


Safety Critical Systems 
Definitions 

•  A function (or task) is assigned a criticality level according to the severity 
of a fault on its part 

•  The criticality level determines the acceptable probability of occurrence 
of faults (in number per hour) 

•  It determines the development rules to apply according to the criticality 
level 
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Criticality 
level 

Volume of 
functions 

Consequence Max # of 
occurrences 

E 5% None 

D 10% Minor 10-3/h 

C 20% Major 10-5/h 

B 30% Hazardous 10-7/h 

A 35% Catastrophic 10-9/h 

Avionic classification 



Real-Time Systems 
Definitions 

A real-time system consists in one or more sub-system 
 that have to react under specified time requirements 

to stimuli produced by the environment 

A response after a deadline is invalid 
even if the response is logically correct 

Missing a deadline is considered as a fault 

A correct scheduling allocates tasks or functions 
to processors such that they respect their deadlines. 

Finding a correct scheduling under general assumptions 
on the task set is NP-hard. 
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Real-Time Systems 
Task Model 
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•  For a task ti 

•  Ti : Period. A task reads periodically or 
sporadically sensors - exact or minimum 
delay between task activations (jobs) 

•  Ai : Activation time. Time when a task can 
start running. Zero for synchronous tasks, 
non-zero for dependant tasks for instance  

•  Di : Deadline. For deadline implicit tasks, Di 
= Ti ; usually Di <= Ti  ; when task t2 
depends on task t1, typically D1 <= A2  

•  Ci : Capacity/Budget. Allocated execution 
time. Usually worst case execution time. But 
WCET is hard to evaluate (see later) 

•  Ui : processor utilisation of task ti Ui = Ci / Ti  

Budget 



Multiprocessors Scheduling 
Two Problems instead of One 

•  Uniprocessors scheduling : time allocation problem (one problem) 

•  Multiprocessors scheduling : time and space allocation problem (two 
problems) 

•  Uniprocessor schedulers adapted to multiprocessors are no longer optimal and  

•  produce non-intuitive results (usage reduction -> scheduling becomes invalid) 

•  Multiprocessors scheduling is very active research domain … 

•  As multiprocessor systems are replacing uniprocessor systems (strong industry 
issue) 

C1 τ1 

C2 τ2 τ3 

Ti Ci Ui 

τ1 4 1 0.25 

τ2 5 1 0.20 

τ3 20 18 0.9 



Multiprocessors Scheduling 
Two Problems instead of One 

•  Uniprocessors scheduling : time allocation problem (one problem) 

•  Multiprocessors scheduling : time and space allocation problem (two 
problems) 

•  Uniprocessor schedulers adapted to multiprocessors are no longer optimal ... 

•  produce non-intuitive results (usage reduction -> scheduling becomes invalid) 

•  Multiprocessors scheduling is very active research domain … 

•  As multiprocessor systems are replacing uniprocessor systems (strong industry 
issue) 

C1 τ1 

C2 τ2 τ3 

Ti Ci Ui 

τ1 5 1 0.2 

τ2 5 1 0.20 

τ3 20 18 0.9 



Worst Case Execution Time 
Different WCET Analysis 

•  Measurement analysis: optimistic since the worst case scenario may not be in 
the scenario subset. This may lead to overruns. 

•  Static Analysis: pessimistic since this worst case scenario may never occur or 
very rarely. This leads to budget overestimation and system oversizing. 

•  Worst case scenario is even more difficult to estimate for multi-processors 
since interferences between tasks oftenly occur due to shared HW ressources. 
Multiprocessor systems are replacing uniprocessor systems. 



Mixed Criticality Systems (MCS) 
General Principles 

•  Objective : Execute / mix functions of different criticality, such as survival 
functions (high critical - HI) and mission functions (low critical - LO). 

•  Traditional critical systems use federated architectures allocating functions of 
same criticality to partitions / machines dedicated to a given criticality level. 
This results in oversizing the architecture (wasted resources). 

•  Approach: Allocate to HI functions less ressources than the worst case 
scenario (optimistic) would require. Execute LO functions as required. 

•  When ressources are missing for HI functions (a worst case scenario really 
occurs), LO functions are degraded or stopped as their failure rate is greater 
and their ressources are reallocated to HI functions. 

•  This mode change must be seamless as the system cannot afford to restart. 



Mixed Critical Systems 
Task Model 

•  Set of HI (high criticality) and LO (low criticality) tasks 

•  Timing budgets for tasks with Ci(LO) < Ci(HI) 

•  Ci(LO): optimistic timing budget (e.g. measurement analysis ) 

•  Ci(HI): pessimistic timing budget for HI tasks (e.g. static analysis - WCET).  

•  Execution modes: 

•  LO criticality mode (initial mode): 
Both HI and LO tasks are executed with their LO timing budgets  

•  HI criticality mode: 
only HI tasks are executed with their HI budgets. LO tasks are degraded or 
discarded. Their budgets are reallocated to HI tasks for their HI budgets. 

•  Execution mode change (from LO mode to Hi mode) 

•  When a HI or LO task overruns its budget, a Timing Failure Event (TFE) 
occurs ; the system triggers a seamless mode change to HI mode 
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Mode Change Issue 
Three Problems instead of One 

•  Finding correct scheduling for LO or HI mode is complex 

•  Finding HI and LO schedulings such that they enforce 
correct mode changes is even more complex 

•  The expensive solution requires 2 cores ((2+3+5+5)/10) 

C1
 τ1 τ4 τ3 τ2 

Ti CL C(LO) C(HI) 

τ1 10 LO 2 0 

τ2 10 LO 3 0 

τ3 10 HI 2 5 

τ4 10 HI 3 5 

C1
 τ4 τ3 

τ4 

C1
 τ1 τ4 τ3 

C1
 τ4 τ1 τ3 τ2 

C1
 τ4 τ3 

C1
 τ4 τ1 τ3 

LO Mode 

HI Mode 

τ1  overruns 



Contributions to Mixed Criticality Systems 
Energy Efficiency 

•  Objectives : Optimize idle times to activate the most energy efficient states 
Hypothesis : energy consumption is a linear function of execution time 

•  Problems : 

•  The deeper the low power state, the lower the power consumption, but the 
longer the transition time to return to the active state (Break Event Time - BET) 

•  Changing state also requires energy 

•  V. Legout, M. Jan, L. Pautet: Scheduling algorithms to reduce the static energy 
consumption of real-time systems. Real Time Syst. (2015)  

•  Offline : generate static scheduling from a MILP which minimizes energy 
consumption 

•  Online : use MC to increase idle times, may induce deadline miss & mode 
change 
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•  If BET=5, a traditional 
scheduling fails to reach low-
power state 

•  An energy aware scheduling 
can suspend   processor for 
16-5u 

•  A MC energy aware 
scheduling can suspend 
processor for 27-5u 

•  If the first job of τ3 overruns 
in this particular , a deadline 
miss occurs 

Contributions to Mixed Criticality Systems 
Energy Efficiency 

C1 τ3 

C2 τ2 τ1 

Ti CL Ci(HI) Ci(LO) 

τ1 10 LO 2 1 

τ2 10 HI 6 6 

τ3 15 LO 10 6 

C1 τ3 

C2 τ2 τ1 

C1 τ3 τ1 τ2 

C2




Contributions to Mixed Criticality Systems 
Multiprocessor Efficiency 

•  Objectives :  

•  To guarantee mode change, a simple but expensive solution consists 
in scheduling HI tasks with their HI budget and LO tasks with their LO 
budget 

•  Minimize # of required processors (thus, reduce CPU, energy and cost) 

•  Problems : 

•  Few multiprocessors schedulers optimise or minimise # of processors 

•  Difficult to design schedulers  that guarantee safe mode change 



Contributions to Mixed Criticality Systems 
Multiprocessor Efficiency 

•  R. Gratia, T. Robert, L. Pautet: Scheduling of MCS with RUN. ETFA (2015) 

•  Based on RUN scheduler : only optimal & implementable multiprocessors 
scheduler ; globally schedule virtual processors which 
schedule statically allocated tasks 

•  Contribution GMC-RUN : define a HI task as a virtual  
processor and use its slacktime Ci(HI)-Ci(LO) to schedule 
its allocated LO tasks (this allocation problem is NP-hard) 

•  R. Medina, E. Borde, L. Pautet: Generalized MC Static Scheduling for Periodic 
Directed Acyclic Graphs on Multi-Core Processors. IEEE Trans. Computers (2021) 

•  Based on a time-triggered approach (industrial standards): 
predictive table-driven schedulers 

•  Contribution GMC-DAG : build scheduling tables by 
enforcing a safe mode change and an as-late-as-possible 
strategy to allow both very good acceptance ratio and 
efficient implementation 

C(LO) 

C(HI) VP1/H1 VP3/H3 

C(LO) 

C(HI) VP2/H6 



Contributions to Mixed Criticality Systems 
Kernel Implementation 

•  Objectives :  

•  Efficiently implement MC schedulers (here GMC-DAG) on open-
source real-time kernels supporting industrial standards 

•  Problems :  

•  In most schedulability analyses, the mode change cost is overlooked 
despite that it clearly incurs complex synchronization.  

•  The mode transition may induce an asynchronous rescheduling 
operation across all processors. 

•  This rescheduling operation may happen on a processor which is 
already involved in a scheduling operation. 

•  These rescheduling operations have to be managed simultaneously 
making it more complex to implement with non-atomic mutually 
exclusive primitives. 



Contributions to Mixed Criticality Systems 
Kernel Implementation 

•  L. Pautet, T. Robert, S. Tardieu: Litmus-RT plugins for global static scheduling 
of mixed criticality systems. J. Syst. Archit. (2021) 

•  Add kernel services to make MC schedulers a reality. They have been 
implemented in LITMUS-RT, a well-known prototype of RT Linux kernel. 

•  First service: handle properly instantaneous task migrations and cyclic 
instantaneous migrations to avoid deadlocks. 

On LITMUS core c1 preempt t1 and let it migrate to c2 only when t2 has 
migrated from c2; core c2 preempt t2 and let it migrate to c1 only when t1 has 
migrated from c1 

•  Second service: a safe but efficient implementation of mode changes that can 
handle multiple simultaneous budget overruns.  

•  Next step : implement GMC-DAG on top of RTEMS, open source real-time 
platform, well-known in the industry. 



Mixed Criticality Systems 
Conclusions 

•  Objectives of resource reduction 

•  Resource : CPU, energy, cost 

•  Domain : HI/LO critical systems or autonomous systems such as 
drones 

•  Perspectives 

•  Efficient schedulers for more general task models 

•  Provide decent implementation on well-known RT kernels 


