
A poliy iteration algorithm for omputing �xedpoints in stati analysis of programsA. Costan†, S. Gaubert∗, E. Goubault+, M. Martel+, S. Putot+
1 † Polytehnia Buarest
2 ∗ INRIA Roquenourt

3
+ CEA SalayAbstrat. We present a new method for solving the �xed point equa-tions that appear in the stati analysis of programs by abstrat inter-pretation. We introdue and analyze a poliy iteration algorithm formonotone self-maps of omplete latties. We apply this algorithm to thepartiular ase of latties arising in the interval abstration of valuesof variables. We demonstrate the improvements in terms of speed andpreision over existing tehniques based on Kleene iteration, inludingtraditional widening/narrowing aeleration meanisms.1 Introdution and related workOne of the important goals of stati analysis by abstrat interpretation (seeCousot & Cousot [11℄) is the determination of invariants of programs. They aregenerally desribed by over approximation (abstration) of the sets of valuesthat program variables an take, at eah ontrol point of the program. And theyare obtained by solving a system of (abstrat) semanti equations, derived fromthe program to analyze and from the domain of interpretation, or abstration,i.e. by solving a given �xed point equation in an order-theoreti struture.Among the lassial abstrations, there are the non-relational ones, suh asthe domain of intervals [11℄ (invariants are of the form vi ∈ [c1, c2]), of onstantpropagation (vi = c), of ongruenes [18℄ (vi ∈ aZ + b). Among the relationalones we an mention polyedra [31℄ (α1v1 + · · ·+αnvn ≤ c), linear equalities [26℄(α1v1 + · · ·+αnvn = c), linear equalities modulo [19℄ (α1v1 + · · ·+αnvn ≡ a) ormore reently the otagon domain [29℄ (vi − vj ≤ c).All these domains are (order-theoreti) latties, for whih we ould thinkof designing spei� �xed point equation solvers instead of using the lassial,and yet not very e�ient value iteration algorithms, known as Kleene's �xedpoint iteration. A lassial way to improve these omputations is to use widen-ing/narrowing operators [12℄. There exists onrete widening/narrowing oper-ators for all lassial domains of interpretation suh as the one we mentionedabove. They improve the rapidity of �nding an over-approximated invariant atthe expense of auray sometimes; i.e. they reah a �xed point, but not alwaysthe least �xed point of the semanti equations (we review some elements of thismethod in Setion 2, and give examples in the ase of the interval lattie).

In this paper, we introdue a new algorithm, based on poliy iteration andnot value iteration, that orretly and e�iently solves this problem (Setion 3).It shows good performanes in general with respet to various typial programs,see Setion 4.4. We should add that this work started from the di�ulty to �ndgood widening and narrowing operators for domains used for haraterizing thepreision of �oating-point omputations, used by some of the authors in [17℄.Poliy iteration was introdued by Howard [23℄ to solve stohasti ontrolproblems with �nite state and ation spae. In this ontext, a poliy is a feed-bak strategy (whih assigns to every state an ation). The lassial poliy it-eration generalizes Newton's algorithm to the equation x = f(x), where f ismonotone, non-di�erentiable, and onvex. The onvergene proof is based on thedisrete version of the maximum priniple for harmoni funtions. This methodis experimentally e�ient, although its omplexity is still not well understoodtheoretially. We refer the reader to the book of Puterman [32℄ for bakground.It is natural to ask whether poliy iteration an be extended to the aseof zero-sum games: at eah iteration, one �xes the strategy of one player, andsolves a non-linear (optimal ontrol problem) instead of a linear problem. Thisidea goes bak to Ho�man and Karp [22℄. The entral di�ulty in the ase ofgames is to obtain the onvergene, beause the lassial (linear) maximum prin-iple annot be applied any more. For this reason, the algorithm of [22℄ requirespositivity onditions on transition probabilities, whih do not allow to handlethe ase of deterministi games. In appliations to stati analysis, however, eventhe simplest �xed point problems lead to deterministi game problems. A poliyiteration algorithm for deterministi games with ergodi reward has been givenby Cohet-Terrasson, Gaubert, and Gunawardena [7,15℄: the onvergene proofrelies on max-plus spetral theory, whih provides nonlinear analogues of resultsof potential theory.In the present paper, we present a new poliy iteration algorithm, whihapplies to monotone self-maps of a omplete lattie, de�ned by the in�mum of aertain family satisfying a seletion priniple. Thus, poliy iteration is not limitedto �nding �xed point that are numerial vetors or funtions, �xed points an beelements of an abstrat lattie. This new generality allows us to handle lattieswhih are useful in stati analysis. For the �xed point problem, the onvergeneanalysis is somehow simpler than in the ergodi ase of [7,15℄: we show thatthe onvergene is guaranteed if we ompute at eah step the least �xed pointorresponding to the urrent poliy. The main idea of the proof is that the mapwhih assigns to a monotone map its least �xed point is in some weak sense amorphism with respet to the inf-law, see Theorem 1. This shows that poliyiteration an be used to ompute the minimal �xed points, at least for a sublassof maps (Theorem 3 and Remark 5).Other �xed point aeleration tehniques have been proposed in the litera-ture. There are mainly three types of �xed point aeleration tehniques, as usedin stati analysis. The �rst one relies on spei� information about the stru-ture of the program under analysis. For instane, one an de�ne re�ned iterationstrategies for loop nests [2℄, or for interproedural analysis [1℄. These methods

are ompletely orthogonal to the method we are introduing here, whih doesnot use suh strutural properties. However, they might be ombined with poliyiteration, for e�ient interproedural analysis for instane. This is beyond thesope of this paper.Another type of algorithm is based on the partiular struture of the abstratdomain. For instane, in model-heking, for reahability analysis, partiular it-eration strategies have been designed, so that to keep the size of the state spaerepresentation small (using BDDs, or in stati analyzers by abstrat interpreta-tion, using binary deision graphs, see [28℄), by a ombination of breadth-�rstand depth-�rst strategies, as in [34℄. For boolean equations, some authors havedesigned spei� representations whih allow for relatively fast least �xed pointalgorithms. For instane, [27℄ uses Be�ki-Leszzyloiwski theorem. In stritnessanalysis, representation of boolean funtions by �frontiers� has been widely used,see for instane [24℄ and [5℄. Our method here is general, as hinted in Setion 3.It an be applied to a variety of abstrat domains, provided that we an �nd a�seletion priniple�. This is exempli�ed here on the domain of intervals, but weare on�dent this an be equally applied to otagons and polyedra.Last but not least, there are some general purpose algorithms, suh as generalwidening/narrowing tehniques, [12℄, with whih we ompare our poliy iterationtehnique. There are also inremental or �di�erential� omputations (in order notto ompute again the funtional on eah partial omputations) [25℄, [14℄. In fat,this is muh like the stati partitioning tehnique some of the authors use in [33℄.Related algorithms an be found in [13℄, [30℄ and [4℄. We have not been able toompare these tehniques with our algorithm yet.The results of the present paper were announed in [10℄.2 Kleene's iteration sequene, widenings and narrowingsIn order to ompare the poliy iteration algorithm with existing methods, webrie�y reall in this setion the lassial method based on Kleene's �xed pointiteration, with widening and narrowing re�nements (see [12℄).Let (L,≤) be a omplete lattie. We write ⊥ for its lowest element, ⊤ for itsgreatest element, ∪ and ∩ for the meet and join operations, respetively. We saythat a self-map f of a omplete lattie (L,≤) is monotone if x ≤ y ⇒ f(x) ≤
f(y).The least �xed point of a monotone f an be obtained by omputing thesequene: x0 = ⊥, xn+1 = f(xn) (n ≥ 0), whih is suh that x0 ≤ x1 ≤ . . .If the sequene beomes stationary, i.e., if xm = xm+1 for some m, the limit
xm is the least �xed point of f . Of ourse, this proedure may be ine�ient,and it need not even terminate in the ase of latties of in�nite height, suh asthe simple interval lattie (that we use for abstrations in Setion 4). For thisomputation to beome tratable, widening and narrowing operators have beenintrodued, we refer the reader to [12℄ for a good survey. As we will only showexamples on the interval lattie, we will not reall the general theory. Wideningoperators are binary operators ∇ on L whih ensure that any �nite Kleene

iteration x0 = ⊥, x1 = f(x0), . . . , xk+1 = f(xk), followed by an iteration ofthe form xn+1 = xn∇f(xn), for n > k, yields an ultimately stationary sequene,whose limit xm is a post �xed point of f , i.e. a point x suh that x ≥ f(x).The index k is a parameter of the least �xed point solver. Inreasing k inreasesthe preision of the solver, at the expense of time. In the sequel, we hoose
k = 10. Narrowing operators are binary operators ∆ on L whih ensure that anysequene xn+1 = xn∆f(xn), for n > m, initialized with the above post �xedpoint xm, is eventually stationary. Its limit is required to be a �xed point of fbut not neessarily the least one.void main() {int x=0; // 1while (x<100) { // 2x=x+1; // 3} // 4} x1 = [0, 0]

x2 =] −∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)Fig. 1. A simple integer loop and its semanti equationsConsider �rst the program at the left of Figure 1. The orresponding seman-ti equations in the lattie of intervals are given at the right of the �gure. Theintervals x1, . . . , x4 orrespond to the ontrol points 1, . . . , 4 indiated as om-ments in the C ode. We look for a �xed point of the funtion f given by theright hand side of these semanti equations. The standard Kleene iteration se-quene is eventually onstant after 100 iterations, reahing the least �xed point.This �xed point an be obtained in a faster way by using the lassial (see [12℄again) widening and narrowing operators:

[a, b]∇[c, d] = [e, f] with e =

{

a if a ≤ c
−∞ otherwise and f =

{

b if d ≤ b
∞ otherwise,

[a, b]∆[c, d] = [e, f] with e =

{

c if a = −∞
a otherwise and f =

{

d if b = ∞
b otherwise.The iteration sequene using widenings and narrowings takes 12 iterations be-ause we hose k = 10, and it reahes the least �xed point of f :

x1
2 = [0, 0]
x1

3 = [1, 1]
x1

4 = ⊥
x2

2 = [0, 1]
x2

3 = [1, 2]
x2

4 = ⊥...
x9

2 = [0, 8]
x9

3 = [1, 9]
x9

4 = ⊥(widening)
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[

(narrowing)
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]

3 Poliy iteration algorithm in omplete latties3.1 Lower seletionTo ompute a �xed point of a self-map f of a lattie L, we shall assume that fis e�etively given as an in�mum of a �nite set G of �simpler� maps. Here, andin the sequel, the in�mum refers to the pointwise ordering of maps. We wish toobtain a �xed point of f from the �xed points of the maps of G. To this end, thefollowing general notion will be useful.De�nition 1 (Lower seletion). We say that a set G of maps from a set Xto a lattie L admits a lower seletion if for all x ∈ X, there exists a map g ∈ Gsuh that g(x) ≤ h(x), for all h ∈ G.Setting f = inf G, we see that G has a lower seletion if and only if for all
x ∈ X , we have f(x) = g(x) for some g ∈ G. We next illustrate this de�nition.Example 1. Take L = R, and onsider the self-map of L, f(x) =

∧

1≤i≤m(ai +
x) ∨ bi , where ai, bi ∈ R. Up to a trivial modi�ation, this is a speial ase ofmin-max funtion [20,7,21℄. The set G onsisting of the m maps x 7→ (ai +x)∨biadmits a lower seletion. We represent on Figure 2 the ase where m = 5,
b1 = −5, a1 = 2.5, b2 = −3, a2 = 0.5, b3 = 1, a3 = −3, b4 = 1.5, a4 = −4, b5 =
2.5, a5 = −4.5. The graph of the map f is represented in bold.3.2 Universal poliy iteration algorithmIn many appliations, and speially in stati analysis of programs, the smallest�xed point is of interest. We shall denote by f− the smallest �xed point of amonotone self-map f of a omplete lattie L, whose existene is guaranteed byTarski's �xed point theorem. We �rst state a simple theoretial result whihbrings to light one of the ingredients of poliy iteration.Theorem 1. Let G denote a family of monotone self-maps of a omplete lattie
L with a lower seletion, and let f = inf G. Then f− = infg∈G g

− .The proof of Theorem 1 and of the theorems that follow is in the appendix.Theorem 1 is related to a result of [9℄ onerning monotone self-maps of R
n thatare nonexpansive in the sup-norm (see also the last hapter of [6℄).We now state a very general poliy iteration algorithm. The input of thealgorithm onsists of a �nite set G of monotone self-maps of a lattie L with alower seletion. When the algorithm terminates, its output is a �xed point of

f = inf G.Algorithm (PI: Poliy iteration in latties).1. Initialization. Set k = 1 and selet any map g1 ∈ G.2. Value determination. Compute a �xed point xk of gk.3. Compute f(xk).4. If f(xk) = xk, return xk.

5. Poliy improvement. Take gk+1 suh that f(xk) = gk+1(x
k). Inrement kand goto Step 2.We next show that the algorithm does terminate when at eah step, thesmallest �xed-point of gk, xk = g−k is seleted. We all height of a subset X ⊂ Lthe maximal ardinality of a hain of elements of X .Theorem 2. Assume that L is a omplete lattie and that all the maps of G aremonotone. If at eah step k, the smallest �xed-point xk = g−k of gk is seleted,then the number of iterations of Algorithm PI is bounded by the height of {g− |

g ∈ G}, and a fortiori, by the ardinality of G.Remark 1. Any xk ∈ L omputed by Algorithm PI is a post �xed point: f(xk) ≤
xk. In stati analysis of programs, suh a xk yields a valid, although suboptimal,information.Example 2. We �rst give a simple illustration of the algorithm, by omputingthe smallest �xed point of the map f of Example 1. Let us take the �rst poliy
g5(x) = b5 ∨ (a5 + x) = 2.5 ∨ (−4.5 + x), whih has two �xed points, +∞and 2.5. We hoose the smallest one, x1 = 2.5. We have f(x1) = g2(x

1) where
g2(x) = b3∨(a3 +x) = 1∨(−3+x). We take for x2 the smallest �xed point of g2,
x2 = 1. Then, the algorithm stops sine f(x2) = x2. This exeution is illustratedin Figure 2. By omparison, the Kleene iteration (right) initialized at the point
−∞ takes 11 iterations to reah the �xed point. Observe that by modifying thevalues of a2 and b2, one may redue arbitrarily the distane between the graphof the map b2 ∨ (a2 + x) and the diagonal, so that the number of iterations ofthe Kleene iteration algorithm may be arbitrarily large, whereas the number ofiterations of Algorithm PI always remains bounded by m.
g2

g1

x2 x1 x

y

x2 x3 x11

Fig. 2. Poliy iteration (left) versus Kleene iteration (right)

Remark 2. A ruial di�ulty in the appliation of the algorithm to stati anal-ysis is that even when the smallest �xed points xk = g−k are always hosen,the poliy iteration algorithm need not return the smallest �xed point of f . Forinstane, in Example 2, if one takes the initial poliy x 7→ a1 ∨ (b1 + x) or
x 7→ a2 ∨ (b2 + x), we get x1 = ∞, and the algorithm stops with a �xed pointof f , ∞, whih is non minimal. This shows the importane of the initial poliyand of the update rule for poliies.Although Algorithm PI may terminate with a nonminimal �xed point, it isoften possible to hek that the output of the algorithm is atually the smallest�xed point thanks to the following kind of results. We onsider the speial sit-uation where f is a monotone self-map of R

n, with a restrition R
n → R

n thatis nonexpansive for the sup-norm, meaning that ‖f(x) − f(y)‖∞ ≤ ‖x − y‖∞,for all x, y ∈ R
n. We shall say that suh maps f have Property N. (For instane,the maps in Example 1 all have Property N.) The following theorem identi�essituations where the uniqueness of the terminal poliy guarantees that the �xedpoint returned by Algorithm PI is the smallest one.Theorem 3. Assume that G is a �nite set of monotone self-maps of R

n that allhave Property N, that G has a lower seletion, and let f = inf G. If AlgorithmPI terminates with a �nite �xed point xk = g−k suh that there is only one g ∈ Gsuh that f(xk) = g(xk), then, xk is the smallest �nite �xed point of f .Remark 3. The nonexpansiveness assumption annot be dispensed with in The-orem 3. Consider the self-map of R, f(x) = 0 ∧ (1 + 2x), and take the set Gonsisting of the maps x 7→ 0 and x 7→ 1 + 2x. Algorithm PI initialized with themap g1 = 0 stops immediately with the �xed point x1 = 0, and g1 is the onlymap g in G suh that g(0) = f(0), but x1 is a nonminimal �nite �xed point of
f , sine f(−1) = −1.Remark 4. Of ourse, when xk is the smallest �nite �xed point of f , there mayexist a smaller �xed point, with some oordinates equal to −∞, so Theorem 3redues to some extent the searh of the minimal �xed point to questions on-erning the pattern (set of oordinates distint from −∞), whih are sometimeseasier (the ase where xi = −∞ represents situations in stati analysis where afragment of the program is never exeuted).Remark 5. When the poliy g suh that f(xk) = g(xk) is not unique, we anhek whether xk is the smallest �nite �xed point of f in the following way.We san the set of maps g ∈ G suh that g(xk) = f(xk), until g− < x or allthese maps g have been sanned. In the former ase, an improved post �xedpoint of f has been found, and by nonexpansiveness of f , it an be shown thatthere is a smaller �nite �xed point of f (whih an be omputed by restartingthe poliy iteration algorithm with the initial map g1 := g). In the latter ase,a small variation of the proof of Theorem 3 shows that x is the smallest �nite�xed point of f (if all the maps in G have Property N).

Algorithm PI requires to ompute at every step a �xed point xk of the map
gk, and if possible, the minimal one, g−k . An obvious way to do so is to applyKleene iteration to the map gk. Although this may seem surprising at the �rstsight, this implementation may preserve the performane of the algorithm. Infat, it is optimal in Example 2, sine Kleene iteration onverges in only one stepfor every map gk. In many ases, however, some preise information on the map
gk is available, and poliy iteration will bene�t from fast algorithms to ompute
xk. For instane, the lassial poliy iteration algorithm of Howard, onernsthe speial ase where the maps gk are a�ne. In that ase, the �xed point xk isobtained by solving a linear system. A non lassial situation, where the maps gkare dynami programming operators of deterministi optimal ontrol problems,i.e., max-plus linear maps, is solved in [8,15℄.4 Appliation to the lattie of intervals in stati analysisIn the sequel, we shall onsider the set I(R) of losed intervals of R. This set,ordered by inlusion, is a omplete lattie. It will be onvenient to represent aninterval I ∈ I(R) as I = [−a, b] := {x ∈ R | −a ≤ x ≤ b} with a, b ∈ R ∪ {±∞}.We hanged the sign in order to get a monotone map ψ : I 7→ (a = − inf I, b =
sup I), from I(R) → R

2 . Observe that ψ is a right inverse of ı : (a, b) 7→ [−a, b].By extending ψ and ı to produts of spaes, entrywise, we see that any monotoneself-map f of I(Rn) indues a monotone self-map of (R2)n, ψ ◦ f ◦ ı, that we allthe lift of f . It is useful to keep in mind that the minimal �xed point of f is theimage by ı of the minimal �xed point of its lift, although our algorithms applypreferably to the map f rather than to its lift.4.1 The interval abstrationWe onsider a toy imperative language with the following instrutions:1. loops: while (ondition) instrution;2. onditionals: if (ondition) instrution [else instrution℄;3. assignment: operand = expression; We assume here that the arithmetiexpressions are built on a given set of variables (belonging to the set V ar),and use operators +, -, * and /, together with numerial onstants (onlyintegers here for more simpliity).There is a lassial [12℄ Galois onnetion relating the powerset of values ofvariables to the produt of intervals (one for eah variable). This is what givesthe orretion of the lassial [12℄ abstrat semantis [[.]] , with respet to thestandard olleting semantis of this language. [[.]] is given by a set of equationsover the variables x1, . . . , xn of the program that we will show on some examples.Eah variable xi is interpreted as an interval [−x−i ;x+

i].

4.2 Seletion property for a family of �nitely generated funtionson intervalsWe now de�ne a lass of monotone self-maps of I(R), whih is preisely the lassof funtions arising from the semanti equations of the previous setion. Thislass may be thought of as an extension of the min-max funtions introduedin [20℄. For an interval I = [−a, b], we set ↑ I def
= [−a,∞[and ↓ I

def
=] −∞, b].De�nition 2. A �nitely generated funtion of intervals, (I(R))n → (I(R))p,is a map f whose oordinates fj : x = (x1, . . . , xn) 7→ fj(x) are terms of thefollowing grammar G:

CSTE ::= [−a, b] V AR ::= xi

EXPR ::= CSTE | V AR | EXPR+ EXPR |
EXPR ∗ EXPR | EXPR/EXPR | EXPR− EXPR

TEST ::= ↑ EXPR ∩EXPR | ↓ EXPR ∩ EXPR | CSTE ∩ EXPR
G ::= EXPR | TEST | G ∪Gwhere i an take arbitrary values in {1, . . . , n}, and a, b an take arbitraryvalues in R.We write F for the set of suh funtions. The variables x1, . . . , xn orrespondto the di�erent variables in V ar. We set x−i = − inf xi, x+

i = supxi, so that
xi = [−x−i , x

+

i]. Non-terminals CSTE, V AR, EXPR and TEST do orrespondto the semantis of onstants, variables, arithmeti expressions, and (simple)tests. For instane, the �xed point equation at the right of Figure 1 is of theform x = f(x) where f is a �nitely generated funtion of intervals.In order to write maps of F as in�ma of simpler maps, when I = [−a, b]and J = [−c, d], we also de�ne l(I, J) = I (l is for �left�), r(I, J) = J (r for�right�), m(I, J) = [−a, d] and mop(I, J) = [−c, b] (m is for �merge�). Thesefour operators will de�ne the four possible poliies on intervals, as shown inProposition 1 below.Let G∪ be the grammar, similar to G exept that we annot produe termswith ∩.
G∪ ::= EXPR | ↑ EXPR | ↓ EXPR | G∪ ∪G∪ |

l(G∪, G∪) | r(G∪, G∪) | m(G∪, G∪) | mop(G∪, G∪)We write F∪ for the set of funtions de�ned by this grammar. Terms l(G,G),
r(G,G),m(G,G) andmop(G,G) represent respetively the left, right,m andmoppoliies.The intersetion of two intervals, and hene, of two terms of the grammar,interpreted in the obvious manner as intervals, is given by the following formula:

G1 ∩G2 = l(G1, G2) ∩ r(G1, G2) ∩m(G1, G2) ∩m
op(G1, G2) (1)To a �nitely generated funtion of intervals f ∈ F , we assoiate a family Π(f)of funtions of F∪ obtained in the following manner: we replae eah ourreneof a term G1 ∩G2 by l(G1, G2), r(G1, G2), m(G1, G2) or mop(G1, G2). We allsuh a hoie a poliy. Using Equation (1), we get:

Proposition 1. If f is a �nitely generated funtion of intervals, the set of poli-ies Π(f) admits a lower seletion. In partiular, f = inf Π(f).4.3 Implementation priniples of the poliy iteration algorithmA simple stati analyzer has been implemented in C++. It onsists of a parserfor a simple imperative language (a very simpli�ed C), a generator of abstratsemanti equations using the interval abstration, and the orresponding solver,using the poliy iteration algorithm desribed in Setion 3.A poliy is a table that assoiates to eah intersetion node in the semantiabstration, a value modeling whih poliy is hosen among l, r, m or mop, inEquation (1). There is a number of heuristis that one might hoose onerningthe initial poliy, whih should be a guess of the value of G1∩G2 in Equation (1).The hoie of the initial poliy may be ruial, sine some hoies of the initialpoliy may lead eventually to a �xed point whih is not minimal. (In suh ases,Remark 5 should be used: it yields an heuristis to improve the �xed point, whihan be justi�ed rigorously by Theorem 3, when the lift of f has Property N.) Theurrent prototype makes a sensible hoie: when a term G1 ∩G2 is enountered,if a �nite onstant bound appears in G1 or G2, this bound is seleted. Moreover,if a +∞ upper bound or −∞ lower bound appears in G1 or G2, then, this boundis not seleted, unless no other hoie is available (in other words, hoies thatgive no information are avoided). When the appliations of these rules is notenough to determine the initial poliy, we hoose the bound arising from theleft hand side term. Thus, when G1 = [−a,∞[, the initial poliy for G1 ∩ G2 is
m(G1, G2), whih keeps the lower bound of G1 and the upper bound of G2.The way the equations are onstruted, when the terms G1 ∩G2 orrespondto a test on a variable (and thus no onstant hoie is available for at least onebound), this initial hoie means hoosing the onstraint on the urrent variablebrought on by this test, rather than the equation expressing the dependene ofurrent state of the variable to the other states. These hoies often favor as �rstguess an easily omputable system of equations.We then ompute the �xed point of the redued equations, using if possiblespei� algorithms. In partiular, when the lift of f is a min-max funtion,shortest path type algorithms may be used, in the spirit of [7,15℄. Linear oronvex programming might also be used in some ases. For the time being, weonly use a lassial Kleene like value iteration algorithm, disussed in Setion4.4.We then proeed to the improvement of the poliy, as explained in Setion3. In short, we hange the poliy at eah node for whih a �xed point of theomplete system of equations is not reahed, and ompute the �xed point of thenew equations, until we �nd a �xed point of the omplete system of equations.Even when this �xpoint is reahed, using Remark 5 an allow to get a smaller�xpoint in some ases, when the urrent �xpoint is obtained for several poliies.In the following examples, we ount the number of poliies the algorithmhad to onsider in order to reah the least �xed point, and the ost of solving

the remaining equations, without intersetion. But the overall speedup of poliyiteration algorithms ould be improved by using spei� solvers.4.4 Examples and omparison with Kleene's algorithmIn this setion, we disuss a few typial examples, that are experimented usingour prototype implementation. We ompare the poliy iteration algorithm withKleene's iteration sequene with widenings and narrowings (the very lassialone of [12℄), alled Algorithm K here. For both algorithms, we ompare theauray of the results, and the number of �xed point iterations.We did not experiment spei� algorithms for solving equations in G∪ (mean-ing, without intersetions), as we onsider this to be outside the sope of thispaper, so we hose to use an iterative solver (algorithm K') for eah poliy. Algo-rithm K' is exatly the same solver as algorithm K, but used on a smaller lass offuntions, for one poliy. So Algorithm PI will run Algorithm K' at every valuedetermination step (Step 2). Of ourse, using Algorithm K' instead of a spei�solver is an heuristis, sine the onvergene result, Theorem 2, requires that atevery value determination step, the smallest �xed point is omputed. We deidedto widen intervals, both in Algorithms K and K', only after ten standard Kleeneiterations. This hoie is onventional, and in most examples below, one ouldargue that an analyzer would have found the right result with only two Kleeneiterations. In this ase, the speedup obtained by the poliy iteration algorithmwould be far less; but it should be argued that in most stati analyzers, therewould be a ertain unrolling before trying to widen the result. In the sequel wewill ount also the number of �elementary operations� performed by algorithmsK and PI. We ount one per elementary operations (+, - et.), min and max(used when taking unions and intersetions), tests (≤, ≥, =) used for hekingwhether we reah loal �xed points during iterations of algorithms K and K'.A simple typial (integer) loop is shown on Figure 1, together with the equa-tions generated by the analyzer. The original poliy is mop in equation 2 inFigure 1 (by equation i, we mean the equation whih determines the state ofvariables at ontrol point i, here x2), and m in the equation determining x4,This is atually the right poliy on the spot, and we �nd in one iteration (and34 elementary operations), the orret result (the least �xed point). This is tobe ompared with the 12 iterations of Algorithm K (and 200 elementary oper-ations), in Setion 2. In the sequel, we put upper indies to indiate at whihiteration the abstrat value of a variable is shown. Lower indies are reserved asbefore to the ontrol point number.The analysis of the program below leads to an atual poliy improvement:void main(){int i,j;i=1; // 1j=10; // 2 while (j >= i) { // 3i = i+2; // 4j = -1+j; // 5} // 6 }

Semanti equations at ontrol points 3 and 6 are
(i3, j3) = (] −∞,max(j2, j5)] ∩ (i2 ∪ i5), [min(i2, i5),+∞[∩(j2 ∪ j5))

(i6, j6) = ([min(j2, j5) + 1,+∞[∩(i2 ∪ i5),] −∞,max(i2, i5) − 1] ∩ (j2 ∪ j5))The algorithm starts with poliy mop for variable i in equation 3, m forvariable j in equation 3, m for variable i equation 6 and mop in equation 6,variable j. The �rst iteration using Algorithm K' with this poliy, �nds the value
(i16, j

1
6) = ([1, 12], [0, 11]). But the value for variable j given by equation 6, givenusing the previous result, is [0, 10] instead of [0, 11], meaning that the poliy onequation 6 for j should be improved. The minimum (0) for j at equation 6 isreahed as the minimum of the right argument of ∩. The maximum (10) for jat equation 6 is reahed as the maximum of the right argument of ∩. Hene thenew poliy one has to hoose for variable j in equation 6 is r. In one iterationof Algorithm K' for this poliy, one �nds the least �xed point of the system ofsemanti equations, whih is at line 6, (i26, j

2
6) = ([1, 12], [0, 10]). Unfortunately,this �xed point is reahed by several poliies, and Remark 5 is used, leading toanother poliy iteration. This in fat does not improve the result sine the urrent�xed point is the smallest one. Algorithm PI uses 2 poliy iterations, 5 valuesiterations and 272 elementary operations. Algorithm K takes ten iterations (and476 elementary operations) to reah the same result.Some benhmarks In the following table, we desribe preliminary results thatwe obtained using Algorithms K and PI on simple C programs, onsisting essen-tially of loop nests. We indiate for eah program (available on http://www.di.-ens.fr/�goubault/Politiques) the number of variables, the number of loops, themaximal depth of loop nests, the number of poliy iterations slash the totalnumber of potential poliies, value iterations and elementary operations for eahalgorithm (when this applies). The last olumn indiates the speedup ratio of Al-gorithm PI with respet to K, measured as the number of elementary operationsK needs over the number that PI needs.Program vars loops depth pols./tot. iters.K/PI ops.K/PI speeduptest1 1 1 1 1/16 12/1 200/34 5.88test2 2 1 1 2/256 10/5 476/272 1.75test3 1 1 1 1/256 5/2 44/83 0.51test4 5 5 1 0/1048576 43/29 2406/1190 2.02test5 2 2 2 0/256 164/7 5740/198 28.99test6 2 2 2 1/1048576 57/19 2784/918 3.03test7 3 3 2 1/4096 62/13 3242/678 4.78test8 3 3 3 0/4096 60/45 3916/2542 1.54test9 3 3 3 2/4096 185/41 11348/1584 7.16test10 4 4 3 3/65536 170/160 11274/10752 1.05The relative performanes an be quite di�ult to predit (for instane, fortest3, Algorithm K is about twie as fast as PI, whih is the only ase in

the benhmark), but in general, in nested loops Algorithm PI an outperformAlgorithm K by a huge fator. Furthermore, for nested loops, Algorithm PI aneven be faster and more preise than Algorithm K as in the ase of test10:int main() {int i,j,k;i = 0; //1k = 9; //2j = -100; //3while (i <= 100) //4 {i = i + 1; //5
while (j < 20) //6j = i+j; //7 //8k = 4; //9while (k <=3) //10k = k+1; //11 //12} //13 }Algorithm PI reahes the following �xed point, at ontrol point 13, in 13value iterations, i = [101, 101], j = [−100, 120] and k = [4, 9] whereas AlgorithmK only �nds i = [101, 101], j = [−100,+∞] and k = [4, 9] in 62 iterations. Thefat that Algorithm K does not reah the least �xed point an be explained asfollows. At ontrol point 4, Algorithm K �nds suessively:

i4 = [0, 0]
j4 = [−100,−100]
k4 = [9, 9]

then:
i4 = [0, 1]
j4 = [−100, 20]
k4 = [4, 9]

up to:
i4 = [0, 9]
j4 = [−100, 28]
k4 = [4, 9]

then widening:
i4 = [0,+∞]
j4 = [−100,+∞]
k4 = [4, 9]From here on, there is no way, using further dereasing iterations, to �nd that

j is �nite (and less than 20) inside the outer while loop, sine this depends on arelation between i and j that annot be simulated using this iteration strategy.5 Future workWe have shown in this paper that poliy iteration algorithms an lead to fastand aurate solvers for abstrat semanti equations, suh as the ones omingfrom lassial problems in stati analysis. We still have some heuristis in thehoie of initial poliies we would like to test (using for example a dynami initialhoie, dependent on the values of variables after the �rst �xpoint iterations),and the algorithmi onsequenes of Theorem 3 should be investigated.One of our aims is to generalize the poliy iteration algorithm to more om-plex latties of properties, suh as the one of otagons (see [29℄). We would likealso to apply this tehnique to symboli latties (using tehniques to transfernumeri latties, see for instane [35℄). Finally, we should insist on the fat thata poliy iteration solver should ideally rely on better solvers than value iterationones, for eah of its iterations (i.e. for a hoie of a poliy). The idea is that,hoosing a poliy simpli�es the set of equations to solve, and the lass of suhsets of equations an be solved by better spei� solvers. In partiular, we wouldlike to experiment the poliy iteration algorithms again on grammar G∪, so thatwe would be left with solving, at eah step of the algorithm, purely numeri-al onstraints, at least in the ase of the interval abstration. For numerialonstraints, we ould then use very fast numerial solvers, for large lasses offuntions (linear equations but not only).

Referenes1. F. Bourdonle. Abstrat interpretation by dynami partitioning. Journal of Fun-tional Programming, 2(4):407�435, 1992.2. F. Bourdonle. E�ient haoti iteration strategies with widenings. Number 735,pages 128�141. Leture Notes in Computer Siene, Springer-Verlag, 1993.3. Ronald E. Bruk, Jr. Properties of �xed-point sets of nonexpansive mappings inBanah spaes. Trans. Amer. Math. So., 179:251�262, 1973.4. Baudouin Le Charlier and Pasal Van Hentenryk. A universal top-down �xpointalgorithm. Tehnial Report CS-92-25, Department of Computer Siene, BrownUniversity, May 1992. Mon, 11 Sep 100 15:20:30 GMT.5. Chris Clak and Simon L. Peyton Jones. Stritness Analysis � A Pratial Ap-proah. In Jean-Pierre Jouannaud, editor, Funtional Programming Languages andComputer Arhiteture, volume 201 of Leture Notes in Computer Siene, pages35�49, Nany, Frane, September 16�19, 1985. Springer, Berlin.6. J. Cohet-Terrasson. Algorithmes d'itération sur les politiques pour les appliationsmonotones ontratantes. Thèse, spéialité mathématiques et automatique, Éoledes Mines, De. 2001.7. J. Cohet-Terrasson, S. Gaubert, and J. Gunawardena. A onstrutive �xed pointtheorem for min-max funtions. Dynamis and Stability of Systems, 14(4):407�433,1999.8. J. Cohet-Terrasson, S. Gaubert, and J. Gunawardena. A onstrutive �xed pointtheorem for min-max funtions. Dynamis and Stability of Systems, 14(4):407�433,1999.9. J. Cohet-Terrasson, S. Gaubert, and J. Gunawardena. Poliy iteration algorithmsfor monotone nonexpansive maps. Draft, 2001.10. A. Costan. Analyse statique et itération sur les politiques. Tehnial report, CEASalay, report number DTSI/SLA/03-575/AC, and Eole Polytehnique, August2003.11. P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattie model for statianalysis of programs by onstrution of approximations of �xed points. Priniplesof Programming Languages 4, pages 238�252, 1977.12. P. Cousot and R. Cousot. Comparison of the Galois onnetion and widen-ing/narrowing approahes to abstrat interpretation. JTASPEFL '91, Bordeaux.BIGRE, 74:107�110, Otober 1991.13. D. Damian. Time stamps for �xed-point approximation. ENTCS, 45, 2001.14. C. Feht and H. Seidl. Propagating di�erenes: An e�ient new �xpoint algorithmfor distributive onstraint systems. pages 90�104, 1998.15. S. Gaubert and J. Gunawardena. The duality theorem for min-max funtions. C.R. Aad. Si. Paris., 326, Série I:43�48, 1998.16. S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homogeneous,monotone funtions. Trans. of AMS, 356(12):4931�4950, 2004.17. E. Goubault, M. Martel, and S. Putot. Asserting the preision of �oating-pointomputations: A simple abstrat interpreter. Leture Notes in Computer Siene,2305, 2002.18. P. Granger. Analyse de ongruenes. PhD thesis, Eole Polytehnique, 1990.19. P. Granger. Stati analysis of linear ongruene equalities among variables of aprogram. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT '91:Proeedings of the International Joint Conferene on Theory and Pratie of Soft-ware Development, Volume 1: Colloquium on Trees in Algebra and Programming

(CAAP'91), volume 493 of Leture Notes in Computer Siene, pages 169�192.Springer-Verlag, 1991.20. J. Gunawardena. Min-max funtions. Disrete Event Dynami Systems, 4:377�406,1994.21. J. Gunawardena. From max-plus algebra to nonexpansive maps: a nonlinear theoryfor disrete event systems. Theoretial Computer Siene, 293:141�167, 2003.22. A. J. Ho�man and R. M. Karp. On nonterminating stohasti games. ManagementSi., 12:359�370, 1966.23. R. Howard. Dynami Programming and Markov Proesses. Wiley, 1960.24. L. S. Hunt. Abstrat Interpretation of Funtional Languages: From Theory toPratie. Ph.D. thesis, Department of Computing, Imperial College, London, UK,1991.25. Kwangkeun Yi Hyunjun Eo. An improved di�erential �xpoint iteration methodfor program analysis. November 2002.26. M. Karr. A�ne relationships between variables of a program. Ata Informatia,(6):133�151, 1976.27. Viktor Kunak and K. Rustan M. Leino. On omputing the �xpoint of a setof boolean equations. Tehnial Report MSR-TR-2003-08, Mirosoft Researh(MSR), Deember 2003.28. Laurent Mauborgne. Binary deision graphs. In A. Cortesi and G. Filé, editors,Stati Analyis Symposium (SAS'99), volume 1694 of Leture Notes in ComputerSiene, pages 101�116. Springer-Verlag, 1999.29. A. Miné. The otagon abstrat domain. In AST 2001 inWCRE 2001, IEEE, pages 310�319. IEEE CS Press, Otober 2001.http://www.di.ens.fr/~mine/publi/artile-mine-ast01.pdf.30. R. A. O'Keefe. Finite �xed-point problems. In Jean-Louis Lassez, editor, Proeed-ings of the Fourth International Conferene on Logi Programming (ICLP '87),pages 729�743, Melbourne, Australia, May 1987. MIT Press.31. P. and N. Halbwahs. Disovery of linear restraints among variables of a program.1978.32. Martin L. Puterman. Markov deision proesses: disrete stohasti dynami pro-gramming. Wiley Series in Probability and Mathematial Statistis: AppliedProbability and Statistis. John Wiley & Sons In., New York, 1994. A Wiley-Intersiene Publiation.33. S. Putot, E. Goubault, and M. Martel. Stati analysis-based validation of �oating-point omputations. Springer-Verlag, 2003.34. K. Ravi and F. Somenzi. E�ient �xpoint omputation for invariant heking. InInternational Conferene on Computer Design (ICCD '99), pages 467�475, Wash-ington - Brussels - Tokyo, Otober 1999. IEEE.35. A. Venet. Nonuniform alias analysis of reursive data strutures and arrays. InStati Analysis, 9th International Symposium, SAS 2002, Madrid, Spain, Septem-ber 17-20, 2002, volume 2477 of Leture Notes in Computer Siene, pages 36�51.Springer, 2002.

http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf

A Proof of Theorems 1,2 and 3This appendix will be omitted in the �nal version of the present manusript: weinlude it for the onveniene of the referees.Proof of Theorem 1. By Tarski's theorem, the least �xed point of a monotoneself-map h of L is h− = inf{x ∈ L | h(x) ≤ x}. Therefore, the map h 7→ h−is monotone. It follows that f− ≤ infg∈G g
−. Sine G has a lower seletion, wehave f− = f(f−) = h(f−) for some h ∈ G. Therefore, h− ≤ f−, whih showsthat infg∈G g

− ≤ f−.Proof of Theorem 2. When the poliy is improved at step k, we have f(xk) < xk,and we hoose gk+1 suh that gk+1(x
k) = f(xk), so that gk+1(x

k) ≤ xk. ByTarski's �xed point theorem, g−k+1
= inf{x ∈ L | gk+1(x) ≤ x}. It follows that

g−k+1
≤ g−k . Moreover, g−k+1

6= g−k , beause g−k is not a �xed point of gk+1. Thus,the sequene g−1 , g−2 , . . . produed by the algorithm is stritly dereasing, whihimplies that the number of iterations is bounded by the height of {g− | g ∈
G}.Proof of Theorem 3. Let u := xk = g−k , and assume by ontradition that thereis a �nite �xed point v of f suh that u ≤ v does not hold. Then, z =: u∧v < x.Sine f is monotone, f(z) ≤ f(u) ∧ f(v) = z. We dedue that the sequene
(fk(z))k≥1 is noninreasing. This sequene is bounded beause f has a �nite�xed point and f is nonexpansive. Thus, fk(z) onverges to a �nite �xed point,
w < u. De�ne the map φ : λ 7→ (λ + u) ∧ w. Observe that φ is ontinuous,that φ(λ) = w for λ ≤ λ1 := −‖u − w‖∞, and that φ(0) = u. The set of �xedpoints of a nonexpansive self-map of R

n is the image of R
n by a nonexpansiveretration P (this holds more generally for nonexpansive maps having ertainompatness properties, see [3℄). Moreover, the retration P may be hosen to bemonotone when f is monotone. (To see this, take for instane P = Q ◦R, where

R(x) = lim supk f
k(x) and Q(x) = limk f

k(x), and use the proof of Lemma 3of [16℄.) Let yλ := P (φ(λ)). Sine P is monotone, φ(λ) ≤ u implies that yλ ≤ u.Moreover, yλ1
= P (w) = w < u and y0 = P (u) = u. Consider now any map

g distint from gk. Sine gk is the only poliy that an be seleted at point u,
g(u) 6= u, and sine g is ontinuous, we an �nd a neighborhood Vg of u suh that
g(y) 6= y for all y ∈ Vg. Let V denotes the intersetion of the neighborhoods Vg,for g ∈ G and g 6= gk. By ontinuity of λ 7→ yλ, we an �nd λ ∈ [λ1, 0[suh that
yλ ∈ V and yλ < u. By onstrution of V , we must have yλ = f(yλ) = gk(yλ).Sine yλ < u, we ontradit the fat that u is the minimal �xed point of gk.

	A policy iteration algorithm for computing fixed points in static analysis of programs

