Missions d'exploration multirobots décentralisée garantie

Mathilde Jeannin David Filliat, Eric Goubault, Sylvie Putot

LIX - Cosynus

April 19, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Introduction	Multi-agent exploration problem	мстѕ	Current directions	References
0	0	0000 000	000	

Table of contents

1 Introduction

2 Multi-agent exploration problem

3 MCTS

- Definition
- Variations

4 Current directions

5900

Mathilde Jeannin (LIX)

Seminaire AID

E 2 / 15 April 19, 2023

Introduction ●	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Introduction				

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

596

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 3 / 15

Introduction ●	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Introduction				

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

596

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 3 / 15

<ロ> (四) (四) (三) (三) (三)

Introduction ●	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Introduction				

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

• Distributed multirobots exploration

590

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 3 / 15

Introduction ●	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Introduction				

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

- Distributed multirobots exploration
- Unknown environment

590

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 3 / 15

Introduction •	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References

Problem:

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

590

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 3 / 15

Introduction •	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References

Problem:

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

Current directions:

Mathilde Jeannin (LIX)

Seminaire AID

▲ 重 ▶ 重 *√ Q (*~) April 19, 2023 <u>3 / 15</u>

Introduction ●	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References

Problem:

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

Current directions:

- Probabilistic solutions:
 - Monte Carlo Tree Search (MCTS)
 - Variations

▲□▶ ▲□▶ ▲□▶ ▲□▶

Mathilde Jeannin (LIX)

Seminaire AID

Э April 19, 2023 3/15

590

Introduction •	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References

Problem:

• Find a robust solution under realistic assumptions (communication...) to multi-agents exploration problems

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

Current directions:

- Probabilistic solutions:
 - Monte Carlo Tree Search (MCTS)
 - Variations
- (Use knowledge:
 - Epistemic logic
 - Assumption on the map)

Mathilde Jeannin (LIX)

Seminaire AID

-00

April 19, 2023

590

3/15

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Introduction O	Multi-agent exploration problem ●	MCTS	Current directions	References
		000		

Multi-agent exploration problem

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

590

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 4 / 15

◆□▶ ◆酉▶ ◆≧▶ ◆≧▶

Introduction	Multi-agent exploration problem	мстѕ	Current directions	References
0	•	<u> </u>	000	

Multi-agent exploration problem

Assumptions:

- Distributed multirobots exploration
- Unknown environment
- Partial communication

- Possible directions:
 - Objectives
 - Auction methods
 - Allocation tasks
 - ...
 - Planification
 - Heuristic methods (A*)

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

- Frontier methods
- ...
- Global
 - Learning methods
 - MCTS
 - ...

Mathilda	leannin	$(\mathbf{I} \mathbf{I} \mathbf{Y})$	

Seminaire AID

E April 19, 2023 4 / 15

500

Introduction O	Multi-agent exploration problem O	MCTS ●000 ○○○	Current directions	References
Definition				
MCTS - Exa	mple			

$$UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$$

Х

 $\mathcal{O} \land \mathcal{O}$

Mathilde Jeannin (LIX)

Seminaire AID

₹ April 19, 2023 5 / 15

Introduction O	Multi-agent exploration problem O	MCTS 0●00 000	Current directions	References
Definition				
MCTS				

4 steps:

	. 1	그 › 《畵 › 《릴 › 《릴 › []	र्ट १९४७
Mathilde Jeannin (LIX)	Seminaire AID	April 19, 202	3 6/15

Introduction O	Multi-agent exploration problem O	MCTS 00●0 000	Current directions	References
Definition				
MCTS				

	< 1	₽▶◀₫♪	● ● ■ ●		¢) Q (
Mathilde Jeannin (LIX)	Seminaire AID		April 19,	2023	7 / 1

Introduction O	Multi-agent exploration problem O	MCTS 00●0 000	Current directions	References
Definition				
MCTS				

• Tree policy: Upper Confidence Bound $UCB = \bar{X} + \sqrt{\frac{2ln(n_{parent})}{n}}$

	4		500
Mathilde leannin (LIX)	Seminaire AID	April 19 2023	7 / 15

Introduction O	Multi-agent exploration problem O	MCTS 00●0 000	Current directions	References
Definition				
MCTS				

• Tree policy: Upper Confidence Bound $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ \rightarrow exploitation term + exploration term

Mathilde Jeannin (LIX)

Seminaire AID

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ April 19, 2023 7 / 15

500

Introduction O	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Definition				
MCTS				

- Tree policy: Upper Confidence Bound $UCB = \bar{X} + \sqrt{\frac{2ln(n_{parent})}{n}}$ \rightarrow exploitation term + exploration term
- Default policy: random choice

Mathilde Jeannin (LIX)

Seminaire AID

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 월 ∽ 익 ↔ April 19, 2023 7 / 15

Introduction O	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Definition				
МСТЅ				

$$UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$$

590

Mathilde Jeannin (LIX)

Seminaire AID

电 April 19, 2023 8 / 15

< 日 > < 回 > < 回 > < 回 > < 回 >

Introduction O	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Definition				
мстѕ				

 $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ Selection

 $\mathcal{O}\mathcal{Q}$

Mathilde	Jeannin	(LIX)	

Seminaire AID

₹ April 19, 2023 8 / 15

< 日 > < 回 > < 回 > < 回 > < 回 >

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \chi$ Expansion $\frac{2ln(n_{parent})}{n}$

590

Mathilda	loommin.	
Marnine		

Seminaire AID

₹ April 19, 2023 8 / 15

< ロ > < 団 > < 트 > < 트 >

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ Simulation

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
мстѕ				

Example: $UCB = \bar{X} + \sqrt{\frac{2In(n_{parent})}{n}}$ Backpropagation + Selection

 $\mathcal{O}\mathcal{Q}$

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 8 / 15

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Introduction O	Multi-agent exploration problem O	MCTS 0000 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \chi$ Expansion $\frac{2ln(n_{parent})}{n}$

590

Mathilde Jeannin (LIX)

Seminaire AID

₹ April 19, 2023 8 / 15

<ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ Simulation

	. ↓		୬୯୯
Mathilde Jeannin (LIX)	Seminaire AID	April 19, 2023	8 / 15

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ Backpropagation

 $\mathcal{O}\mathcal{Q}$

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 8 / 15

<ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction O	Multi-agent exploration problem O	MCTS 000● 000	Current directions	References
Definition				
MCTS				

 $UCB = \bar{X} + \sqrt{\frac{2\ln(n_{parent})}{n}}$ If end of rollout, choice of the real action \rightarrow several criteria

うくつ

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 8 / 15

Э

▲ □ ▶ ▲ 三 ▶

< □ ▶

Introduction O	Multi-agent exploration problem O	MCTS 0000 ●00	Current directions	References
Variations				
MCTS				

	•	다 / (광 / (홍 / (종 / 종))) 문	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mathilde Jeannin (LIX)	Seminaire AID	April 19, 2023	9 / 15

Introduction O	Multi-agent exploration problem O	MCTS 0000 ●00	Current directions	References
Variations				
MCTS				

- Can usually demonstrate that UCB converges toward an optimal solution
- Easily parallelizable
- Robust to the mission
- Online and offline solution

590

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 9 / 15

<ロ> (四) (四) (三) (三) (三)

Introduction O	Multi-agent exploration problem O	MCTS 0000 ●00	Current directions	References
Variations				
MCTS				

- Can usually demonstrate that UCB converges toward an optimal solution
- Easily parallelizable
- Robust to the mission
- Online and offline solution

- Computing power
- UCB performs poorly in domains with many trap states

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

500

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 9 / 15

Introduction O	Multi-agent exploration problem O	MCTS 0000 ●00	Current directions	References
Variations				
MCTS				

- Can usually demonstrate that UCB converges toward an optimal solution
- Easily parallelizable
- Robust to the mission
- Online and offline solution

- Computing power
- UCB performs poorly in domains with many trap states

▲□▶ ▲□▶ ▲□▶ ▲□▶

Variations

- Decentralized MCTS : use communication to optimize its own tree and reduce computating
- Partially Observable environment : use the inherent properties (random) of MCTS and particle filter

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 9 / 15

590

Introduction O	Multi-agent exploration problem O	MCTS 0000 0●0	Current directions	References
Variations				
MCTS				

Decentralized MCTS

Problem: Multi-robot exploration mission + Decentralized

Best et al. 2019

	< □	□▶ ◀랩▶ ◀르▶ ◀르▶ =	4) Q (4
Mathilde Jeannin (LIX)	Seminaire AID	April 19, 2023	10 / 15

Introduction O	Multi-agent exploration problem O	MCTS ○○○○ ○●○	Current directions	References
Variations				
MCTS				

Decentralized MCTS

Problem: Multi-robot exploration mission + Decentralized

- 1 robot = 1 tree
- root = actual state
- 1 tree = sample of possible sequences of actions over a time horizon

Best et al. 2019

Mathilde Jeannin (LIX)

Seminaire AID

 ▶
 ■
 >
 ●
 ○
 ○

 April 19, 2023
 10 / 15

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Introduction O	Multi-agent exploration problem O	MCTS ○○○○ ○●○	Current directions	References
Variations				
MCTS				

Decentralized MCTS

Problem: Multi-robot exploration mission + Decentralized

- 1 robot = 1 tree
- root = actual state
- 1 tree = sample of possible sequences of actions over a time horizon

Best et al. 2019

Mathilde Jeannin (LIX)

Seminaire AID

 \rightarrow

▶ ◀ ≧ ▶ ≧ ∽ ९ (~ April 19, 2023 10 / 15

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Introduction O	Multi-agent exploration problem O	MCTS ○○○○ ○●○	Current directions	References
Variations				
MCTS				

Decentralized MCTS Problem: Multi-robot exploration mission + Decentralized 1 robot = 1 tree root = actual state 1 tree = sample of possible sequences of actions over a time horizon if communication is possible, share their trees Optimization of the set of possibles actions = prune the tree

Best et al. 2019

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 10 / 15

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Introduction O	Multi-agent exploration problem O	MCTS ○○○○ ○○●	Current directions	References
Variations				
MCTS				

Partially Observable MCTS

Problem: Exploration mission + partially observable

 \rightarrow Particle filter = compute random posterior distributions of a partially observable state to find the most accurate.

 \rightarrow MCTS = compute random posterior actions to find the optimal one. Idea :

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 11 / 15

Introduction O	Multi-agent exploration problem O	MCTS 0000 00●	Current directions	References
Variations				
MCTS				

Partially Observable MCTS

Problem: Exploration mission + partially observable

 \rightarrow Particle filter = compute random posterior distributions of a partially observable state to find the most accurate.

 \rightarrow MCTS = compute random posterior actions to find the optimal one.

Idea :

- Mix MCTS and particle filter
- I node = either an action or on observation
- 1 simulation = update 1 particle

Silver and Veness 2010

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 11 / 15

3

▲□▶ ▲□▶ ▲三▶

Introduction O	Multi-agent exploration problem O	MCTS 0000 00●	Current directions	References
Variations				
MCTS				

Partially Observable MCTS

Problem: Exploration mission + partially observable

 \rightarrow Particle filter = compute random posterior distributions of a partially observable state to find the most accurate.

 \rightarrow

 \rightarrow MCTS = compute random posterior actions to find the optimal one. Idea :

- Mix MCTS and particle filter
- 1 node = either an action or on observation
- 1 simulation = update 1 particle

Silver and Veness 2010

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 11 / 15

3

▲□▶ ▲□▶ ▲三▶

Introduction O	Multi-agent exploration problem O	MCTS 0000 00●	Current directions	References
Variations				
MCTS				

Partially Observable MCTS	
$\begin{array}{l} \underline{\text{Problem:}} \ \text{Exploration mission} + \text{partially observable} \\ \rightarrow \ \text{Particle filter} = \text{compute random posterior distribution} \\ \text{to find the most accurate.} \\ \rightarrow \ \text{MCTS} = compute random posterior actions to relate in the second second$	e ibutions of a partially observable state find the optimal one.
 Mix MCTS and particle filter 1 node = either an action or on observation → 1 simulation = update 1 particle 	Update belief state and find optimal action
Silver and Veness 2010	<u>Il</u>

Mathilde Jeannin (LIX)

Seminaire AID

Ę April 19, 2023 11 / 15

・ ロ ト ・ 白 ト ・ 山 ト ・ 田 ト

<u>Ik</u>

Introduction O	Multi-agent exploration problem O	MCTS 0000 000	Current directions ●○○	References

- How to use knowledge of the environment to make exploration more efficient ?
- Where are we according what we see ? Building ? Outdoor ?
- What we will probably see next ?

Introduction	Multi-agent exploration problem	мстѕ	Current directions	References
0	0	0000 000	000	

Current directions

Temporal Logic

- Specify tasks :
 - Rendez-vous/ gathering
 - Communication
 - Get back the info to the operator
- If lots of robots :
 - Specify density of the swarm (Djeumou, Xu, and Topcu 2020; Djeumou, Xu, Cubuktepe, et al. 2021)
 - Control if that they are not too far from each other

Epistemic Logic

- Task to do only when we know something
- Consensus over a leader, a task, an information, ...
- Way to modelize communication

Mathilde Jeannin (LIX)

Seminaire AID

April 19, 2023 13 / 15

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

Thank you !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ のへぐ

- Best, Graeme et al. (Mar. 2019). "Dec-MCTS: Decentralized planning for multi-robot active perception". en. In: *The International Journal of Robotics Research* 38.2-3.
 Publisher: SAGE Publications Ltd STM, pp. 316–337. ISSN: 0278-3649.
- Browne, Cameron B. et al. (Mar. 2012). "A Survey of Monte Carlo Tree Search Methods". In: *IEEE Transactions on Computational Intelligence and AI in Games* 4.1. Conference Name: IEEE Transactions on Computational Intelligence and AI in Games, pp. 1–43. ISSN: 1943-0698.
- Djeumou, Franck, Zhe Xu, Murat Cubuktepe, et al. (June 2021). Probabilistic Control of Heterogeneous Swarms Subject to Graph Temporal Logic Specifications: A Decentralized and Scalable Approach. arXiv:2106.15729 [cs, eess, math].
- Djeumou, Franck, Zhe Xu, and Ufuk Topcu (July 2020). Probabilistic Swarm Guidance Subject to Graph Temporal Logic Specifications.
- Sharma, Sugandha et al. (Mar. 2022). "Map Induction: Compositional spatial submap learning for efficient exploration in novel environments". en. In:
- Silver, David and Joel Veness (2010). "Monte-Carlo Planning in Large POMDPs". In Advances in Neural Information Processing Systems. Vol. 23. Curran Associates, Inc.

Mathilde Jeannin (LIX)

Seminaire AID

April 19<u>, 2023 15 / 15</u>

< ロ > < 回 > < 回 > <</p>