) and R(x; y) =defR(x
 y) = (�), :R(x; y).Now, suppose we have elementary functions on these sets of values. We want torepresent the application of such a function f to a value by a 1-transition betweenthe input value to the output value. The way to do this, is to construct (when itexists in the considered domains) the (@1�@0)-chain homotopy (see [ML63]) linkingthe input to the output state, that is the transition between Id and f , denoted by[Id,f] or �f (\name of f"):Suppose we have a domain D of HDA (elements of which are its sub-automata)containing 1-transitions s and t with @0(s) = 1, @1(s) = 0, and @0(t) = 0, @1(t) = 1.Let f and g be two linear maps, and de�ne:[f; g] = s
 f + t
 gThen, @0 � [f; g] = f � [@0 � f; @0 � g] @1 � [f; g] = g � [@1 � f; @1 � g]and when f and g are morphisms (of any degree),@0 � [f; g] + [f; g] � @0 = f @1 � [f; g] + [f; g] � @1 = gThus, (@1 � @0) � [f; g] + [f; g] � (@1 � @0) = g � fand [f,g] is an (@1 � @0)-chain homotopy between f and g. To come back to ourfunction f, �f = [Id; f], then: @0(�f) = Id and @1(�f) = f . We have also, 8x 2 V ,

@0(�f (x)) = x and @1(�f (x)) = f (x). Hence we call �f \name of f", because it is thelabel of all applications of f.In general, we have to use fresh copies of these t and v to build homotopies. Thesecopies will be denoted by ti and vi, where i is an index (generally in IN). For f alinear function on a HDA V, we de�ne an extension of f on tensor products of ti, viand elements of V by: f(ti) = ti f(vi) = vif(x
 y) = f(x)
 f(y)If f is a morphism (of degree 0) on V, then this extension de�nes a morphism aswell. With these conventions, we have the following laws of calculus:f [g; h] = [fg; fh] [g; h]f = [gf; hf]f�g = [f; fg] �gf = [f; gf][f; g][k; l] = [[fk; fl]; [gk; gl]]The last equation shows that homotopies compose to give homotopies of higher di-mension. We de�ne also for a linear function f (not necessarily a morphism), anotherlinear function, f̂ , called the sequentialization of f, by:f̂ (g) = g + f �H0(g; @0)We will see its use further on.5.2 Recursive domain equationsProposition20. Let M be an HDA. Functors (:
 M), (M
 :), Hom(:;M) and(M+:) are !-continuous, that is, preserve direct limits. Hom(M; :) transforms directlimits into inverse limits.By standard results (see for example [AL91]), we know, using proposition 15, that ifwe have G such that 8M 2 � , G(M,.) and G(.,M) are !-continuous functors. Then,9D 2 �; D � M + G(D;D)Generally, we construct HDA as sub-HDA of a huge one, described by a recursiveequation. This gives us also a means to label HDA, just knowing the labels of the\atomic actions". Let (M,l) be a labelled HDA over L. Consider now the equationD=M+G(D,D), where G is !-continuous in each argument. There exists a solution Dto this equation. Let now DL be the HDA verifying the equationDL=L+G(DL,DL).The solution to this equation is given by a limit of a diagram (see [AL91]). l inducesa morphism of the diagram de�ning D and the one de�ning DL. Its limit, still calledl is the induced labelling of D over L.Example 7. Let D be an HDA verifying D=M+D
D (D is the envelopping algebraof M) where M is the HDA:M0 = (1)� (�)� (�0)� (�) � (�0) M1 = (a) � (a0)� (b)� (b0)with @0(a) = @0(a0) = @0(b) = @0(b0) = 1 and @1(a) = �, @1(a0) = �0, @1(b) = �,@1(b0) = �0. Let L be the one de�ned in example 2. M can be labelled over L byl(a)=l(a')=a, l(b)=l(b')= b, l(1)=l(�)=l(�0)=l(�)=l(�0)=1. Then it extends to alabelling of D over DL. For instance, l(a
�)=a, or l(�0
a
b)= a
b.

6 Example - A toy imperative languageLet L be the language (�rst-order imperative language - shared memory) whosesyntax is de�ned as follows:Let Var be a set of variable names (x, y, z...). We consider a set of values v 2 Val,containing integers n, booleans tt and � . We write X, Y, Z for objects which arevalues or variables. f is any function on Val.The language is formed out of values v, tests t, and expressions e:v ::= xj nj ttj �t ::= R(X;Y) e ::= nilj x := vj x := h(x; v)j e; e0j e j e0j (t! e)2(t0 ! e0)j recx:q(x)where x:=h(x,v) is a function like (x:=.), (x�=.), or (x+=.) etc. That is, proceedsto an \atomic" operation on a variable. q is any syntactic expression of L with onehole (a context). Now, we give the semantics, considering the following domains:C is the HDA with C0 generated by Var and @0 = @1 = 0. V is the HDA with V0generated by Val and @0 = @1 = 0. But, now, we would like to have environments(i.e. assignments of values to variables) as states of our automata: the domain Dto be de�ned should include Env=Hom(C�V,C�V)3. But we want also to have allhomotopies (all transitions of any dimension) between states. This requires for D tohave all tensor products between the ti, vi and elements of D. This leads to de�ningD by the equation:D � (tc;i)c;i � (vc;i)c;i �Hom(C � V;C � V)� C � V + (D
D)where c is an index lying in the set fx := n; x := h(x; v)=x 2 V ar; v 2 V alg. Thedomain for the labelling is de�ned by:DL � (tc)c � (vc)c �Hom(C � V;C � V)� C � V + (DL
DL)The labelling l is induced by l(tc;i) = tc; l(vc;i) = vc. De�ne now the function[u(v] (an elementary substitution) on C�V by:[u(v](u) = v; [u(v](w) = wfor all w6=u. Therefore, [u (v] = v
 u� + �w 6=uw
 w� It can be extended to amorphism on D as described in the previous section.The functions h considered in L induce morphisms of the form hx from � 2Env toEnv: hx(�; v)(x) = h(�(x); v) hx(�; v)(y) = �(y)for all y 6=x. Their action is to apply the arithmetic function which h describes to theonly x part of the substitution �. For instance, (x:=.) induces the morphism [x (3 Env may also be called domain of substitutions, or store. Valid substitutions are alwaysidentity on values.

.]. In the case of x+=v, that is h(x,v)=x+v, we have for example, hx([x(u][y (w]; v) = [x(u+ v][y (x].Then we have a semantic function [[:]]: L �! Hom(Env;D) given by:for values, [[x]]� = �(x) (1)[[n]]� = n (2)[[tt]]� = tt (3)[[�]]� = � (4)for tests, [[R(X;Y)]]� = R([[X]]�; [[Y]]�) (5)for processes, [[nil]]� = � (6)[[x := v]]� = [�; � � [x([[v]]�]] = � � �[x([[v]]�] (7)[[x := h(x; v)]]� = [�; hx(�; [[v]]�)] = �hx(:; [[v]]�)� (8)[[e; e0]]� = ^[[e0]]([[e]]�) (9)[[e j e0]]� = [[e]]([[e0]]�) + [[e0]]([[e]]�) (10)[[(t! e)2(t0 ! e0)]]� = tt�([[t]]�):[[e]]�+ tt�([[t0]]�):[[e0]]� (11)[[recx:q(x)]]� = lim! [[qn(nil)]]� (12)In all these equations, the labelling is implicit: when an homotopy is used for thesemantics of x:=v or x:=h(x,v), it is formed of some fresh tx:=v;i and vx:=v;i ortx:=h(x;v);i and vx:=h(x;v);i respectively.Equations 1, 2, 3, 4 and 5 are obvious. Equation 6 reads \nil does not act on theenvironment". Equations 7 and 8, written in two forms, build an homotopy betweenthe environment and the transformed one (notice that substitutions compose theother way round). When � is a state, this is just a transition from the input of hto the output of h. Equation 9 applies the sequentialization of [[e0]] to [[e]], that is,applies e' to the �nal states of e, and takes the union with the translation of e.Equation 10 looks like interleaving, but is not. [[e0]]([[e]]�) is isomorphic to ([[e0]])
([[e]]�), thus is a good candidate as a parallel composition (see [GJ92]). But [[e]] and[[e0]] may not commute if some of their actions are not independant, therefore weneed the term [[e]]([[e0]]�). There can be non-independance if there is simultaneoususe of the shared memory. Equation 11 takes the (disjoint or not) union of the twoalternatives of the guarded statement. Finally, equation 12 takes the unfolding ofa recursive agent as its semantics. The unfolding is represented by the direct limitof the diagram whose objects are the successive steps of unfolding [[qn(nil)]]�, andwhose morphisms are the obvious ones (all morphisms between [[qn�1(nil)]]� and[[qn(nil)]]�).Example 8. { We consider the term x+=1 in the context � = [x(1]:[[x+ = 1]]� = [�; hx(�; 1)]= [[x(1]; [x(2]][[x+ = 1]]� = [x (1] x+ = 1> [x (2]

{ Now, consider the term (x:=1)j(x+=1) in the context � = [x(0] � [y (42]:[[(x := 1) j (x+ = 1)]]� = [[(x := 1)]]([[(x+ = 1)]]�) + [[(x+ = 1)]]([[(x := 1)]]�)But, [[(x := 1)]]� = � � �[x(1]= [�; [x(1] � [y (42]]Then, [[(x+ = 1)]]([[(x := 1)]]�) = [([[(x := 1)]]�); hx(([[(x := 1)]]�; 1)]= [[[x(0][y(42]; [x(1][y (42]]; [[x(1][y(42]; [x(2][y(42]]]which is geometrically realized by a square whose four vertices (only three ofthem are disjoint) are [x(0][y (42], [x(1][y (42]], [x(1][y (42]], and[x(2][y(42].{ Let us compute the semantics of (x:=1);(x+=3) in the context � = [x(0] :[[(x := 1); (x+ = 3)]]� = ^[[(x+ = 3)]]([[x := 1]]�)= ^[[(x+ = 3)]]([[x(0]; [x(1]])= [[(x+ = 3)]]([x(1]) + [[x(0]; [x(1]]= [[x(1]; [x(4]] + [[x(0]; [x(1]][[(x := 1); (x+ = 3)]]� = [x (0] x = 1> [x (1] x+ = 3> [x (4]{ Finally, let e=((x=1?!y:=2)2(x=y?!x:=0)). Then in context � = [x(1][y(1] we have: [[e]] = tt�([[x = 1?]]�):[[y := 2]]�+ tt�([[x = y?]]�):[[x := 0]]�But, [[x = 1?]]� = tt[[x = y?]]� = ttthus, [[e]] = [[y := 2]]�+ [[x := 0]]�= [[x(1][y(1]; [x(1][y(2]] + [[x(1][y(1]; [x(0][y(1]]Thus, [x (1][y (2]�y := 2 ��[[e]]� = [x (1][y (1]@x := 0 @R[x (0][y (1]This is a one-dimensional branching at state [x (1][y (1]. It describes aninternal non-deterministic choice.

7 Conclusion and Future WorkWe have presented in this article, the basis for a semantic theory of true concurrencywhich gather techniques from operational and denotational semantics. We believethat the rich algebraic structure of HDA and the many techniques available forcomputing their properties make them interesting denotations for programs.The technique, brie
y exempli�ed here, can certainly be used for parallel functionallanguages. The domain to be used should include all contexts, not limited to the �rst-order case as in our example. But the properties of the functor Hom are all we needfor that (see [Gou93] for a parallel lambda calculus). All standard techniques fromdenotational semantics can also be fruitfully applied. For instance, continuations givemeanings to fork operators (see [Gou93] for an example), and not just to ordinaryparallel operators.Finally, we think that this model shows good promise for giving semantics to real-time parallel languages. A well known adjunction between simplicial complexes andtopological spaces of the homotopy type of CW-complexes can most probably inspirethis attempt.Acknowledgements We thank Vaughan Pratt, SamsonAbramsky and Patrick Cousotfor their support, since the very beginning of our work, Thomas Jensen, Regis Cridligand Bruno Monsuez for their very valuable help. Finally, we would like to thankJeremy Gunawardena with whom we had a very nice discussion, in particular aboutserialization, at Concur'92.References[AL91] Andrea Asperti and Giuseppe Longo. Categories, types and structures. The MITPress, second edition, 1991.[FS90] Peter J. Freyd and Andre Scedrov. Categories, allegories. In North-HollandMath-ematical Library, volume 39. North-Holland, 1990.[GJ92] Eric Goubault and Thomas P. Jensen. Homology of higher-dimensional automata.In Proc. of CONCUR'92, Stonybrook, New York, August 1992. Springer-Verlag.[Gou93] Eric Goubault. Higher-dimensional automata. Technical report, Ecole NormaleSup�erieure, to appear 93.[GS90] C.A. Gunther and D.S. Scott. Semantic domains. In Handbook of TheoreticalComputer Science. Elsevier, 1990.[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages andComputation. Addison{Wesley, 1979.[Lan84] Serge Lang. Algebra. Addison Wesley, second edition, 1984.[Mas78] William S. Massey. Homology and cohomology theory. In Monographs and Text-books in Pure and Applied Mathematics, number 46. Marcel DEKKER, INC., 1978.[ML63] Saunders Mac Lane. Homology. In Die Grundlehren der Mathematishen Wis-senschaften in Einzeldarstellungen, volume Band 114. Springer Verlag, 1963.[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical ReportDAIMI FN-19, Computer Science Department, Aarhus, 1981.[Pra91] Vaughan Pratt. Modeling concurrency with geometry. In Proc. 18th ACM Sym-posium on Principles of Programming Languages. ACM Press, 1991.[Pra92] Vaughan Pratt. The duality of time and information. In Proc. of CONCUR'92,Stonybrook, New York, August 1992. Springer-Verlag.[Win88] Glynn Winskel. An introduction to event structures. Lecture notes in computerscience, (354), 1988.

