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t. We present a new method for solving the �xed point equa-tions that appear in the stati
 analysis of programs by abstra
t inter-pretation. We introdu
e and analyze a poli
y iteration algorithm formonotone self-maps of 
omplete latti
es. We apply this algorithm to theparti
ular 
ase of latti
es arising in the interval abstra
tion of valuesof variables. We demonstrate the improvements in terms of speed andpre
ision over existing te
hniques based on Kleene iteration, in
ludingtraditional widening/narrowing a

eleration me
anisms.1 Introdu
tion and related workOne of the important goals of stati
 analysis by abstra
t interpretation (seeCousot & Cousot [11℄) is the determination of invariants of programs. They aregenerally des
ribed by over approximation (abstra
tion) of the sets of valuesthat program variables 
an take, at ea
h 
ontrol point of the program. And theyare obtained by solving a system of (abstra
t) semanti
 equations, derived fromthe program to analyze and from the domain of interpretation, or abstra
tion,i.e. by solving a given �xed point equation in an order-theoreti
 stru
ture.Among the 
lassi
al abstra
tions, there are the non-relational ones, su
h asthe domain of intervals [11℄ (invariants are of the form vi ∈ [c1, c2]), of 
onstantpropagation (vi = c), of 
ongruen
es [18℄ (vi ∈ aZ + b). Among the relationalones we 
an mention polyedra [31℄ (α1v1 + · · ·+αnvn ≤ c ), linear equalities [26℄(α1v1 + · · ·+αnvn = c), linear equalities modulo [19℄ (α1v1 + · · ·+αnvn ≡ a) ormore re
ently the o
tagon domain [29℄ (vi − vj ≤ c).All these domains are (order-theoreti
) latti
es, for whi
h we 
ould thinkof designing spe
i�
 �xed point equation solvers instead of using the 
lassi
al,and yet not very e�
ient value iteration algorithms, known as Kleene's �xedpoint iteration. A 
lassi
al way to improve these 
omputations is to use widen-ing/narrowing operators [12℄. There exists 
on
rete widening/narrowing oper-ators for all 
lassi
al domains of interpretation su
h as the one we mentionedabove. They improve the rapidity of �nding an over-approximated invariant atthe expense of a

ura
y sometimes; i.e. they rea
h a �xed point, but not alwaysthe least �xed point of the semanti
 equations (we review some elements of thismethod in Se
tion 2, and give examples in the 
ase of the interval latti
e).



In this paper, we introdu
e a new algorithm, based on poli
y iteration andnot value iteration, that 
orre
tly and e�
iently solves this problem (Se
tion 3).It shows good performan
es in general with respe
t to various typi
al programs,see Se
tion 4.4. We should add that this work started from the di�
ulty to �ndgood widening and narrowing operators for domains used for 
hara
terizing thepre
ision of �oating-point 
omputations, used by some of the authors in [17℄.Poli
y iteration was introdu
ed by Howard [23℄ to solve sto
hasti
 
ontrolproblems with �nite state and a
tion spa
e. In this 
ontext, a poli
y is a feed-ba
k strategy (whi
h assigns to every state an a
tion). The 
lassi
al poli
y it-eration generalizes Newton's algorithm to the equation x = f(x), where f ismonotone, non-di�erentiable, and 
onvex. The 
onvergen
e proof is based on thedis
rete version of the maximum prin
iple for harmoni
 fun
tions. This methodis experimentally e�
ient, although its 
omplexity is still not well understoodtheoreti
ally. We refer the reader to the book of Puterman [32℄ for ba
kground.It is natural to ask whether poli
y iteration 
an be extended to the 
aseof zero-sum games: at ea
h iteration, one �xes the strategy of one player, andsolves a non-linear (optimal 
ontrol problem) instead of a linear problem. Thisidea goes ba
k to Ho�man and Karp [22℄. The 
entral di�
ulty in the 
ase ofgames is to obtain the 
onvergen
e, be
ause the 
lassi
al (linear) maximum prin-
iple 
annot be applied any more. For this reason, the algorithm of [22℄ requirespositivity 
onditions on transition probabilities, whi
h do not allow to handlethe 
ase of deterministi
 games. In appli
ations to stati
 analysis, however, eventhe simplest �xed point problems lead to deterministi
 game problems. A poli
yiteration algorithm for deterministi
 games with ergodi
 reward has been givenby Co
het-Terrasson, Gaubert, and Gunawardena [7,15℄: the 
onvergen
e proofrelies on max-plus spe
tral theory, whi
h provides nonlinear analogues of resultsof potential theory.In the present paper, we present a new poli
y iteration algorithm, whi
happlies to monotone self-maps of a 
omplete latti
e, de�ned by the in�mum of a
ertain family satisfying a sele
tion prin
iple. Thus, poli
y iteration is not limitedto �nding �xed point that are numeri
al ve
tors or fun
tions, �xed points 
an beelements of an abstra
t latti
e. This new generality allows us to handle latti
eswhi
h are useful in stati
 analysis. For the �xed point problem, the 
onvergen
eanalysis is somehow simpler than in the ergodi
 
ase of [7,15℄: we show thatthe 
onvergen
e is guaranteed if we 
ompute at ea
h step the least �xed point
orresponding to the 
urrent poli
y. The main idea of the proof is that the mapwhi
h assigns to a monotone map its least �xed point is in some weak sense amorphism with respe
t to the inf-law, see Theorem 1. This shows that poli
yiteration 
an be used to 
ompute the minimal �xed points, at least for a sub
lassof maps (Theorem 3 and Remark 5).Other �xed point a

eleration te
hniques have been proposed in the litera-ture. There are mainly three types of �xed point a

eleration te
hniques, as usedin stati
 analysis. The �rst one relies on spe
i�
 information about the stru
-ture of the program under analysis. For instan
e, one 
an de�ne re�ned iterationstrategies for loop nests [2℄, or for interpro
edural analysis [1℄. These methods



are 
ompletely orthogonal to the method we are introdu
ing here, whi
h doesnot use su
h stru
tural properties. However, they might be 
ombined with poli
yiteration, for e�
ient interpro
edural analysis for instan
e. This is beyond thes
ope of this paper.Another type of algorithm is based on the parti
ular stru
ture of the abstra
tdomain. For instan
e, in model-
he
king, for rea
hability analysis, parti
ular it-eration strategies have been designed, so that to keep the size of the state spa
erepresentation small (using BDDs, or in stati
 analyzers by abstra
t interpreta-tion, using binary de
ision graphs, see [28℄), by a 
ombination of breadth-�rstand depth-�rst strategies, as in [34℄. For boolean equations, some authors havedesigned spe
i�
 representations whi
h allow for relatively fast least �xed pointalgorithms. For instan
e, [27℄ uses Be�ki
-Lesz
zyloiwski theorem. In stri
tnessanalysis, representation of boolean fun
tions by �frontiers� has been widely used,see for instan
e [24℄ and [5℄. Our method here is general, as hinted in Se
tion 3.It 
an be applied to a variety of abstra
t domains, provided that we 
an �nd a�sele
tion prin
iple�. This is exempli�ed here on the domain of intervals, but weare 
on�dent this 
an be equally applied to o
tagons and polyedra.Last but not least, there are some general purpose algorithms, su
h as generalwidening/narrowing te
hniques, [12℄, with whi
h we 
ompare our poli
y iterationte
hnique. There are also in
remental or �di�erential� 
omputations (in order notto 
ompute again the fun
tional on ea
h partial 
omputations) [25℄, [14℄. In fa
t,this is mu
h like the stati
 partitioning te
hnique some of the authors use in [33℄.Related algorithms 
an be found in [13℄, [30℄ and [4℄. We have not been able to
ompare these te
hniques with our algorithm yet.The results of the present paper were announ
ed in [10℄.2 Kleene's iteration sequen
e, widenings and narrowingsIn order to 
ompare the poli
y iteration algorithm with existing methods, webrie�y re
all in this se
tion the 
lassi
al method based on Kleene's �xed pointiteration, with widening and narrowing re�nements (see [12℄).Let (L,≤) be a 
omplete latti
e. We write ⊥ for its lowest element, ⊤ for itsgreatest element, ∪ and ∩ for the meet and join operations, respe
tively. We saythat a self-map f of a 
omplete latti
e (L,≤) is monotone if x ≤ y ⇒ f(x) ≤
f(y).The least �xed point of a monotone f 
an be obtained by 
omputing thesequen
e: x0 = ⊥, xn+1 = f(xn) (n ≥ 0), whi
h is su
h that x0 ≤ x1 ≤ . . .If the sequen
e be
omes stationary, i.e., if xm = xm+1 for some m, the limit
xm is the least �xed point of f . Of 
ourse, this pro
edure may be ine�
ient,and it need not even terminate in the 
ase of latti
es of in�nite height, su
h asthe simple interval latti
e (that we use for abstra
tions in Se
tion 4). For this
omputation to be
ome tra
table, widening and narrowing operators have beenintrodu
ed, we refer the reader to [12℄ for a good survey. As we will only showexamples on the interval latti
e, we will not re
all the general theory. Wideningoperators are binary operators ∇ on L whi
h ensure that any �nite Kleene



iteration x0 = ⊥, x1 = f(x0), . . . , xk+1 = f(xk), followed by an iteration ofthe form xn+1 = xn∇f(xn), for n > k, yields an ultimately stationary sequen
e,whose limit xm is a post �xed point of f , i.e. a point x su
h that x ≥ f(x).The index k is a parameter of the least �xed point solver. In
reasing k in
reasesthe pre
ision of the solver, at the expense of time. In the sequel, we 
hoose
k = 10. Narrowing operators are binary operators ∆ on L whi
h ensure that anysequen
e xn+1 = xn∆f(xn), for n > m, initialized with the above post �xedpoint xm, is eventually stationary. Its limit is required to be a �xed point of fbut not ne
essarily the least one.void main() {int x=0; // 1while (x<100) { // 2x=x+1; // 3} // 4} x1 = [0, 0]

x2 = ] −∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)Fig. 1. A simple integer loop and its semanti
 equationsConsider �rst the program at the left of Figure 1. The 
orresponding seman-ti
 equations in the latti
e of intervals are given at the right of the �gure. Theintervals x1, . . . , x4 
orrespond to the 
ontrol points 1, . . . , 4 indi
ated as 
om-ments in the C 
ode. We look for a �xed point of the fun
tion f given by theright hand side of these semanti
 equations. The standard Kleene iteration se-quen
e is eventually 
onstant after 100 iterations, rea
hing the least �xed point.This �xed point 
an be obtained in a faster way by using the 
lassi
al (see [12℄again) widening and narrowing operators:

[a, b]∇[c, d] = [e, f ] with e =

{

a if a ≤ c
−∞ otherwise and f =

{

b if d ≤ b
∞ otherwise,

[a, b]∆[c, d] = [e, f ] with e =

{

c if a = −∞
a otherwise and f =

{

d if b = ∞
b otherwise.The iteration sequen
e using widenings and narrowings takes 12 iterations be-
ause we 
hose k = 10, and it rea
hes the least �xed point of f :

x1
2 = [0, 0]
x1

3 = [1, 1]
x1

4 = ⊥
x2

2 = [0, 1]
x2

3 = [1, 2]
x2

4 = ⊥...
x9

2 = [0, 8]
x9

3 = [1, 9]
x9

4 = ⊥(widening)
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[

(narrowing)
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]



3 Poli
y iteration algorithm in 
omplete latti
es3.1 Lower sele
tionTo 
ompute a �xed point of a self-map f of a latti
e L, we shall assume that fis e�e
tively given as an in�mum of a �nite set G of �simpler� maps. Here, andin the sequel, the in�mum refers to the pointwise ordering of maps. We wish toobtain a �xed point of f from the �xed points of the maps of G. To this end, thefollowing general notion will be useful.De�nition 1 (Lower sele
tion). We say that a set G of maps from a set Xto a latti
e L admits a lower sele
tion if for all x ∈ X, there exists a map g ∈ Gsu
h that g(x) ≤ h(x), for all h ∈ G.Setting f = inf G, we see that G has a lower sele
tion if and only if for all
x ∈ X , we have f(x) = g(x) for some g ∈ G. We next illustrate this de�nition.Example 1. Take L = R, and 
onsider the self-map of L, f(x) =

∧

1≤i≤m(ai +
x) ∨ bi , where ai, bi ∈ R. Up to a trivial modi�
ation, this is a spe
ial 
ase ofmin-max fun
tion [20,7,21℄. The set G 
onsisting of the m maps x 7→ (ai +x)∨biadmits a lower sele
tion. We represent on Figure 2 the 
ase where m = 5,
b1 = −5, a1 = 2.5, b2 = −3, a2 = 0.5, b3 = 1, a3 = −3, b4 = 1.5, a4 = −4, b5 =
2.5, a5 = −4.5. The graph of the map f is represented in bold.3.2 Universal poli
y iteration algorithmIn many appli
ations, and spe
ially in stati
 analysis of programs, the smallest�xed point is of interest. We shall denote by f− the smallest �xed point of amonotone self-map f of a 
omplete latti
e L, whose existen
e is guaranteed byTarski's �xed point theorem. We �rst state a simple theoreti
al result whi
hbrings to light one of the ingredients of poli
y iteration.Theorem 1. Let G denote a family of monotone self-maps of a 
omplete latti
e
L with a lower sele
tion, and let f = inf G. Then f− = infg∈G g

− .The proof of Theorem 1 and of the theorems that follow is in the appendix.Theorem 1 is related to a result of [9℄ 
on
erning monotone self-maps of R
n thatare nonexpansive in the sup-norm (see also the last 
hapter of [6℄).We now state a very general poli
y iteration algorithm. The input of thealgorithm 
onsists of a �nite set G of monotone self-maps of a latti
e L with alower sele
tion. When the algorithm terminates, its output is a �xed point of

f = inf G.Algorithm (PI: Poli
y iteration in latti
es).1. Initialization. Set k = 1 and sele
t any map g1 ∈ G.2. Value determination. Compute a �xed point xk of gk.3. Compute f(xk).4. If f(xk) = xk, return xk.



5. Poli
y improvement. Take gk+1 su
h that f(xk) = gk+1(x
k). In
rement kand goto Step 2.We next show that the algorithm does terminate when at ea
h step, thesmallest �xed-point of gk, xk = g−k is sele
ted. We 
all height of a subset X ⊂ Lthe maximal 
ardinality of a 
hain of elements of X .Theorem 2. Assume that L is a 
omplete latti
e and that all the maps of G aremonotone. If at ea
h step k, the smallest �xed-point xk = g−k of gk is sele
ted,then the number of iterations of Algorithm PI is bounded by the height of {g− |

g ∈ G}, and a fortiori, by the 
ardinality of G.Remark 1. Any xk ∈ L 
omputed by Algorithm PI is a post �xed point: f(xk) ≤
xk. In stati
 analysis of programs, su
h a xk yields a valid, although suboptimal,information.Example 2. We �rst give a simple illustration of the algorithm, by 
omputingthe smallest �xed point of the map f of Example 1. Let us take the �rst poli
y
g5(x) = b5 ∨ (a5 + x) = 2.5 ∨ (−4.5 + x), whi
h has two �xed points, +∞and 2.5. We 
hoose the smallest one, x1 = 2.5. We have f(x1) = g2(x

1) where
g2(x) = b3∨(a3 +x) = 1∨(−3+x). We take for x2 the smallest �xed point of g2,
x2 = 1. Then, the algorithm stops sin
e f(x2) = x2. This exe
ution is illustratedin Figure 2. By 
omparison, the Kleene iteration (right) initialized at the point
−∞ takes 11 iterations to rea
h the �xed point. Observe that by modifying thevalues of a2 and b2, one may redu
e arbitrarily the distan
e between the graphof the map b2 ∨ (a2 + x) and the diagonal, so that the number of iterations ofthe Kleene iteration algorithm may be arbitrarily large, whereas the number ofiterations of Algorithm PI always remains bounded by m.
g2

g1

x2 x1 x

y

x2 x3 x11

Fig. 2. Poli
y iteration (left) versus Kleene iteration (right)



Remark 2. A 
ru
ial di�
ulty in the appli
ation of the algorithm to stati
 anal-ysis is that even when the smallest �xed points xk = g−k are always 
hosen,the poli
y iteration algorithm need not return the smallest �xed point of f . Forinstan
e, in Example 2, if one takes the initial poli
y x 7→ a1 ∨ (b1 + x) or
x 7→ a2 ∨ (b2 + x), we get x1 = ∞, and the algorithm stops with a �xed pointof f , ∞, whi
h is non minimal. This shows the importan
e of the initial poli
yand of the update rule for poli
ies.Although Algorithm PI may terminate with a nonminimal �xed point, it isoften possible to 
he
k that the output of the algorithm is a
tually the smallest�xed point thanks to the following kind of results. We 
onsider the spe
ial sit-uation where f is a monotone self-map of R

n, with a restri
tion R
n → R

n thatis nonexpansive for the sup-norm, meaning that ‖f(x) − f(y)‖∞ ≤ ‖x − y‖∞,for all x, y ∈ R
n. We shall say that su
h maps f have Property N. (For instan
e,the maps in Example 1 all have Property N.) The following theorem identi�essituations where the uniqueness of the terminal poli
y guarantees that the �xedpoint returned by Algorithm PI is the smallest one.Theorem 3. Assume that G is a �nite set of monotone self-maps of R

n that allhave Property N, that G has a lower sele
tion, and let f = inf G. If AlgorithmPI terminates with a �nite �xed point xk = g−k su
h that there is only one g ∈ Gsu
h that f(xk) = g(xk), then, xk is the smallest �nite �xed point of f .Remark 3. The nonexpansiveness assumption 
annot be dispensed with in The-orem 3. Consider the self-map of R, f(x) = 0 ∧ (1 + 2x), and take the set G
onsisting of the maps x 7→ 0 and x 7→ 1 + 2x. Algorithm PI initialized with themap g1 = 0 stops immediately with the �xed point x1 = 0, and g1 is the onlymap g in G su
h that g(0) = f(0), but x1 is a nonminimal �nite �xed point of
f , sin
e f(−1) = −1.Remark 4. Of 
ourse, when xk is the smallest �nite �xed point of f , there mayexist a smaller �xed point, with some 
oordinates equal to −∞, so Theorem 3redu
es to some extent the sear
h of the minimal �xed point to questions 
on-
erning the pattern (set of 
oordinates distin
t from −∞), whi
h are sometimeseasier (the 
ase where xi = −∞ represents situations in stati
 analysis where afragment of the program is never exe
uted).Remark 5. When the poli
y g su
h that f(xk) = g(xk) is not unique, we 
an
he
k whether xk is the smallest �nite �xed point of f in the following way.We s
an the set of maps g ∈ G su
h that g(xk) = f(xk), until g− < x or allthese maps g have been s
anned. In the former 
ase, an improved post �xedpoint of f has been found, and by nonexpansiveness of f , it 
an be shown thatthere is a smaller �nite �xed point of f (whi
h 
an be 
omputed by restartingthe poli
y iteration algorithm with the initial map g1 := g). In the latter 
ase,a small variation of the proof of Theorem 3 shows that x is the smallest �nite�xed point of f (if all the maps in G have Property N).



Algorithm PI requires to 
ompute at every step a �xed point xk of the map
gk, and if possible, the minimal one, g−k . An obvious way to do so is to applyKleene iteration to the map gk. Although this may seem surprising at the �rstsight, this implementation may preserve the performan
e of the algorithm. Infa
t, it is optimal in Example 2, sin
e Kleene iteration 
onverges in only one stepfor every map gk. In many 
ases, however, some pre
ise information on the map
gk is available, and poli
y iteration will bene�t from fast algorithms to 
ompute
xk. For instan
e, the 
lassi
al poli
y iteration algorithm of Howard, 
on
ernsthe spe
ial 
ase where the maps gk are a�ne. In that 
ase, the �xed point xk isobtained by solving a linear system. A non 
lassi
al situation, where the maps gkare dynami
 programming operators of deterministi
 optimal 
ontrol problems,i.e., max-plus linear maps, is solved in [8,15℄.4 Appli
ation to the latti
e of intervals in stati
 analysisIn the sequel, we shall 
onsider the set I(R) of 
losed intervals of R. This set,ordered by in
lusion, is a 
omplete latti
e. It will be 
onvenient to represent aninterval I ∈ I(R) as I = [−a, b] := {x ∈ R | −a ≤ x ≤ b} with a, b ∈ R ∪ {±∞}.We 
hanged the sign in order to get a monotone map ψ : I 7→ (a = − inf I, b =
sup I), from I(R) → R

2 . Observe that ψ is a right inverse of ı : (a, b) 7→ [−a, b].By extending ψ and ı to produ
ts of spa
es, entrywise, we see that any monotoneself-map f of I(Rn) indu
es a monotone self-map of (R2)n, ψ ◦ f ◦ ı, that we 
allthe lift of f . It is useful to keep in mind that the minimal �xed point of f is theimage by ı of the minimal �xed point of its lift, although our algorithms applypreferably to the map f rather than to its lift.4.1 The interval abstra
tionWe 
onsider a toy imperative language with the following instru
tions:1. loops: while (
ondition) instru
tion;2. 
onditionals: if (
ondition) instru
tion [else instru
tion℄;3. assignment: operand = expression; We assume here that the arithmeti
expressions are built on a given set of variables (belonging to the set V ar),and use operators +, -, * and /, together with numeri
al 
onstants (onlyintegers here for more simpli
ity).There is a 
lassi
al [12℄ Galois 
onne
tion relating the powerset of values ofvariables to the produ
t of intervals (one for ea
h variable). This is what givesthe 
orre
tion of the 
lassi
al [12℄ abstra
t semanti
s [[.]] , with respe
t to thestandard 
olle
ting semanti
s of this language. [[.]] is given by a set of equationsover the variables x1, . . . , xn of the program that we will show on some examples.Ea
h variable xi is interpreted as an interval [−x−i ;x+

i ].



4.2 Sele
tion property for a family of �nitely generated fun
tionson intervalsWe now de�ne a 
lass of monotone self-maps of I(R), whi
h is pre
isely the 
lassof fun
tions arising from the semanti
 equations of the previous se
tion. This
lass may be thought of as an extension of the min-max fun
tions introdu
edin [20℄. For an interval I = [−a, b], we set ↑ I def
= [−a,∞[ and ↓ I

def
=] −∞, b].De�nition 2. A �nitely generated fun
tion of intervals, (I(R))n → (I(R))p,is a map f whose 
oordinates fj : x = (x1, . . . , xn) 7→ fj(x) are terms of thefollowing grammar G:

CSTE ::= [−a, b] V AR ::= xi

EXPR ::= CSTE | V AR | EXPR+ EXPR |
EXPR ∗ EXPR | EXPR/EXPR | EXPR− EXPR

TEST ::= ↑ EXPR ∩EXPR | ↓ EXPR ∩ EXPR | CSTE ∩ EXPR
G ::= EXPR | TEST | G ∪Gwhere i 
an take arbitrary values in {1, . . . , n}, and a, b 
an take arbitraryvalues in R.We write F for the set of su
h fun
tions. The variables x1, . . . , xn 
orrespondto the di�erent variables in V ar. We set x−i = − inf xi, x+

i = supxi, so that
xi = [−x−i , x

+

i ]. Non-terminals CSTE, V AR, EXPR and TEST do 
orrespondto the semanti
s of 
onstants, variables, arithmeti
 expressions, and (simple)tests. For instan
e, the �xed point equation at the right of Figure 1 is of theform x = f(x) where f is a �nitely generated fun
tion of intervals.In order to write maps of F as in�ma of simpler maps, when I = [−a, b]and J = [−c, d], we also de�ne l(I, J) = I (l is for �left�), r(I, J) = J (r for�right�), m(I, J) = [−a, d] and mop(I, J) = [−c, b] (m is for �merge�). Thesefour operators will de�ne the four possible poli
ies on intervals, as shown inProposition 1 below.Let G∪ be the grammar, similar to G ex
ept that we 
annot produ
e termswith ∩.
G∪ ::= EXPR | ↑ EXPR | ↓ EXPR | G∪ ∪G∪ |

l(G∪, G∪) | r(G∪, G∪) | m(G∪, G∪) | mop(G∪, G∪)We write F∪ for the set of fun
tions de�ned by this grammar. Terms l(G,G),
r(G,G),m(G,G) andmop(G,G) represent respe
tively the left, right,m andmoppoli
ies.The interse
tion of two intervals, and hen
e, of two terms of the grammar,interpreted in the obvious manner as intervals, is given by the following formula:

G1 ∩G2 = l(G1, G2) ∩ r(G1, G2) ∩m(G1, G2) ∩m
op(G1, G2) (1)To a �nitely generated fun
tion of intervals f ∈ F , we asso
iate a family Π(f)of fun
tions of F∪ obtained in the following manner: we repla
e ea
h o

urren
eof a term G1 ∩G2 by l(G1, G2), r(G1, G2), m(G1, G2) or mop(G1, G2). We 
allsu
h a 
hoi
e a poli
y. Using Equation (1), we get:



Proposition 1. If f is a �nitely generated fun
tion of intervals, the set of poli-
ies Π(f) admits a lower sele
tion. In parti
ular, f = inf Π(f).4.3 Implementation prin
iples of the poli
y iteration algorithmA simple stati
 analyzer has been implemented in C++. It 
onsists of a parserfor a simple imperative language (a very simpli�ed C), a generator of abstra
tsemanti
 equations using the interval abstra
tion, and the 
orresponding solver,using the poli
y iteration algorithm des
ribed in Se
tion 3.A poli
y is a table that asso
iates to ea
h interse
tion node in the semanti
abstra
tion, a value modeling whi
h poli
y is 
hosen among l, r, m or mop, inEquation (1). There is a number of heuristi
s that one might 
hoose 
on
erningthe initial poli
y, whi
h should be a guess of the value of G1∩G2 in Equation (1).The 
hoi
e of the initial poli
y may be 
ru
ial, sin
e some 
hoi
es of the initialpoli
y may lead eventually to a �xed point whi
h is not minimal. (In su
h 
ases,Remark 5 should be used: it yields an heuristi
s to improve the �xed point, whi
h
an be justi�ed rigorously by Theorem 3, when the lift of f has Property N.) The
urrent prototype makes a sensible 
hoi
e: when a term G1 ∩G2 is en
ountered,if a �nite 
onstant bound appears in G1 or G2, this bound is sele
ted. Moreover,if a +∞ upper bound or −∞ lower bound appears in G1 or G2, then, this boundis not sele
ted, unless no other 
hoi
e is available (in other words, 
hoi
es thatgive no information are avoided). When the appli
ations of these rules is notenough to determine the initial poli
y, we 
hoose the bound arising from theleft hand side term. Thus, when G1 = [−a,∞[, the initial poli
y for G1 ∩ G2 is
m(G1, G2), whi
h keeps the lower bound of G1 and the upper bound of G2.The way the equations are 
onstru
ted, when the terms G1 ∩G2 
orrespondto a test on a variable (and thus no 
onstant 
hoi
e is available for at least onebound), this initial 
hoi
e means 
hoosing the 
onstraint on the 
urrent variablebrought on by this test, rather than the equation expressing the dependen
e of
urrent state of the variable to the other states. These 
hoi
es often favor as �rstguess an easily 
omputable system of equations.We then 
ompute the �xed point of the redu
ed equations, using if possiblespe
i�
 algorithms. In parti
ular, when the lift of f is a min-max fun
tion,shortest path type algorithms may be used, in the spirit of [7,15℄. Linear or
onvex programming might also be used in some 
ases. For the time being, weonly use a 
lassi
al Kleene like value iteration algorithm, dis
ussed in Se
tion4.4.We then pro
eed to the improvement of the poli
y, as explained in Se
tion3. In short, we 
hange the poli
y at ea
h node for whi
h a �xed point of the
omplete system of equations is not rea
hed, and 
ompute the �xed point of thenew equations, until we �nd a �xed point of the 
omplete system of equations.Even when this �xpoint is rea
hed, using Remark 5 
an allow to get a smaller�xpoint in some 
ases, when the 
urrent �xpoint is obtained for several poli
ies.In the following examples, we 
ount the number of poli
ies the algorithmhad to 
onsider in order to rea
h the least �xed point, and the 
ost of solving



the remaining equations, without interse
tion. But the overall speedup of poli
yiteration algorithms 
ould be improved by using spe
i�
 solvers.4.4 Examples and 
omparison with Kleene's algorithmIn this se
tion, we dis
uss a few typi
al examples, that are experimented usingour prototype implementation. We 
ompare the poli
y iteration algorithm withKleene's iteration sequen
e with widenings and narrowings (the very 
lassi
alone of [12℄), 
alled Algorithm K here. For both algorithms, we 
ompare thea

ura
y of the results, and the number of �xed point iterations.We did not experiment spe
i�
 algorithms for solving equations in G∪ (mean-ing, without interse
tions), as we 
onsider this to be outside the s
ope of thispaper, so we 
hose to use an iterative solver (algorithm K') for ea
h poli
y. Algo-rithm K' is exa
tly the same solver as algorithm K, but used on a smaller 
lass offun
tions, for one poli
y. So Algorithm PI will run Algorithm K' at every valuedetermination step (Step 2). Of 
ourse, using Algorithm K' instead of a spe
i�
solver is an heuristi
s, sin
e the 
onvergen
e result, Theorem 2, requires that atevery value determination step, the smallest �xed point is 
omputed. We de
idedto widen intervals, both in Algorithms K and K', only after ten standard Kleeneiterations. This 
hoi
e is 
onventional, and in most examples below, one 
ouldargue that an analyzer would have found the right result with only two Kleeneiterations. In this 
ase, the speedup obtained by the poli
y iteration algorithmwould be far less; but it should be argued that in most stati
 analyzers, therewould be a 
ertain unrolling before trying to widen the result. In the sequel wewill 
ount also the number of �elementary operations� performed by algorithmsK and PI. We 
ount one per elementary operations (+, - et
.), min and max(used when taking unions and interse
tions), tests (≤, ≥, =) used for 
he
kingwhether we rea
h lo
al �xed points during iterations of algorithms K and K'.A simple typi
al (integer) loop is shown on Figure 1, together with the equa-tions generated by the analyzer. The original poli
y is mop in equation 2 inFigure 1 (by equation i, we mean the equation whi
h determines the state ofvariables at 
ontrol point i, here x2), and m in the equation determining x4,This is a
tually the right poli
y on the spot, and we �nd in one iteration (and34 elementary operations), the 
orre
t result (the least �xed point). This is tobe 
ompared with the 12 iterations of Algorithm K (and 200 elementary oper-ations), in Se
tion 2. In the sequel, we put upper indi
es to indi
ate at whi
hiteration the abstra
t value of a variable is shown. Lower indi
es are reserved asbefore to the 
ontrol point number.The analysis of the program below leads to an a
tual poli
y improvement:void main(){int i,j;i=1; // 1j=10; // 2 while (j >= i) { // 3i = i+2; // 4j = -1+j; // 5} // 6 }



Semanti
 equations at 
ontrol points 3 and 6 are
(i3, j3) = (] −∞,max(j2, j5)] ∩ (i2 ∪ i5), [min(i2, i5),+∞[∩(j2 ∪ j5))

(i6, j6) = ([min(j2, j5) + 1,+∞[∩(i2 ∪ i5), ] −∞,max(i2, i5) − 1] ∩ (j2 ∪ j5))The algorithm starts with poli
y mop for variable i in equation 3, m forvariable j in equation 3, m for variable i equation 6 and mop in equation 6,variable j. The �rst iteration using Algorithm K' with this poli
y, �nds the value
(i16, j

1
6) = ([1, 12], [0, 11]). But the value for variable j given by equation 6, givenusing the previous result, is [0, 10] instead of [0, 11], meaning that the poli
y onequation 6 for j should be improved. The minimum (0) for j at equation 6 isrea
hed as the minimum of the right argument of ∩. The maximum (10) for jat equation 6 is rea
hed as the maximum of the right argument of ∩. Hen
e thenew poli
y one has to 
hoose for variable j in equation 6 is r. In one iterationof Algorithm K' for this poli
y, one �nds the least �xed point of the system ofsemanti
 equations, whi
h is at line 6, (i26, j

2
6) = ([1, 12], [0, 10]). Unfortunately,this �xed point is rea
hed by several poli
ies, and Remark 5 is used, leading toanother poli
y iteration. This in fa
t does not improve the result sin
e the 
urrent�xed point is the smallest one. Algorithm PI uses 2 poli
y iterations, 5 valuesiterations and 272 elementary operations. Algorithm K takes ten iterations (and476 elementary operations) to rea
h the same result.Some ben
hmarks In the following table, we des
ribe preliminary results thatwe obtained using Algorithms K and PI on simple C programs, 
onsisting essen-tially of loop nests. We indi
ate for ea
h program (available on http://www.di.-ens.fr/�goubault/Politiques) the number of variables, the number of loops, themaximal depth of loop nests, the number of poli
y iterations slash the totalnumber of potential poli
ies, value iterations and elementary operations for ea
halgorithm (when this applies). The last 
olumn indi
ates the speedup ratio of Al-gorithm PI with respe
t to K, measured as the number of elementary operationsK needs over the number that PI needs.Program vars loops depth pols./tot. iters.K/PI ops.K/PI speeduptest1 1 1 1 1/16 12/1 200/34 5.88test2 2 1 1 2/256 10/5 476/272 1.75test3 1 1 1 1/256 5/2 44/83 0.51test4 5 5 1 0/1048576 43/29 2406/1190 2.02test5 2 2 2 0/256 164/7 5740/198 28.99test6 2 2 2 1/1048576 57/19 2784/918 3.03test7 3 3 2 1/4096 62/13 3242/678 4.78test8 3 3 3 0/4096 60/45 3916/2542 1.54test9 3 3 3 2/4096 185/41 11348/1584 7.16test10 4 4 3 3/65536 170/160 11274/10752 1.05The relative performan
es 
an be quite di�
ult to predi
t (for instan
e, fortest3, Algorithm K is about twi
e as fast as PI, whi
h is the only 
ase in



the ben
hmark), but in general, in nested loops Algorithm PI 
an outperformAlgorithm K by a huge fa
tor. Furthermore, for nested loops, Algorithm PI 
aneven be faster and more pre
ise than Algorithm K as in the 
ase of test10:int main() {int i,j,k;i = 0; //1k = 9; //2j = -100; //3while (i <= 100) //4 {i = i + 1; //5
while (j < 20) //6j = i+j; //7 //8k = 4; //9while (k <=3) //10k = k+1; //11 //12} //13 }Algorithm PI rea
hes the following �xed point, at 
ontrol point 13, in 13value iterations, i = [101, 101], j = [−100, 120] and k = [4, 9] whereas AlgorithmK only �nds i = [101, 101], j = [−100,+∞] and k = [4, 9] in 62 iterations. Thefa
t that Algorithm K does not rea
h the least �xed point 
an be explained asfollows. At 
ontrol point 4, Algorithm K �nds su

essively:

i4 = [0, 0]
j4 = [−100,−100]
k4 = [9, 9]

then:
i4 = [0, 1]
j4 = [−100, 20]
k4 = [4, 9]

up to:
i4 = [0, 9]
j4 = [−100, 28]
k4 = [4, 9]

then widening:
i4 = [0,+∞]
j4 = [−100,+∞]
k4 = [4, 9]From here on, there is no way, using further de
reasing iterations, to �nd that

j is �nite (and less than 20) inside the outer while loop, sin
e this depends on arelation between i and j that 
annot be simulated using this iteration strategy.5 Future workWe have shown in this paper that poli
y iteration algorithms 
an lead to fastand a

urate solvers for abstra
t semanti
 equations, su
h as the ones 
omingfrom 
lassi
al problems in stati
 analysis. We still have some heuristi
s in the
hoi
e of initial poli
ies we would like to test (using for example a dynami
 initial
hoi
e, dependent on the values of variables after the �rst �xpoint iterations),and the algorithmi
 
onsequen
es of Theorem 3 should be investigated.One of our aims is to generalize the poli
y iteration algorithm to more 
om-plex latti
es of properties, su
h as the one of o
tagons (see [29℄). We would likealso to apply this te
hnique to symboli
 latti
es (using te
hniques to transfernumeri
 latti
es, see for instan
e [35℄). Finally, we should insist on the fa
t thata poli
y iteration solver should ideally rely on better solvers than value iterationones, for ea
h of its iterations (i.e. for a 
hoi
e of a poli
y). The idea is that,
hoosing a poli
y simpli�es the set of equations to solve, and the 
lass of su
hsets of equations 
an be solved by better spe
i�
 solvers. In parti
ular, we wouldlike to experiment the poli
y iteration algorithms again on grammar G∪, so thatwe would be left with solving, at ea
h step of the algorithm, purely numeri-
al 
onstraints, at least in the 
ase of the interval abstra
tion. For numeri
al
onstraints, we 
ould then use very fast numeri
al solvers, for large 
lasses offun
tions (linear equations but not only).
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A Proof of Theorems 1,2 and 3This appendix will be omitted in the �nal version of the present manus
ript: wein
lude it for the 
onvenien
e of the referees.Proof of Theorem 1. By Tarski's theorem, the least �xed point of a monotoneself-map h of L is h− = inf{x ∈ L | h(x) ≤ x}. Therefore, the map h 7→ h−is monotone. It follows that f− ≤ infg∈G g
−. Sin
e G has a lower sele
tion, wehave f− = f(f−) = h(f−) for some h ∈ G. Therefore, h− ≤ f−, whi
h showsthat infg∈G g

− ≤ f−.Proof of Theorem 2. When the poli
y is improved at step k, we have f(xk) < xk,and we 
hoose gk+1 su
h that gk+1(x
k) = f(xk), so that gk+1(x

k) ≤ xk. ByTarski's �xed point theorem, g−k+1
= inf{x ∈ L | gk+1(x) ≤ x}. It follows that

g−k+1
≤ g−k . Moreover, g−k+1

6= g−k , be
ause g−k is not a �xed point of gk+1. Thus,the sequen
e g−1 , g−2 , . . . produ
ed by the algorithm is stri
tly de
reasing, whi
himplies that the number of iterations is bounded by the height of {g− | g ∈
G}.Proof of Theorem 3. Let u := xk = g−k , and assume by 
ontradi
tion that thereis a �nite �xed point v of f su
h that u ≤ v does not hold. Then, z =: u∧v < x.Sin
e f is monotone, f(z) ≤ f(u) ∧ f(v) = z. We dedu
e that the sequen
e
(fk(z))k≥1 is nonin
reasing. This sequen
e is bounded be
ause f has a �nite�xed point and f is nonexpansive. Thus, fk(z) 
onverges to a �nite �xed point,
w < u. De�ne the map φ : λ 7→ (λ + u) ∧ w. Observe that φ is 
ontinuous,that φ(λ) = w for λ ≤ λ1 := −‖u − w‖∞, and that φ(0) = u. The set of �xedpoints of a nonexpansive self-map of R

n is the image of R
n by a nonexpansiveretra
tion P (this holds more generally for nonexpansive maps having 
ertain
ompa
tness properties, see [3℄). Moreover, the retra
tion P may be 
hosen to bemonotone when f is monotone. (To see this, take for instan
e P = Q ◦R, where

R(x) = lim supk f
k(x) and Q(x) = limk f

k(x), and use the proof of Lemma 3of [16℄.) Let yλ := P (φ(λ)). Sin
e P is monotone, φ(λ) ≤ u implies that yλ ≤ u.Moreover, yλ1
= P (w) = w < u and y0 = P (u) = u. Consider now any map

g distin
t from gk. Sin
e gk is the only poli
y that 
an be sele
ted at point u,
g(u) 6= u, and sin
e g is 
ontinuous, we 
an �nd a neighborhood Vg of u su
h that
g(y) 6= y for all y ∈ Vg. Let V denotes the interse
tion of the neighborhoods Vg,for g ∈ G and g 6= gk. By 
ontinuity of λ 7→ yλ, we 
an �nd λ ∈ [λ1, 0[ su
h that
yλ ∈ V and yλ < u. By 
onstru
tion of V , we must have yλ = f(yλ) = gk(yλ).Sin
e yλ < u, we 
ontradi
t the fa
t that u is the minimal �xed point of gk.
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