Introduction Problem St	atement Problem Approac	ch Sweeping backwar 000000	ds Current and Future Work
-------------------------	-------------------------	-------------------------------	----------------------------

Characterization of the Area Explored by a Line-Sweep Sensor on the Plane Séminaire AID/CIEDS

<u>Maria Luiza Costa Vianna</u>^{1,2} Eric Goubault ¹ Luc Jaulin ² Sylvie Putot ¹

¹ Laboratoire d'Informatique de l'École Polytechnique (LIX)

²ENSTA Bretagne, Lab-STICC

18/04/2023

■ シ۹ペ
 1 / 30

Introduction	Problem Statement 00000	Problem Approach 0000	Sweeping backwards	Current and Future Work
--------------	-----------------------------------	---------------------------------	--------------------	-------------------------

- 1 Introduction
- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

▶ < 書 ▶ < 書 ▶ 書 う < (~ 2 / 30

Introduction ●000	Problem Statement	Problem Approach 0000	Sweeping backwards	Current and Future Work
----------------------	-------------------	---------------------------------	--------------------	-------------------------

1 Introduction

- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

・ 小 三 ト イ 三 ト 三 つ へ (~) 3 / 30

Introduction ○●○○	Problem Statement 00000	Problem Approach 0000	Sweeping backwards	Current and Future Work
Case of S	tudy			

Context

- Unknown environment,
- area covering mission,
- revisiting,
- region avoidance,
- line-sweep exploration.

< □

• •

日▶

< E > < E >

Э

4 / 30

Objectives

Using only proprioceptive data, to estimate:

- Explored area
- Number of views (coverage measure)

< □ ▶

< □ > < E > < E >

Characterization of the Area Explored by a Line-Sweep Sensor on the Plane

5 / 30

Applications:

- Assess area-covering missions,
- plan other missions to fill possible gaps,
- assess revisiting missions,
- optimal trajectory planning,
- localization in homogeneous environments.

百

•

< ∃ >

< E

Introduction	Problem Statement ●0000	Problem Approach 0000	Sweeping backwards	Current and Future Work
--------------	----------------------------	---------------------------------	--------------------	-------------------------

1 Introduction

- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

▶ < @ ▶ < 돌 ▶ < 돌 ▶ 돌 → Q (~ 7 / 30

Visible Area

 $\mathbb{V}:[0,T] \to \mathcal{P}(\mathbb{R}^2)$

Characterization of the Area Explored by a Line-Sweep Sensor on the Plane

€

8 / 30

Visible Area

 $\mathbb{V}:[0,T]\to\mathcal{P}(\mathbb{R}^2)$

Introduction	Problem Statement 00●00	Problem Approach	Sweeping backwards	Current and Future Work
Problem S	Statement			

Robot's Trajectory

- $\pmb{x}: [0, T]
 ightarrow \mathbb{R}^2$,
- \boldsymbol{x} is differentiable in [0, T].

Explored Area

- $W = [-L, L] \times [0, T]$,
- $\mathbb{A}_{\mathbb{E}} = \boldsymbol{f}(W)$,
- Sensor's Contour $\gamma = \boldsymbol{f}(\partial W)$.

Coverage Measure

$$c_m(oldsymbol{p})=\# extsf{Ker}(oldsymbol{f}-oldsymbol{p})$$

Coverage Measure

$$c_m(oldsymbol{p})=\# {\it Ker}(oldsymbol{f}-oldsymbol{p})$$

$$\mathbb{A}_{\mathbb{E}} = \{oldsymbol{p} \in \mathbb{R}^2 | c_m(oldsymbol{p}) \geq 1\}$$

 \bigcirc

/ 30

11

Introduction 0000	Problem Statement	Problem Approach ●೦೦೦	Sweeping backwards	Current and Future Work
----------------------	-------------------	--------------------------	--------------------	-------------------------

- Introduction
- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

Э

14

30

Introduction	Problem Statement	Problem Approach 000●	Sweeping backwards	Current and Future Work
Problem A	Approach			

For any
$$oldsymbol{p}\in\mathbb{R}^2$$
, $c_m(oldsymbol{p})=\eta(\gamma,oldsymbol{p})$

If det(f'(w)) is positive on each $w \in W$ such that f(w) = p,

$$\eta(\gamma, \boldsymbol{p}) = \sum_{\boldsymbol{w} \in \boldsymbol{f}^{-1}(\boldsymbol{p})} sign(det(\boldsymbol{f}'(\boldsymbol{w}))) = \#Ker(\boldsymbol{f} - \boldsymbol{p})$$

Costa Vianna M.L., Goubault E., Jaulin L., Putot S. (2022). Estimating the Coverage Measure and the Area Explored by a Side-Scan Sonar. *OCEANS 2022*

E

15 / 30

Introduction	Problem Statement	Problem Approach 0000	Sweeping backwards ●00000	Current and Future Work
--------------	-------------------	---------------------------------	------------------------------	-------------------------

- Introduction
- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

If det(f'(w)) is positive on each $w \in W$ such that f(w) = p,

$$c_m(\boldsymbol{p}) = \eta(\gamma, \boldsymbol{p})$$

Introduction	Problem Statement	Problem Approach	Sweeping backwards	Current and Future Work
Sweeping	backwards			

$$c_m(oldsymbol{p})=\# extsf{Ker}(oldsymbol{f}-oldsymbol{p})=\# extsf{Ker}\ (oldsymbol{f}-oldsymbol{p})_{|\mathbb{S}^+}+\# extsf{Ker}\ (oldsymbol{f}-oldsymbol{p})_{|\mathbb{S}^-}$$

$$c_m(\boldsymbol{p}) = \sum_{\boldsymbol{w} \in \boldsymbol{f}_{|\mathbb{S}^+}^{-1}(\boldsymbol{p})} + 1 + \sum_{\boldsymbol{w} \in \boldsymbol{f}_{|\mathbb{S}^-}^{-1}(\boldsymbol{p})} + 1 = \eta(\gamma^+, \boldsymbol{p}) + \eta(\gamma^-, \boldsymbol{p})$$

Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards	Current and Future Work ●00000000
----------------------	-------------------	-------------------------	--------------------	--------------------------------------

- 1 Introduction
- **2** Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **5** Current and Future Work

Introduction	Problem Statement	Problem Approach 0000	Sweeping backwards	Current and Future Work
Uncertain	Trajectory			

Uncertain Robot's Trajectory

- $[\mathbf{x}] \in \mathcal{P}([0, T] \rightarrow \mathbb{R}^2)$,
- $[\mathbf{v}] \in \mathcal{P}([0,T] o \mathbb{R}^2)$,
- **x*** ∈ [**x**],
- $\mathbf{v}^* \in [\mathbf{v}].$

- $x^* \in [x]$,
- $[\gamma] \in \mathcal{P}(S^1 o \mathbb{R}^2)$,
- $\gamma^* \in [\gamma].$

< □ > < E > < E >

 $[c_m](\boldsymbol{p}) = [\eta(\gamma_{lb}, \boldsymbol{p}), \eta(\gamma_{ub}, \boldsymbol{p})]$

Introduction	Problem Statement	Problem Approach 0000	Sweeping backwards	Current and Future Work 000000●00
	<u> </u>			

Speboat Guerlédan

Data

- GPS,
- IMU,
- Remote Controled,
- Autonomous via IHM.

Introduction	Problem Statement	Problem Approach 0000	Sweeping backwards	Current and Future Work
Speboat (Guerlédan			

Buoy Search

IntroductionProblem StatementProblem ApproachSweeping backwardsCurrent and Future W000000000000000000	'ork
---	------

Thank You!

• •

< 凸 ▶