Domains of Higher-Dimensional Automata

Eric Goubault

LIENS, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, FRANCE,

email:goubault@dmi. ens.fr

Abstract. We carry on the program set up in [GJ92] by giving constructions
of “domains of higher-dimensional automata (HDA)” on which we can define
the truly-concurrent semantics of parallel languages, much in the style of
domain theory (see [GS90]). In [GJ92] we gave a semantics for CCS-like
languages. In this article, we show how to extend the technique to languages
with real states, while keeping nice algebraic definitions. In particular, we are
still able to compute local invariants which can decide a few computational
properties of interest. For being used as actual computational definitions, the
semantics is denotational (i.e. compositional); for being precise enough when
it comes to studying the dynamic behaviour of programs, the denotations
are higher-dimensional automata, which are no more than an operational
behaviour (in the style of operational semantics, see [Plo81]). We conclude
by giving the semantics of a small shared-memory imperative language.

1 Introduction

In [Pra91], Vaughan Pratt advocated a model of true concurrency based on geomet-
ric ideas. We presented in [GJ92] an elaboration on this idea, using basic homological
algebra to formalize it. In this article, we recast this work in a slightly more general
framework, enabling us to give a good account of the labelling and to get an analo-
gous of events (see [Win88]) to fit in our setting. Then, we carry on by defining the
computational properties which can be interpreted as properties of the geometry of
HDA. Among them, we consider deadlocks, divergence and serialization. Techniques
borrowed from homological algebra are used to extract the information, as in [GJ92].
We refer the reader to [Gou93] for seeing them at work with applications to a few
branching-time semantic equivalences, generalizing results of [GJ92] about bisimula-
tion equivalence. Then, we describe the categorical properties of higher-dimensional
automata. It appears that they have a very rich structure: the category of HDA 1is
complete, co-complete and is monoidal closed. This is enough for defining semantic
domains in the style of domain theory, but this time, much more adapted to parallel
languages. We end up by giving the semantics of a small shared-memory imperative
language.

2 Higher-dimensional automata

2.1 Basic definitions

The unlabelled case Higher-dimensional automata are a natural generalization
of “standard” automata (see [HU79]). They are built as sets of states and transi-
tions between states, but also as sets of 2-transitions between transitions, and more
generally n-transitions between (n-1)-transitions. Transitions (or 1-transitions) are
usually depicted as segments, that is, one-dimensional objects, whereas states are just

points, i.e. 0-dimensional objects. It 1s therefore natural to represent n-transitions as
n-dimensional objects, whose boundaries are the (n-1)-transitions from which they
can be fired, and to which they end up. n-transitions represent the concurrent ex-
ecution of n sequential processes. Examples (1), (2) and (4) show HDA which are
also standard automata. Example (4) is the interleaving of a and b, and expresses
a different behaviour than example (3). Example (3) below shows a 2-transition A,
which is the truly-concurrent execution of processes a and b.

Erample 1.

a

1)1 -0 (2)10

B B
(3) 1VAX17 (4) 1V V«y
Sy

But this 2-transition can be fired from a or from b at any time, thus the beginning of
A is in some way a and b. Similarly, the end of A i1s a’ and b’. One may want also to
add coefficients (like integers) to transitions to keep track of the number of times we
go through them. This motivates the introduction of free modules (or vector spaces
when the coefficients form a field) generated by states and transitions, and source
and target boundary operators acting on them.

Let then R (the coefficients) be a commutative integral and unitary ring (see [Lan84]).
In general, for the sake of simplicity, R will be a field (in [GJ92], R was Z3) so that
R-module 18 R-vector-space.

Definition1. A (unlabelled) higher dimensional automaton (HDA) is a free R-
module M with two gradings associated to two boundary operators, that is, consists

of:

— a decomposition: M:Ep,quMqu’ such that Vp, ¢, M, ¢ 0 (Zryszptq My) = 0.
— two differentials dy and 9, compatible with the decomposition, giving M a struc-
ture of bicomplex:
80 : Mp,q — Mp—l,q
81 : Mp,q — Mp,q—l
6008020, 61081:0, Ogo001+01 08y =0.

0o is called the source boundary operator and 0y is the target boundary operator.
When we want to specify the domain and codomain of these boundary operators,
we write 057 for 0y : M, , — Mp_1,4 and 0% for &y : My, — My .. If
M, ;N My o = 0 when (p,q)#(p’,q’), that is, when M is a free bigraded bidifferential
R-module, then M is said to be an acyclic HDA. If M is a finite-dimensional module,
then M is called a finite state automaton. For x in M, ,, we say that x is of dimension
p+q, denoted by dimx=p+q. Elements of dimension 0 are called states, elements of
positive dimension n are n-transitions, elements of negative dimension n are n-events.
First condition of definition 1 amounts to saying that elements of M have a unique
dimension (states are distinct from n-transitions). Hence, for definitions which only
involve a submodule of elements of a given dimension, we use an indexation by a
unique integer, as in [GJ92].

Remark: A “standard” unlabelled automaton can be given the structure of a (unla-
belled) higher-dimensional automaton. Let (A,X,6 I.F) be an automaton; Q is a set
of states, X' is a set of transitions, é is the transition relation, § C p(A x X' x A), Tis
the set of initial states, F is the set of final (or accepting) states. Define M by: My is
the free module generated by A, Mj is the free module generated by X. Let Dp be
the set Dp = {a € A/ Ac,d, (a,0,a’) € é and a & '} (it is the set of deadlocks of
the automaton). Let Dy = {a’ € A/ Ao,a(a,0,d’) € 6 and @’ & T} (“false” initial
states). Then,

(o) = a g (Fa' € A, (a,0,d") €8) A (a € A\Dy)
(o) =d <qep (Ga€ A, (a,0,d") €8)A(d € A\Dp)

This construction projects all deadlocks onto 0 and all “false” initial states onto 0.

We picture the algebraic definition of the automata of example 1 (the symbol &
denotes the direct sum of its two arguments, see [Lan84]):

(1)

0
Mop,1 = (a) %0 M_1: =(1)
0 0
1J/ N 1J/
Mog =(a) —> M_10=0

with dy(a) = 1 and 01(a) = «, is an acyclic finite state HDA. Tt comes from
the standard automaton (A, X6, I, F') with A={1,a}, ¥ = {a}, § = {(1,a,)},
I={1} and F = {«}.

(2)

do
Mo, =(a) —> M_11 =(1)

81¢ 60 81¢

MO,O = (1) e M_170 =0
with dp(a) = 1 and 91(a) = 1, is a finite state HDA which is not acyclic.

(3)

o o
Mt = (A) ——> Mou = (a) @ (b) —=> M_11 = (1)
) P P
1J/ 5 1J/ 5 1J/

Mio=(a") @ (b)) —= Moo = ()@ (f) —=> M_10=0

81¢ a 81¢ 60 81¢

M1 = (v)%MOAZUHM 1,1 =0

a — b 81(A) = Cl - b/, 80(a) = 60(19) = 1, 61(&) = 60(19’) = «,
= and G(a’)y = 01(b") = . Tt is an acyclic finite state HDA.

with Jdg(A)

&r(b) = Bo(a)
(4)

do
Moy = (a) @ (b) —=> M_11 = (1)

81¢ 81¢
60 a0
Mig =(a / @(b) —= Moo =(a)B(f) —=> M_10=0

0 0 0
1J/ N 1J/ N 1J/

My 1=() —=>Mg,o1=0——>M_; 1 =0

with dg(a) = 9p(b) = 1, d1(a) = Fo(b’) = @, H1(b) = do(a’) = § and H(a’) =
91 (b") = 7. It is an acyclic finite state HDA.

Definition2. A path (of length n) in a HDA M is a sequence of elements of B={b,},
a given basis of M (“elementary transitions”), p=(pi)o<i<n such that:

po,pn € Mo dimp; > 0
Vi, 00(pit1) = Zjayb;, with Jk,by=p; and ap#£0 or
Vi, 81(pi) = Eja]'b]', with E”C, bk = Pi+1 and ap 75 0
A n-dimensional path is a path whose elements are of dimension lower (or equal) than

n. Paths in automaton (3) of example 1 are sub-paths of (1,a,a,b’), (1,b,5,a’7y),
(1,a,A,b%7), (La,A,a’y), (1,b,Aa’y) and (1,b,Ab’7).

Definition3. Let r;s be two integers. Let f be a function between two HDA (M, 9y, 91)

and (M, 9y, 91), union of linear functions f; ;: M; j — M/, ;. (fis bigraded). Then

fis called a morphism (of HDA) of degree (r,s) if the f; ; verify:
Vi,V € My j, fij(0o(x)) = 0p(figr,5(x)).
Vi, Vo € M; 11, fi,i(01(x)) = 01(fij41(2)).

A morphism of degree 0 will just be called a morphism (see [Lan84]).

Now, we have categories 7" of HDA with morphisms of degree 0, and a full subcate-
gory T, of acyclic HDA.

The labelling

Definition4. A labelled HDA (over L) is a pair (M,l) composed of an unlabelled
HDA M, and a morphism I: M—T. A morphism f: (M,]) — (M’ I’) of labelled HDA
is a morphism of HDA between M and M’ such that 1’of=I.

Hence the category of labelled HDA over L is the slice category (see [FS90]) /L. The
category of labelled acyclic HDA is the subcategory of '/ L formed by the restriction
of T to Ty. The action of 1 1s to fold together all elements which have the same label.
In most cases, all states are mapped onto a unique state of L.

Ezample 2. let L be the HDA such that Ly = (1), L1 = (a) ¢ (b) with 9;(a) =
J;j(b) = 1. Let M be the HDA of (4) of example 1. Define a module homomorphism
I by I(a)=I(a’)=a, I(b)=I(b")=b and I(1)=I(a)=1(8)=I(7)=1. Then | is a morphism,
and (M,l) is a labelled HDA over L.

2.2 Homology

Definition5. For (Q,00,01) a HDA, we define two sequences of homology (see for
instance [ML63]) modules *:

— H{(Q,d0) = Kerd /Imd},
— H{(Q,01) = Kerdi /Imd!

! Ker denotes the kernel of an application, and Im the image of an application.

An element of Ker@} is an i-cycle, and an element of Imd:tt is an i-boundary. An
element of H;(@, dy) is called a branching of dimension i. An element of H;(Q@, d1)
is called a merging of dimension i. We write H, (7, 0;) for @, ., Hi(T, 0;).

Frample 3. — For automaton (1) of example 1, we have: Ho(M, dy) = («), Ho(M,81) =
(1), and the other homology modules are null.

— For automaton (2), all the homology modules are null.

— For automaton (3), we have: Ho(M,) = (7), Ho(M,01) = (1), and the other
homology modules are null.

— For automaton (4), we have: Ho(M,0y) = (v), Ho(M,01) = (1), Hi(M,dy) =
(b—a), Hi(M,01) = (' — a'), and the other homology modules are null. The
branching (b-a) of dimension one expresses the fact that in (4) there is a non-
deterministic choice between actions a and b. The merging (b’-a’) shows that
after the actions b’ and a’, the system goes to a same (idle) state.

Iff: (M, 9y, 01) — (M', 8}, 07) is a morphism then f induces a module homomorphism
fe it Ho(M, 0;) — Hu(M’,0) (j=0,1). This defines homology as a functor.

3 A few computational properties

We express here a few properties of interest in terms of homology, in the spirit of

[GJ92]. We refer to [Gou93] for details.

3.1 [Initial and final states, deadlocks, and divergence

We have already defined branchings and mergings in all dimensions. Branchings
provide a measure of non-determinism in all dimensions, and distinguish the truly
concurrent execution of processes from their (non-deterministic) interleaving. For
instance, automaton (3) has no branching of dimension 1 whereas automaton (4)
has one (the non-deterministic choice between a and b). Mergings “reduce” the non-
determinism of an automaton. There are also interesting interpretations of elements
of the homology modules in the lowest dimensions:

Definition 6. We call final (or accepting) state of an HDA M any elementary state
generating Ho(M, dp).

Frample 4. Consider the (standard) automaton (A, X,6,1,F) with A={u, v, w}, ¥={a, b},
I={u}, F={v} and é={(u, a,v), (u, b, w)}. Then, using our translation for standard
automata, the associated HDA i1s M, with:

Mo = (u) ® (v) & (w) M= (a) S (b)

and, dy(a) = u = 0y(b), d1(a) = v, d1(b) = 0 Obviously, Ho(M, dy) = (v) = (thus F
generates Ho(M, 0y)), H1(M,0q) = (a) P (b), Ho(M,51) = (u) and Hy(M, 1) = (b).
Definition 7. We call initial state of an HDA M any state generating Ho(M, d1).

Consider the automaton of last example. We have seen that Ho(M,01) = (u): u is
the initial state of M. Now we come to deadlocks and “initial” deadlocks (or “false”
initial states).

Definition8. An elementary n-transition leading to (or is) a deadlock in a HDA
M is a generator of H,(M,d;). The word deadlock is given to the one transitions
which deadlock M (for n greater than one, we say n-deadlock).

In example 4, b is a transition leading to a deadlock.

Definition9. A n-transition leading to (or is) an initial deadlock in an HDA M is
a generator of H, (M, dy). Again, the word initial deadlock is given to 1-transitions.

If M does not have any initial deadlock then all states of M are reachable, and all
transitions can be fired. In this case, we say that M is path-connected. Dually, if M
does not have any deadlock, then all states are co-reachable. Then,

Definition10. A HDA M diverges if and only if Ho(M,dy) = 0 (it does not have
any final state).

Automaton number 2 in example 1 diverges.

Dually, an HDA co-diverges if it has no beginning.

3.2 Serialization

A concurrent program is serializable if it “gives the same result” as a sequential
execution of it. This is a highly geometric property for HDA: this means that all
paths can be deformed continuously into another. More formally, we must define a

notion of homotopy:

Definition and lemma 1 An abstract I-cycle of length m+n is an HDA described
geometrically as:

Then,

Definition11. An elementary 1-cycle of length m+n in a pointed HDA (Q,d) (de
(Q0)* is a morphism i : Cy, ,, — @ such that i(1)=d.

Let Q be:

t3
N
tq A 2
6}

2 d is generally chosen among the initial states

Let now fi and g1 be the morphisms of HDA from C5 5 to Q’, defined by (prototypes
of being “elementarily equivalent”):

f1(C1) = fl(dl) = fl(Cz) = fl(dz) =d

gi(er) = g1(dy) = ', gi(e2) = g1(d2) = d
Definition12. Let i: C), ,, — P and j: C,, ,, — P be two elementary cycles in
P. We say that i and j are elementarily equivalent (or that there exists an elemen-

tary transformation from i to j or from j to i) if and only if there exist (non null)
morphisms r and s such that the following diagram is commutative:

n m/r(CZ 2) % P/S(Q/)

¢

1
Com P Cm
/rr h /FS g1 /rr

Cy. Q' Chy

where the columns are exact.

r and s identify the difference between i and j (i=j on Cp mm/7(C3,2)). The difference
is filled by a 2-transition (s(A)). This formalizes the idea that two cycles are equiv-
alent if one can be deformed through 2-transitions into the other. The reflexive and
transitive closure of the relation “is elementary equivalent to” is called homotopy.
Homotopy then extends to paths with common beginnings and endings.

Definition13. An unlabelled HDA M is serializable if and only if all one-dimensional
paths of maximal length are homotopic.

This shows that M is serializable if and only if the “fundamental monoid” of M, i.e.
the monoid of maximal paths modulo homotopy, is trivial. For instance, automaton
number three in example 1 is serializable, whence automaton number four in example
1 is not. This extends naturally to the labelled case.

Definition14. A labelled HDA (M,]) is serializable if and only if for all maximal
one-dimensional paths p, q, there exists q” such that 1(q)=I(q’) and p is homotopic
to q’

Obstructions to serializability in HDA can be found in H1(M, dp), because this is
precisely the presence of holes, as in automaton (4), which prevents the deformations
of paths. We can also give a general notion of “serializability on n processors”,
obstructions of which can be found in H,(M,dy). Tt generalizes the problem of
serializability (n=1) to the following question: is a program “equivalent” to some
implementation on a machine with n processors 7

4 Constructions

4.1 Limits and Colimits

0 is the zero object in categories 7" and T, that is, is both their initial and termi-
nal object. We can also define cartesian products, coproducts, and equalizers and

coequalizers in 7". Thus, 7 is finitely complete and finitely co-complete. In partic-
ular, amalgamated sums exist in 7. The amalgamated sum of X and Y over Z is
denoted by X], Y. Cartesian products correspond to some form of synchronized
product. Coproducts are choice operators. Equalizers and coequalizers are used to
model communication. To abbreviate the semantical constructions, we define a spe-
cial operation on HDA generated by some module:

Definition and lemma 2 Let A be a submodule of an HDA M. Then there exists
a smallest sub-automaton of M containing A, denoted by Clos(A). We define an
operation + on submodules of M, by:

A+ B = Clos(A) II Clos(B).
Clos(A)NClos(B)
+ corresponds to the geometrical operation of connected sum.

Direct limits and inverse limits (i.e. colimits - resp. limits - whose underlying diagram
is a directed poset, see [FS90]) exist in the category of modules (see [Lan84]). This
entails that they exist in 7 and 7,. Therefore,

Proposition15. T is complete and co-complete.

4.2 Tensor product and Hom functor
Definition16. Let M; and M be two HDA. Define a R-module T by: 7, , =
Ek,lM;,p—k,q—l ® My 1 and two operators (j=0,1) by d;(z @ y) = 0;(2) @ y +
(—1)(dlmx)x © 0;(y), that is,

O} = Zpprmn gts=m (O [M1] @ Id + (=1)PT1d @ 87° [Ms])
Then T is a HDA.

This construction is the tensor product of the two complexes associated with M; and
M (see [Mas78]). The reader can verify that it is actually a tensor product in the
category 1" (see for instance [FS90]. It corresponds to the truly parallel composition
of processes with no communication.

We define the action of F on morphisms f: X — Y by:
F(f): F(X) — F(Y), F(f)(x@m)=f(r)om

F(f) is a morphism, because 9;(f(z)@m) = &(f(x))@m—i—(—l)dimf(x)f(x)(}b@i(m) =
F(H0;(x)om+(—1)dlmxx(}b@i(m)) = F(£)(0;(x@m)). Therefore, for M an HDA,
(.® M) and (M ® .) are endofunctors on 7" and 7.

Definition and lemma 3 Let P and Q be two R-bicomplexes. We define Hom(P,Q)
as the HDA whose objects of bidegree (r,s) are:

HOmPQ H HOm zyan+r,]+s)
ijel

(where Hom(P; j, Qigr jt+s) is the R-module of R-linear maps from P; ; to Qiyr j4s)
and whose boundary operators are:

Oi(fin) = 0ilQo fik — (=1)"F f; 1 0 0[P
for i=0,1, and f; being the (j,k) component of some fin Hom(P,Q)r s

Now, Hom is a contravariant functor in its first argument, and a covariant one in
its second argument. Let f: P — P’ be a morphism of HDA. Then Hom(f,Q):
Hom(P’,Q) — Hom(P,Q) is the morphism such that Hom(f,Q)(h)=hof. If g: Q
— Q’ is a morphism, then Hom(P,g): Hom(P,Q) — Hom(P,Q’) is the morphism
defined by Hom(P,g)(h)=goh.

Proposition17 (Monoidal closedness).
Hom(P® Q,R)= Hom(P,Hom(Q,R)) T(P®Q,R)=T(P,Hom(Q, R))
and the map eval: Hom(P,Q)@P — Q with eval({fi}®x)=f 4;p, . (r) is a morphism.

For f an object of dimension n of Hom(P,Q), we say that:

if n>0 then f increases the degree of parallelism (by n) and
if n<0 then f decreases the degree of parallelism (by n).

FEzample 5. Let a be an elementary object of dimension n in a HDA M. Suppose
fa(®) = a @ @ is well defined on M. Then dimf=n and 9;(f) = fa,(a)-

Let (1) be the HDA generated by a state 1, and with null boundary operators.

Definition18. Let M be an HDA. Then the HDA M* = Hom(M, (1)) is called the
dual of M. Elements of M™* are called functionals.

Let < .,. > be the bilinear form defined on M by < z,y >= y*(z). We come now to
the description of the dual of an HDA.

Lemmal9. Let M be a finile state automaton with basis B={b;}. Then M* has
basis B*, dimb* = —dimb. Moreover, if the boundary operators of M* are denoted
by 05 and OF, then:

Yo,y € B, < 0i(x),y >=<2",0;(y") >

where < x,y > denotes the usual inner product < x,y >= X;x;y;, if v = X;x:b; and
y = Xiyibi.

The operators J} and 9] are respectively called the end boundary operator and
the start boundary operator. Notice that for M a finite state automaton, M and
M** are isomorphic (i.e. this is a duality). By analogy with [Pra92], the dual of
transitions, which bear information and change time, are events, which bear time and
change information. Thus, the (standard) boundary operators describe the temporal
beginning and ending of events, whereas the dual boundary operators describe the
information we have at the source, and the information we have at the target.

Frample 6. The dual of automaton (1) in example 1 is:

do
Mos =0 ——= M_;; =(1%)

0 0
V. N

MO,O = (a*) —_— M_170 = (a*)

In this HDA, we have one 1l-event namely a*, “waiting for transition a to be fired”.
The “information” beginning of 1* is @*, the “information” end of a* is a*.

Homology behaves quite well with respect to colimits and tensor products. In par-
ticular, 1t commutes with direct sums and direct limits, and commutes in most cases
(for instance when R is a vector space) with the tensor product. For more gen-
eral amalgamated sums, we have to use the Mayer-Vietoris sequence (see [ML63]).
Finally, for the Hom functor, we have the universal coefficient theorem. All these
techniques, we have no time to discuss here enable us to compute the different in-
variants of section 3 in an inductive manner, for each application of the different
constructions seen above.

5 Semantic domains

In this section, we wish to give a compositional (or denotational) semantics for some
parallel languages, with denotations being HDA, that is, describing the “higher-
dimensional” traces of programs.

5.1 General principles — ground domains

First, we have to define domains for values, and define real states.

Let V be a set (of values). We write V for the HDA whose states are generated by
V, and whose boundary operators are null. We have already seen an example of this
construction, for V={1}; V was written (1). This construction will be applied for sets
of values like IN, or Bool={tt, ff'}. Notice that it is again a functorial construction:
if f is a function between two sets V and V', then f (sometimes abbreviated by f),
the linear extension of f, is a morphism of degree 0 between V and V7.

The same construction can be carried out for any relation on sets of values. For
instance, let us consider a relation R(x,y) on VxV. Construct a “relation” R on
VoV, with value in Bool by R(Z,Y) =q4.; R(z®y) = (1) & R(z,y) and R(Z,) =aes
R(x @ y) = (ff) & ~R(z,y).

Now, suppose we have elementary functions on these sets of values. We want to

represent the application of such a function f to a value by a 1-transition between
the input value to the output value. The way to do this, is to construct (when it
exists in the considered domains) the (81 — dp)-chain homotopy (see [ML63]) linking
the input to the output state, that is the transition between Id and f, denoted by
[1d,f] or £ (“name of f”):

Suppose we have a domain D of HDA (elements of which are its sub-automata)
containing 1-transitions s and t with dy(s) = 1, d1(s) = 0, and dy(t) =0, 1(¢) = 1.
Let f and g be two linear maps, and define:

[fal=s@f+t@g

Then,
doolf,gl=Ff—[0oof,0oogl Oro[f,gl=g—[010f d104]

and when f and g are morphisms (of any degree),

doolf,gl+[figlodo=Ff Orolf,gl+[figlodi =y

Thus,
(01 =)o [figl+[f,glo(01—00)=9—f

and [f,g] is an (91 — Jp)-chain homotopy between f and g. To come back to our
function f, f = [Id, f], then: dy(f) = Id and 0,(f) = f. We have also, Vo € V,

do(f(x)) = x and 91 (f(x)) = f(x). Hence we call f “name of f”, because it is the
label of all applications of f.
In general, we have to use fresh copies of these t and v to build homotopies. These
copies will be denoted by t; and v;, where i is an index (generally in IN). For f a
linear function on a HDA V, we define an extension of f on tensor products of #;, v;
and elements of V by:

f) =t flvi)=v

flx@y) = f(z)® f(y)

If f is a morphism (of degree 0) on V, then this extension defines a morphism as
well. With these conventions, we have the following laws of calculus:

flg. Wl =1fg, fh] g, hlf =1gf 1 f]

fa=1ff9l af=1f9f]
[f, gllk,] = [[fk, f1], [9k, g1]]
The last equation shows that homotopies compose to give homotopies of higher di-

mension. We define also for a linear function f (not necessarily a morphism), another
linear function, f, called the sequentialization of f, by:

f(g) =g+ f o Hog, o)

We will see 1ts use further on.

5.2 Recursive domain equations

Proposition20. Let M be an HDA. Functors (@ M), (M ® .), Hom(., M) and
(M+.) are w-continuous, that is, preserve direct limits. Hom(M,.) transforms direct
limits into inverse limits.

By standard results (see for example [AL91]), we know, using proposition 15, that if
we have G such that VM € 7, G(M,.) and G(.,M) are w-continuous functors. Then,

AD€Y, D=M+G(D, D)

Generally, we construct HDA as sub-HDA of a huge one, described by a recursive
equation. This gives us also a means to label HDA, just knowing the labels of the
“atomic actions”. Let (M,]) be a labelled HDA over L. Consider now the equation
D=M+G(D,D), where G is w-continuous in each argument. There exists a solution D
to this equation. Let now Dp be the HDA verifying the equation D =L+G(Dr,Dr).
The solution to this equation is given by a limit of a diagram (see [AL91]). | induces
a morphism of the diagram defining D and the one defining Dy . Its limit, still called
1 is the induced labelling of D over L.

Frample 7. Let D be an HDA verifying D=M+D®D (D is the envelopping algebra
of M) where M is the HDA:

Mo=(1)& (o) ® (o) @ (B) D (8) My = (a) D (a') @ (b) D (V)

with dg(a) = do(a’) = dp(b) = (b)) = 1 and I1(a) = «, 01(a’) = &', 1(b) = B,
S (b)) = F'. Let L be the one defined in example 2. M can be labelled over L by
l(a)=l(a’)=a, I(b)=1(b")= b, I(1)=l(a)=1(a")=1(5)=1(5")=1. Then it extends to a
labelling of D over Dy. For instance, 1(a@3)=a, or l(¢/®@a®b)= a®b.

6 Example - A toy imperative language

Let £ be the language (first-order imperative language - shared memory) whose
syntax is defined as follows:

Let Var be a set of variable names (x, y, z...). We consider a set of values v € Val,
containing integers n, booleans #f and ff. We write X, Y, Z for objects which are
values or variables. f is any function on Val.

The language 1s formed out of values v, tests t, and expressions e:

(t — O)0(t — ¢')

vi=x e = nil
| n | «:=
| | z:=h(z,v)
| i | e
t o= R(X,Y) | e]¢
|
|

rece.q(x)

where x:=h(x,v) is a function like (x:=.), (xx=.), or (x+=.) etc. That is, proceeds
to an “atomic” operation on a variable. q 1s any syntactic expression of £ with one
hole (a context). Now, we give the semantics, considering the following domains:

C is the HDA with Cj generated by Var and 9y = 91 = 0. V is the HDA with 1}
generated by Val and dy = d; = 0. But, now, we would like to have environments
(i.e. assignments of values to variables) as states of our automata: the domain D
to be defined should include Env=Hom(C&V,CaV)3. But we want also to have all
homotopies (all transitions of any dimension) between states. This requires for D to
have all tensor products between the ¢;, v; and elements of D. This leads to defining
D by the equation:

D=(tei)ei® (vej)ey DHom(CBV,CHV)BCHV 4+ (Do D)

where ¢ is an index lying in the set {z := n,z := h(z,v)/x € Var, v € Val}. The
domain for the labelling is defined by:

Dr={)e® (ve)e®Hom(C eV, CpV)dCeV + (D © Dr)

The labelling | is induced by {(¢.;) = t., {(v.;) = v.. Define now the function
[u <= v] (an elementary substitution) on C®V by:

[u<vl(u) =v, [u<v](w)=w

for all w#u. Therefore, [u <= v] = v ® u* + Zyz,w @ w* It can be extended to a
morphism on D as described in the previous section.

The functions h considered in L induce morphisms of the form A, from p €Env to

Env:
ho(p,v)(x) = hip(x),v) ha(p,v)(y) = p(y)

for all y#£x. Their action is to apply the arithmetic function which h describes to the
only x part of the substitution p. For instance, (x:=.) induces the morphism [x <

® Env may also be called domain of substitutions, or store. Valid substitutions are always
identity on values.

J. In the case of x+=v, that is h(x,v)=x+v, we have for example, h,([z < u][ly <
w],v) =[x < u+ vy <).

Then we have a semantic function [.]: £ — Hom(FEnv, D) given by:

for values,
[2]p = p(x) (1)
[nlp=n (2)
[tt]p = tt (3)
[51p = I (4)
for tests, _
[R(X,Y)]p = R([X]p, [Y]p) (5)
for processes,
[rillp = p 6

)
[z :=vlp = [p,po [z < [v]p)] = po [z < [v]])

[z := h(z, v)]p = [p, help, [v]p)] = b (-, 0] p)p)
[ese'Tp = [€1([elp) 9)

[e | 'lp = [el([eTp) + [€']([e] p) (10)

[(t — e)n(t’ —)]p = 1" ([tlp)-Ielp+ 1" ([T p)-[¢'lp (11)
[recz.q(x)]p = lim[g" (nil)]p (12)

In all these equations, the labelling is implicit: when an homotopy is used for the
semantics of x:=v or x:=h(x,v), it is formed of some fresh t;.—,; and vy.—y; or
to=h(zv),i ANd Vg.—p(z,0),; Tespectively.

Equations 1, 2, 3, 4 and 5 are obvious. Equation 6 reads “nil does not act on the
environment” . Equations 7 and 8, written in two forms, build an homotopy between
the environment and the transformed one (notice that substitutions compose the
other way round). When p is a state, this is just a transition from the input of h
to the output of h. Equation 9 applies the sequentialization of [¢'] to [e], that is,
applies e’ to the final states of e, and takes the union with the translation of e.

Equation 10 looks like interleaving, but is not. [e']([e]p) is isomorphic to ([e']) ®
([elp), thus is a good candidate as a parallel composition (see [GJ92]). But [e] and
[¢'] may not commute if some of their actions are not independant, therefore we
need the term [e]([e']p). There can be non-independance if there is simultaneous
use of the shared memory. Equation 11 takes the (disjoint or not) union of the two
alternatives of the guarded statement. Finally, equation 12 takes the unfolding of
a recursive agent as its semantics. The unfolding is represented by the direct limit
of the diagram whose objects are the successive steps of unfolding [¢”(nil)]p, and
whose morphisms are the obvious ones (all morphisms between [¢"~1(nil)]p and

[4"(niD)]p)-
Frample 8. — We consider the term x+=1 in the context p = [z < 1]:

[e+=1]p = [p, ha(p, 1)]
=[x <=1] [r = 2]]

x+ =1
[t4+=1]p = e ——> k<2

— Now, consider the term (x:=1)|(x+=1) in the context p = [¢ < 0] o [y < 42]:

[(x = 1) | (o4 = DIp = [:= DI+ = D]p) + [+ = DI = D)

[(z:=Dlp=polz =1]
=lp[x < 1oy <42
Then,
[(z+ = DI([(= := D]p) = [([(= := D]p), ha(([(x := 1)]p, 1)]

= [[[v = 0]y = 42], [+ = [y <= 42]], [+ = 1][y < 42], [¢ <= 2)[y = 42]]]

which is geometrically realized by a square whose four vertices (only three of
them are disjoint) are [z < 0][y < 42], [z < 1][y < 42]], [v+ <= 1][y < 42]], and
[z < 2]y < 42].

— Let us compute the semantics of (x:=1);(x+=3) in the context p = [z < 0] :
[(& == 1); (4 = 3)]p = [(x+ = 3)]([= == 1]p)
= [+ =3[z <= 0], [z = 1]])
= [(e+=3)([z = 1))+ [[¢ = 0], [z = 1]

=z <= 1], [z = 4]+ [[r <= 0], [z <= 1]]

X:l X+:3
[(x:=1);(x+=3)]p = —> reil ——> k<

— Finally, let e=((x=17—y:=2)0(x=y?—x:=0)). Then in context p = [z <= 1][y <
1] we have:

[e] = t1* ([= 17]p).Iy = 20p + 11" ([= 57]p). [= 0

But,
[= 17]p = 1t
[t =y?]p=U
thus,
[e] = [y :=2]p+ [+ :=0p
=[lr=ly<=1]lz =1y <2+ [z =1y < 1], [¢ < 0]y = 1]]
Thus,

[x <= 1]ly < 2]

y:=2
[[6]]p = [x<=1lly 1]

x:=0
[x < 0]ly < 1]

This is a one-dimensional branching at state [z < 1][y < 1]. It describes an
internal non-deterministic choice.

7 Conclusion and Future Work

We have presented in this article, the basis for a semantic theory of true concurrency
which gather techniques from operational and denotational semantics. We believe
that the rich algebraic structure of HDA and the many techniques available for
computing their properties make them interesting denotations for programs.

The technique, briefly exemplified here, can certainly be used for parallel functional
languages. The domain to be used should include all contexts, not limited to the first-
order case as in our example. But the properties of the functor Hom are all we need
for that (see [Gou93] for a parallel lambda calculus). All standard techniques from
denotational semantics can also be fruitfully applied. For instance, continuations give
meanings to fork operators (see [Gou93] for an example), and not just to ordinary
parallel operators.

Finally, we think that this model shows good promise for giving semantics to real-
time parallel languages. A well known adjunction between simplicial complexes and
topological spaces of the homotopy type of CW-complexes can most probably inspire
this attempt.

Acknowledgements We thank Vaughan Pratt, Samson Abramsky and Patrick Cousot
for their support, since the very beginning of our work, Thomas Jensen, Regis Cridlig
and Bruno Monsuez for their very valuable help. Finally, we would like to thank
Jeremy Gunawardena with whom we had a very nice discussion, in particular about
serialization, at Concur’92.

References

[AL91] Andrea Asperti and Giuseppe Longo. Categories, types and structures. The MIT
Press, second edition, 1991.

[FS90] Peter J. Freyd and Andre Scedrov. Categories, allegories. In North-Holland Math-
ematical Library, volume 39. North-Holland, 1990.

[GJ92] Eric Goubault and Thomas P. Jensen. Homology of higher-dimensional automata.
In Proc. of CONCUR’92, Stonybrook, New York, August 1992. Springer-Verlag.

[Gou93] Eric Goubault. Higher-dimensional automata. Technical report, Ecole Normale
Supérieure, to appear 93.

[GS90] C.A. Gunther and D.S. Scott. Semantic domains. In Handbook of Theoretical
Computer Science. Elsevier, 1990.

[HU79] J.E. Hopcroft and J.D. Ullman. Inéroduction to Automata Theory, Languages and
Computation. Addison—Wesley, 1979.

[Lan84] Serge Lang. Algebra. Addison Wesley, second edition, 1984.

[Mas78] William S. Massey. Homology and cohomology theory. In Monographs and Text-
books in Pure and Applied Mathematics, number 46. Marcel DEKKER, INC., 1978.

[ML63] Saunders Mac Lane. Homology. In Die Grundlehren der Mathematishen Wis-
senschaften in Finzeldarstellungen, volume Band 114. Springer Verlag, 1963.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus, 1981.

[Pra91] Vaughan Pratt. Modeling concurrency with geometry. In Proc. 18th ACM Sym-
postum on Principles of Programming Languages. ACM Press, 1991.

[Pra92] Vaughan Pratt. The duality of time and information. In Proc. of CONCUR’92,
Stonybrook, New York, August 1992. Springer-Verlag.

[Win88] Glynn Winskel. An introduction to event structures. Lecture notes in computer
science, (354), 1988.

