Cartes de genre non fixé et arbres bourgeonnants

Éric Fusy (CNRS/LIX)

travaux en commun avec Emmanuel Guitter

Séminaire IRIF, 4 juin 2020

Original question

Tree-bijections ensure that the generating function of 4-regular planar maps is $R_1(g)$, where $R_1(g), R_2(g), \ldots$ are solution to the recursive system (with $R_0 = 0$)

$$R_i(g) = 1 + g R_i(g)(R_{i-1}(g) + R_i(g) + R_{i+1}(g)) \qquad i \ge 1$$

(*)

 $R_1(g) = 1 + 2g + 9g^2 + 54g^3 + 378g^4 + \cdots$

 $(R_i(g) = 2$ -point function of 4-regular planar maps)

Original question

Tree-bijections ensure that the generating function of 4-regular planar maps is $R_1(g)$, where $R_1(g), R_2(g), \ldots$ are solution to the recursive system (with $R_0 = 0$)

 (\star)

 $[q^1]R_1(q) = 2$

$$R_i(g) = 1 + g R_i(g)(R_{i-1}(g) + R_i(g) + R_{i+1}(g)) \qquad i \ge 1$$

$$R_1(g) = 1 + 2g + 9g^2 + 54g^3 + 378g^4 + \cdots$$

 $(R_i(g) = 2$ -point function of 4-regular planar maps)

On the other hand, using orthogonal polynomials, one shows that the GF of 4-regular maps of unfixed genus is $r_1(g)$, where $r_1(g), r_2(g), \ldots$ are solution to the recursive system (with $r_0 = 0$)

Original question

Tree-bijections ensure that the generating function of 4-regular planar maps is $R_1(g)$, where $R_1(g), R_2(g), \ldots$ are solution to the recursive system (with $R_0 = 0$)

 (\star)

 $[q^1]R_1(q) = 2$

$$R_i(g) = 1 + g R_i(g)(R_{i-1}(g) + R_i(g) + R_{i+1}(g)) \qquad i \ge 1$$

$$R_1(g) = 1 + 2g + 9g^2 + 54g^3 + 378g^4 + \cdots$$

 $(R_i(g) = 2$ -point function of 4-regular planar maps)

On the other hand, using orthogonal polynomials, one shows that the GF of 4-regular maps of unfixed genus is $r_1(g)$, where $r_1(g), r_2(g), \ldots$ are solution to the recursive system (with $r_0 = 0$)

Question: bijective interpretation of $(\star\star)$? (unified with (\star) ?)

map = multigraph + rotation-system

map = multigraph + rotation-system

 $\mathsf{faces} \leftrightarrow \mathsf{facial} \ \mathsf{walks}$

map = multigraph + rotation-system

faces \leftrightarrow facial walks **Euler relation:**

$$|V| - |E| + |F| = 2 - 2 \cdot \text{genus}$$

with V, E, F the sets of vertices, edges, faces

map = multigraph + rotation-system

faces \leftrightarrow facial walks **Euler relation:**

$$|V| - |E| + |F| = 2 - 2 \cdot \text{genus}$$

with V, E, F the sets of vertices, edges, faces (Rk: genus=0 \Leftrightarrow map admits crossing-free drawing in the plane)

map = multigraph + rotation-system

faces \leftrightarrow facial walks **Euler relation:**

$$|V| - |E| + |F| = 2 - 2 \cdot \text{genus}$$

with V, E, F the sets of vertices, edges, faces (Rk: genus=0 \Leftrightarrow map admits crossing-free drawing in the plane)

rooted map = map with a marked corner

map = multigraph + rotation-system

4-face-coloring

faces \leftrightarrow facial walks **Euler relation:**

$$|V| - |E| + |F| = 2 - 2 \cdot \text{genus}$$

with V, E, F the sets of vertices, edges, faces (Rk: genus=0 \Leftrightarrow map admits crossing-free drawing in the plane)

rooted map = map with a marked corner

N-face-colored map = map where each face receives a color in [1..N]

map = multigraph + rotation-system

4-face-coloring

faces ↔ facial walks Euler relation:

$$|V| - |E| + |F| = 2 - 2 \cdot \text{genus}$$

with V, E, F the sets of vertices, edges, faces (Rk: genus=0 \Leftrightarrow map admits crossing-free drawing in the plane)

rooted map = map with a marked corner

N-face-colored map = map where each face receives a color in [1..N]Eulerian map: all vertex-degrees are even

Outline

- planar case $(R_i = 1 + gR_i(R_{i-1} + R_i + R_{i+1}))$ recall bijective approach based on blossoming trees
- unfixed genus $(r_i = i + gr_i(r_{i-1} + r_i + r_{i+1}))$ standard counting methods & orthogonal polynomials adaptation of the planar case bijection
- N-face-colored maps (formula in terms of $(r_i)_{i \leq N}$) bijective conjecture

We focus on Eulerian maps with controlled vertex-degrees (approach also applies for maps with controlled vertex-degrees & for bipartite m-regular maps)

Planar case

Blossoming trees

blossoming tree = plane tree with 2 kinds of leaves (opening/closing)
such that #(opening leaves) = #(closing leaves)
& rooted at an opening leaf

Blossoming trees

blossoming tree = plane tree with 2 kinds of leaves (opening/closing)
such that #(opening leaves) = #(closing leaves)
& rooted at an opening leaf

T is **balanced** if w(T) is above x-axis

Blossoming trees

blossoming tree = plane tree with 2 kinds of leaves (opening/closing)
such that #(opening leaves) = #(closing leaves)
& rooted at an opening leaf

T is balanced if w(T) is above x-axis For $i \ge 1$, T is *i*-balanced if $w^{(i)}(T)$ is above x-axis (**Rk**: balanced \Leftrightarrow 1-balanced)

Eulerian trees

[Schaeffer'97]

Eulerian tree = blossoming tree where nodes have even degree each node v has $\frac{1}{2} deg(v) - 1$ children that are opening leaves

leaf-path w(T)

Eulerian trees

[Schaeffer'97]

Eulerian tree = blossoming tree where nodes have even degree each node v has $\frac{1}{2} deg(v) - 1$ children that are opening leaves

leaf-path w(T)

Eulerian trees

[Schaeffer'97]

Eulerian tree = blossoming tree where nodes have even degree each node v has $\frac{1}{2} deg(v) - 1$ children that are opening leaves

For $i \ge 1$ let $R_i(t)$ be the GF of *i*-balanced Eulerian trees (with weight $t^k g_k$ per node of degree 2k)

$$R_1(t) = 1 + g_2 t + (2g_4 + g_2^2)t^2 + \cdots$$

Recursive system for Eulerian trees

$$R_i(t) = 1 + \sum_{k \ge 1} g_k t^k \sum_{\substack{\wp \in \operatorname{Dyck}_{2k-1}^{(i \to i-1)} \ h \to h-1 \text{ of } \wp}} \prod_{\substack{R_h(t)}} R_h(t)$$

Recursive system for Eulerian trees

$$R_i(t) = 1 + \sum_{k \ge 1} g_k t^k \sum_{\substack{\wp \in \operatorname{Dyck}_{2k-1}^{(i \to i-1)} \\ h \to h-1 \text{ of } \wp}} \prod_{\substack{R_h(t)}} R_h(t)$$

[Schaeffer'97]

Balanced Eulerian tree \rightarrow Eulerian planar map match (forward and planarly) the opening leaves with the closing leaves

Balanced Eulerian tree \rightarrow Eulerian planar map match (forward and planarly) the opening leaves with the closing leaves

Inverse mapping

cut the edges dual to those in the leftmost BST of the dual map

[Schaeffer'97]

Balanced Eulerian tree \rightarrow Eulerian planar map match (forward and planarly) the opening leaves with the closing leaves

[Schaeffer'97]

 $\Rightarrow R_1(t)$ is the GF of Eulerian planar maps (weight t per edge, g_k per vertex of degree 2k)

Balanced Eulerian tree \rightarrow Eulerian planar map match (forward and planarly) the opening leaves with the closing leaves

[Schaeffer'97]

 $\Rightarrow R_1(t)$ is the GF of Eulerian planar maps (weight t per edge, g_k per vertex of degree 2k)

Rk: 'Cyclic lemma' argument on Eulerian trees ensures also that $R_1(t) = 2 \int_0^1 R(x, t) dx$ with $R(x, t) = x + \sum_{k \ge 1} t^k g_k {2k-1 \choose k-1} R(x, t)^k$ \Rightarrow bijective proof of Tutte's slicings formula

Recovering the tree via Eulerian orientations [F'07, Albenque-Poulalhon'15]

Rk: via the closure mapping, the Eulerian map is endowed with

- \bullet a spanning tree T
- an orientation O

such that edges $\in T$ are directed toward the root edges $\notin T$ 'turn clockwise' around T

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

Let $v_0 \in V$ be a marked vertex an orientation is v_0 -accessible if $\forall v \in V$ there is a path from v to v_0

α -orientations

[Propp'02], [Felsner'03]

For G = (V, E) a graph and $\alpha : V \to \mathbb{N}$

 α -orientation of G = orientation where every vertex v has outdegree $\alpha(v)$

Let $v_0 \in V$ be a marked vertex

an orientation is v_0 -accessible if $\forall v \in V$ there is a path from v to v_0

Property: either all α -orientations are v_0 -accessible or none In the first case (and non-emptiness), α is called **root-accessible**

Extended bijection: Eulerian trees \rightarrow **2-leg maps**

[Bouttier-Di Francesco-Guitter'03]

Rk: For $i \ge 1$, the tree is *i*-balanced iff two legs are at (dual) distance $\le i - 1$

• Bijection with labeled mobiles

[Bouttier-Di Francesco-Guitter'04]

for vertex-degrees $\leq 2p + 2$, expression simplifies as biratio involving $(p \times p)$ -determinants

Maps of unfixed genus

- standard counting approaches
- approach based on orthogonal polynomials
- bijective interpretation

4-regular maps

• 1st approach: configuration model

Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected

$$|\mathcal{U}_n| = \frac{1}{4^n n!} (4n)! (4n-1)!!$$

4-regular maps • **1st approach: configuration model** Let $U_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected $U_n = \frac{1}{4^n n!} (4n)!(4n-1)!!$ $(|U_0| = 1 \text{ with convention } (-1)!! = 1)$

 $\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \bigcup_n \mathcal{U}_n \text{ is } U(g) = \sum_{n \ge 0} \frac{|\mathcal{U}_n|}{(4n)!} g^n = \sum_{n \ge 0} \frac{(4n-1)!!}{4^n n!} g^n$

4-regular maps • 1st approach: configuration model Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected $|\mathcal{U}_n| = \frac{1}{4^n n!} (4n)! (4n-1)!!$ $|\mathcal{U}_0| = 1 \text{ with convention } (-1)!! = 1)$ $\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \bigcup_n \mathcal{U}_n \text{ is } U(g) = \sum_{n \ge 0} \frac{|\mathcal{U}_n|}{(4n)!} g^n = \sum_{n \ge 0} \frac{(4n-1)!!}{4^n n!} g^n$ $\Rightarrow \mathsf{GF} \text{ of (rooted) 4-regular maps is } M(g) = 4g \frac{\mathrm{d}}{\mathrm{d}g} \log(U(g))$

4-regular maps • 1st approach: configuration model Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected $|\mathcal{U}_n| = \frac{1}{4^n n!} (4n)! (4n-1)!!$ $|\mathcal{U}_0| = 1 \text{ with convention } (-1)!! = 1)$ $\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \cup_n \mathcal{U}_n \text{ is } U(g) = \sum_{n \ge 0} \frac{|\mathcal{U}_n|}{(4n)!} g^n = \sum_{n \ge 0} \frac{(4n-1)!!}{4^n n!} g^n$ \Rightarrow GF of (rooted) 4-regular maps is $M(g) = 4g \frac{d}{dg} \log(U(g))$ • 2nd approach: deletion of root-vertex v_0

cf [Arquès-Béraud'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

 $M(g) = 3g + 6g M(g) + (4g^2 \frac{d}{dg} M(g) - 2gM(g)) + g M(g)^2$

still connected

disconnected

4-regular maps • 1st approach: configuration model Let $\mathcal{U}_n :=$ family of 4-regular maps on n vertices that are unrooted & half-edge-labeled & not necessarily connected $|\mathcal{U}_n| = \frac{1}{4^n n!} (4n)! (4n-1)!!$ $|\mathcal{U}_0| = 1 \text{ with convention } (-1)!! = 1)$ $\Rightarrow \mathsf{EGF} \text{ of } \mathcal{U} = \bigcup_n \mathcal{U}_n \text{ is } U(g) = \sum_{n \ge 0} \frac{|\mathcal{U}_n|}{(4n)!} g^n = \sum_{n \ge 0} \frac{(4n-1)!!}{4^n n!} g^n$ \Rightarrow GF of (rooted) 4-regular maps is $M(g) = 4g \frac{d}{dg} \log(U(g))$ • 2nd approach: deletion of root-vertex v_0 cf [Arquès-Béraud'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

 $M(g) = 3g + 6g M(g) + (4g^2 \frac{d}{dg} M(g) - 2gM(g)) + g M(g)^2$

Extension to Eulerian maps • 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is $U(t) = \Lambda \left(\exp \left(\sum_{k \geq 1} \frac{1}{2k} t^k g_k \right) \right)$

with Λ the operator: $\Lambda \left(\sum_{n \ge 0} c_n t^n \right) := \sum_{n \ge 0} (2n-1)!!c_n t^n$ \Rightarrow the GF of rooted Eulerian maps is $M(t) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t))$

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is $U(t) = \Lambda\left(\exp\left(\sum_{k=1}^{n} \frac{1}{2k}t^{k}g_{k}\right)\right)$

with Λ the operator: $\Lambda \left(\sum_{n \ge 0} c_n t^n \right) := \sum_{n \ge 0} (2n-1)!!c_n t^n$

 \Rightarrow the GF of rooted Eulerian maps is $M(t) = 2t \frac{d}{dt} \log(U(t))$

• 2nd approach: deletion of root-vertex v_0 (non-linear DE for M(t)) $M(t) = \sum_{k\geq 1} t^k g_k M_k(t)$ where $M_k(t)$ subseries of M(t) with $\deg(v_0) = 2k$

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is $U(t) = \Lambda\left(\exp\left(\sum_{k=1}^{\infty} \frac{1}{2k}t^k g_k\right)\right)$

with Λ the operator: $\Lambda \left(\sum_{n \ge 0} c_n t^n \right) := \sum_{n \ge 0} (2n-1)!!c_n t^n$ \Rightarrow the GF of rooted Eulerian maps is $M(t) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t))$

• 2nd approach: deletion of root-vertex v_0 (non-linear DE for M(t)) $M(t) = \sum_{k\geq 1} t^k g_k M_k(t)$ where $M_k(t)$ subseries of M(t) with $\deg(v_0) = 2k$ $M_k(t) = (2k-1)!! + \sum_{i=1}^k \frac{(2k)!}{(2i)!(k-i)!2^{k-i}} \widetilde{M}_i(t)$ where $\widetilde{M}_i(t) :=$ subseries of $M_i(t)$ with no loop at v_0

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is $U(t) = \Lambda\left(\exp\left(\sum_{k=1}^{l} \frac{1}{2k}t^{k}g_{k}\right)\right)$

with Λ the operator: $\Lambda \left(\sum_{n \ge 0} c_n t^n \right) := \sum_{n \ge 0} (2n-1)!!c_n t^n$ \Rightarrow the GF of rooted Eulerian maps is $M(t) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t))$

• 2nd approach: deletion of root-vertex v_0 (non-linear DE for M(t)) $M(t) = \sum_{k\geq 1} t^k g_k M_k(t)$ where $M_k(t)$ subseries of M(t) with $\deg(v_0) = 2k$ $M_k(t) = (2k-1)!! + \sum_{i=1}^k \frac{(2k)!}{(2i)!(k-i)!2^{k-i}} \widetilde{M}_i(t)$ where $\widetilde{M}_i(t) :=$ subseries of $M_i(t)$ with no loop at v_0 $\overleftrightarrow{} \rightarrow \widecheck{}_{\mathcal{T}}$ $e^{C(t)} \cdot \widetilde{M}_i(t) = 2^i \frac{d^i}{dt^i} e^{C(t)}$ with $2t \frac{d}{dt} C(t) = M(t)$

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is $U(t) = \Lambda\left(\exp\left(\sum \frac{1}{2k}t^k g_k\right)\right)$

with Λ the operator: $\Lambda \left(\sum_{n \ge 0} c_n t^n \right) := \sum_{n \ge 0} (2n-1)!!c_n t^n$ \Rightarrow the GF of rooted Eulerian maps is $M(t) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t))$

• 2nd approach: deletion of root-vertex v_0 (non-linear DE for M(t)) $M(t) = \sum_{k\geq 1} t^k g_k M_k(t)$ where $M_k(t)$ subseries of M(t) with $\deg(v_0) = 2k$ $M_k(t) = (2k-1)!! + \sum_{i=1}^k \frac{(2k)!}{(2i)!(k-i)!2^{k-i}} \widetilde{M}_i(t)$ where $\widetilde{M}_i(t) :=$ subseries of $M_i(t)$ with no loop at v_0 \overleftrightarrow \checkmark \checkmark \swarrow $e^{C(t)} \cdot \widetilde{M}_i(t) = 2^i \frac{d^i}{dt^i} e^{C(t)}$ with $2t \frac{d}{dt} C(t) = M(t)$ $\Rightarrow \widetilde{M}_i(t) =$ polynomial in $\frac{1}{t}, M(t), \dots, \frac{d^{i-1}}{dt^{i-1}} M(t)$

 \Rightarrow differential equation of order r-1 for M(t) when max-degree $\leq 2r$

Orthogonal polynomials (preparation) Rk: $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$ Hence $\Lambda W(t) = \frac{1}{\sqrt{2\pi}} \int W(tx^2) e^{-x^2/2} dx$ $\Rightarrow U(t) = \Lambda \left(\exp\left(\sum_{k \ge 1} \frac{1}{2k} t^k g_k\right) \right) = \frac{1}{\sqrt{2\pi}} \int e^{V(t,x) - x^2/2} \mathrm{d}x \begin{bmatrix} V(t,x) \\ & || \\ \sum_{k \ge 1} \frac{1}{2k} g_k t^k x^{2k} \end{bmatrix}$

Orthogonal polynomials (preparation) Rk: $(2n-1)!! = \frac{1}{\sqrt{2\pi}} \int x^{2n} e^{-x^2/2} dx$ Hence $\Lambda W(t) = \frac{1}{\sqrt{2\pi}} \int W(tx^2) e^{-x^2/2} dx$ $\Rightarrow U(t) = \Lambda \left(\exp\left(\sum_{k\geq 1} \frac{1}{2k} t^k g_k\right) \right) = \frac{1}{\sqrt{2\pi}} \int e^{V(t,x)-x^2/2} dx$

Then
$$M(t) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(U(t)) = \frac{2tU'(t)}{U(t)} = \frac{1}{\sqrt{2\pi}} \int x^2 e^{V(t,x) - x^2/2} \mathrm{d}x}{\frac{1}{\sqrt{2\pi}} \int e^{V(t,x) - x^2/2} \mathrm{d}x} - 1$$

proved either by integration by part or noticing that numerator = GF maps (not necess. connected) rooted at vertex of degree 2

Orthogonal polynomials

[Bessis-Itzykson-Zuber'80]

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Orthogonal polynomials

[Bessis-Itzykson-Zuber'80]

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Let $(p_i(t, x))_{i \ge 1}$ be the unique family of orthogonal polynomials (in x) such that $p_i(t, x) = x^i + \text{lower degrees}$ (Hermite polynomials for t = 0)
[Bessis-Itzykson-Zuber'80]

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Let $(p_i(t, x))_{i \ge 1}$ be the unique family of orthogonal polynomials (in x) such that $p_i(t, x) = x^i + \text{lower degrees}$ (Hermite polynomials for t = 0)

Rk:
$$V(t,x) = V(t,-x) \Rightarrow p_i(t,-x) = (-1)^i p_i(t,x)$$
 (so $p_1(t,x) = x$)

[Bessis-Itzykson-Zuber'80]

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Let $(p_i(t, x))_{i \ge 1}$ be the unique family of orthogonal polynomials (in x) such that $p_i(t, x) = x^i + \text{lower degrees}$ (Hermite polynomials for t = 0)

Rk:
$$V(t,x) = V(t,-x) \Rightarrow p_i(t,-x) = (-1)^i p_i(t,x)$$
 (so $p_1(t,x) = x$)

General properties:

 $< x p_i, p_{i-1} > / < p_{i-1}, p_{i-1} >$

3-term recurrence $xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x)$

(no component p_a with $a \le i - 2$ because $\langle xp_i, p_a \rangle = \langle p_i, xp_a \rangle = 0$)

[Bessis-Itzykson-Zuber'80]

 $< xp_i, p_{i-1} > / < p_{i-1}, p_{i-1} >$

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Let $(p_i(t, x))_{i \ge 1}$ be the unique family of orthogonal polynomials (in x) such that $p_i(t, x) = x^i + \text{lower degrees}$ (Hermite polynomials for t = 0)

Rk:
$$V(t,x) = V(t,-x) \Rightarrow p_i(t,-x) = (-1)^i p_i(t,x)$$
 (so $p_1(t,x) = x$)

General properties:

3-term recurrence $xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x)$

(no component p_a with $a \le i-2$ because $\langle xp_i, p_a \rangle = \langle p_i, xp_a \rangle = 0$)

Let
$$h_i(t) := \langle p_i, p_i \rangle$$

Then $r_i(t) = \frac{\langle xp_i, p_{i-1} \rangle}{h_{i-1}(t)} = \frac{\langle p_i, xp_{i-1} \rangle}{h_{i-1}(t)} = \frac{h_i(t)}{h_{i-1}(t)}$

[Bessis-Itzykson-Zuber'80]

 $< xp_i, p_{i-1} > / < p_{i-1}, p_{i-1} >$

Consider the "scalar product"

$$< F, G > := \frac{1}{\sqrt{2\pi}} \int F(t, x) G(t, x) e^{V(t, x) - x^2/2} dx$$

Let $(p_i(t, x))_{i \ge 1}$ be the unique family of orthogonal polynomials (in x) such that $p_i(t, x) = x^i + \text{lower degrees}$ (Hermite polynomials for t = 0)

Rk:
$$V(t,x) = V(t,-x) \Rightarrow p_i(t,-x) = (-1)^i p_i(t,x)$$
 (so $p_1(t,x) = x$)

General properties:

3-term recurrence $xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x)$

(no component p_a with $a \le i-2$ because $\langle xp_i, p_a \rangle = \langle p_i, xp_a \rangle = 0$)

Let
$$h_i(t) := \langle p_i, p_i \rangle$$

Then $r_i(t) = \frac{\langle xp_i, p_{i-1} \rangle}{h_{i-1}(t)} = \frac{\langle p_i, xp_{i-1} \rangle}{h_{i-1}(t)} = \frac{h_i(t)}{h_{i-1}(t)}$
In particular $r_1(t) = \frac{h_1(t)}{h_0(t)} = \frac{\langle x, x \rangle}{\langle 1, 1 \rangle} = M(t) + 1$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

$$< \frac{\partial}{\partial x} p_i, p_{i-1} > = i h_{i-1}$$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

$$< \frac{\partial}{\partial x} p_{i}, p_{i-1} > = i h_{i-1}$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i}(t,x) p_{i-1}(t,x) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i-1} > + \frac{1}{\sqrt{2\pi}} \int p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

$$< \frac{\partial}{\partial x} p_{i}, p_{i-1} > = i h_{i-1}$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i}(t, x) p_{i-1}(t, x) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i-1} > + \frac{1}{\sqrt{2\pi}} \int p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i-1}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx }{1 + \sqrt{2\pi}} \int \frac{p_{i}(t, x) p_{i}(t, x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/$$

[Bessis-Itzykson-Zuber'80]

 $\begin{array}{ll} \mbox{Recall } (p_i(t,x))_{\geq 1} \mbox{ orthogonal polynomials with } p_i(t,x) = x^i + \mbox{ lower degrees } \\ h_i := < p_i, p_i > & r_i = h_i / h_{i-1} \\ \mbox{ Recurrence for } (p_i(t,x))_{i\geq 1} : & xp_i(t,x) = p_{i+1}(t,x) + r_i(t)p_{i-1}(t,x) \\ \end{array}$

$$< \frac{\partial}{\partial x} p_{i}, p_{i-1} > = i h_{i-1}$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i}(t,x) p_{i-1}(t,x) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{\partial}{\partial x} p_{i-1} > + \frac{1}{\sqrt{2\pi}} \int p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{p_{i}(t,x) p_{i-1}(t,x) (x - t^{2}x^{3}) e^{t^{2}x^{4}/4 - x^{2}/2} dx$$

[Bessis-Itzykson-Zuber'80]

[Bessis-Itzykson-Zuber'80]

[Bessis-Itzykson-Zuber'80]

i-enriched Eulerian tree := *i*-balanced Eulerian tree + assign index $\iota \in [0..h - 1]$ to each closing leaf of *i*-height *h* The GF of *i*-enriched Eulerian trees is $\hat{r}_i(t)|_{z_i=j} = r_i(t)$

for $r \in [1..k]$, c_r is matched with one of the (free) opening leaves that precedes

From 1-enriched trees to Eulerian maps

From 1-enriched trees to Eulerian maps

Rk: Via the mapping, the Eulerian map is naturally endowed with a spanning tree T and an Eulerian orientation such that edges $\in T$ are toward the root, edges $\notin T$ 'turn clockwise' around T

Rk: Extended notion of orientations (left-accessible) in [Bernardi-Chapuy'11] (orientations for maps endowed with spanning unicellular map)

Planarized version of the bijection Bijection ⇔ leaf-extensions + Schaeffer's planar construction

Planarized version of the bijection Bijection ⇔ leaf-extensions + Schaeffer's planar construction

Planarized version of the bijection Bijection ⇔ leaf-extensions + Schaeffer's planar construction

Marked Eulerian map: Eulerian map with marked oriented edges bearing ≥ 1 multiplicities

Admissible: possible to extend to Eulerian orientation where the root-edge is outgoing, and root-accessible without using marked edges

 $r_i(t)$ counts admissible marked Eulerian maps with total multiplicity $\leq i-1$

root-edge

Face-colored maps

- recall on matrix integrals + orthogonal poly. for genus expansion
- interpretation of counting formula in terms of marked maps

Face-colored maps and relation to genus-expansion

N-face-colored map = map where each face receives a color in [1..N]

4-face-coloring

 $\overline{M}(t,N) := \mathsf{GF} \mathsf{N}$ -face-colored Eulerian maps

 $\overline{U}(t, N) := \mathsf{EGF}$ unrooted N-face-colored Eulerian maps (half-edge-labeled, not necessarily connected)

$$\overline{M}(t,N) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log(\overline{U}(t,N))$$

4-regular case $(g_k = \delta_{k=2})$: $\overline{M}(t, N) = (2N^3 + N)t^2 + O(t^4)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $genus = \frac{|V| - |F|}{2} + 1$ $|F| = 3 \quad |F| = 1$ $genus = 0 \quad genus = 1$

Matrix integral method (+ orthogonal poly.) ['t Hooft'74], [Brézin-Itzykson-Parisi-Zuber'78], [Bessis-Itzykson-Zuber'80]

$$\frac{\overline{U}(t,N)}{(2\pi)^{N^2/2}} \int_{\mathcal{H}_N} dH \, \mathrm{e}^{\mathrm{Tr}\left(-H^2/2 + V(t,H)\right)}$$

V(t,X)
$\sum rac{1}{2k} g_k t^k X^{2k}$
$k \ge 1$

Matrix integral method (+ orthogonal poly.) ['t Hooft'74], [Brézin-Itzykson-Parisi-Zuber'78], [Bessis-Itzykson-Zuber'80]
Matrix integral method (+ orthogonal poly.) ['t Hooft'74], [Brézin-Itzykson-Parisi-Zuber'78], [Bessis-Itzykson-Zuber'80]

$$\frac{\overline{U}(t,N)}{(2\pi)^{N^{2}/2}} \int_{\mathcal{H}_{N}} dH e^{\operatorname{Tr}\left(-H^{2}/2+V(t,H)\right)} \underbrace{V(t,X)}_{\substack{k \geq 1}} \sum_{\substack{k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1}} dH e^{\operatorname{Tr}\left(-H^{2}/2+V(t,H)\right)} \sum_{\substack{k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1}} \int_{\substack{k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack{k \geq 1 \\ \frac{1}{2k}g_{k}t^{k}X^{2k}} \int_{\substack$$

Matrix integral method (+ orthogonal poly.) ['t Hooft'74], [Brézin-Itzykson-Parisi-Zuber'78], [Bessis-Itzykson-Zuber'80]

$$\frac{\overline{U}(t,N)}{(2\pi)^{N^{2}/2}} \int_{\mathcal{H}_{N}} dH e^{\operatorname{Tr}\left(-H^{2}/2+V(t,H)\right)} \underbrace{V(t,X)}_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\mathcal{H}_{N}} dH e^{\operatorname{Tr}\left(-H^{2}/2+V(t,H)\right)} \underbrace{\sum \frac{1}{2k}g_{k}t^{k}X^{2k}}_{\substack{k \geq 1 \\ k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{2k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} \int_{\substack{k \geq 1 \\ \sum \frac{1}{2k}g_{k}t^{k}X^{k}}} d\Lambda \Delta(\Lambda)^{2} e^{\operatorname{Tr}\left(-\Lambda^{2}/2+V(t,\Lambda)\right)} d\Lambda \Delta(\Lambda)^{2} e$$

Matrix integral method (+ orthogonal poly.) ['t Hooft'74], [Brézin-Itzykson-Parisi-Zuber'78], [Bessis-Itzykson-Zuber'80]

$$\begin{array}{c|c} \overline{U}(t,N) & & & V(t,X) \\ \hline U(t,N) & & & \int_{C} C(t,N) \\ \hline C(t,N) & & & \int_{C} C(t,N) \\ \hline C(t,X) & & \int_{C} C(t,X) \\ \hline C(t,X) & & \int_{C} C$$

Expressions for
$$\overline{M}(t, N)$$

 $\overline{U}(t, N) = \tilde{c}_N h_0^N r_1^{N-1} r_2^{N-2} \cdots r_{N-1}$
 $\stackrel{\Downarrow}{\overline{M}}(t, N) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log \overline{U}(t, N) = 2t N \frac{h'_0(t)}{h_0(t)} + 2t \sum_{i=1}^{N-1} (N-i) \frac{r'_i(t)}{r_i(t)}$ (Exp1)

Expressions for
$$\overline{M}(t, N)$$

 $\overline{U}(t, N) = \tilde{c}_N h_0^N r_1^{N-1} r_2^{N-2} \cdots r_{N-1}$
 $\stackrel{\Downarrow}{\overline{M}}(t, N) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log \overline{U}(t, N) = N(r_1(t) - 1) + 2t \sum_{i=1}^{N-1} (N-i) \frac{r'_i(t)}{r_i(t)}$ (Exp1)

Expressions for
$$\overline{M}(t, N)$$

 $\overline{U}(t, N) = \tilde{c}_N h_0^N r_1^{N-1} r_2^{N-2} \cdots r_{N-1}$
 $\stackrel{\Downarrow}{\overline{M}}(t, N) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log \overline{U}(t, N) = N(r_1(t) - 1) + 2t \sum_{i=1}^{N-1} (N-i) \frac{r'_i(t)}{r_i(t)}$ (Exp1)

Simpler expression:

[course notes Di Francesco'14]

Denote
$$\langle F(H) \rangle := \frac{2^{N(N-1)/2}}{(2\pi)^{N^2/2}} \int_{\mathcal{H}_N} dH \ F(H) \mathrm{e}^{\mathrm{Tr}\left(-H^2/2 + V(t,H)\right)}$$

Then
$$\overline{M}(t,N) = \frac{\langle \operatorname{Tr}(H^2) \rangle}{\overline{U}(t,N)} - \frac{N^2}{O} = -N^2 + \sum_{i=0}^{N-1} (r_i(t) + r_{i+1}(t))$$
 (Exp2)

Expressions for
$$\overline{M}(t, N)$$

 $\overline{U}(t, N) = \tilde{c}_N h_0^N r_1^{N-1} r_2^{N-2} \cdots r_{N-1}$
 $\stackrel{\Downarrow}{\overline{M}}(t, N) = 2t \frac{\mathrm{d}}{\mathrm{d}t} \log \overline{U}(t, N) = N(r_1(t) - 1) + 2t \sum_{i=1}^{N-1} (N-i) \frac{r'_i(t)}{r_i(t)}$ (Exp1)

Simpler expression:

[course notes Di Francesco'14]

Denote
$$\langle F(H) \rangle := \frac{2^{N(N-1)/2}}{(2\pi)^{N^2/2}} \int_{\mathcal{H}_N} dH \ F(H) \mathrm{e}^{\mathrm{Tr}\left(-H^2/2 + V(t,H)\right)}$$

Then
$$\overline{M}(t,N) = \frac{\langle \operatorname{Tr}(H^2) \rangle}{\overline{U}(t,N)} - \frac{N^2}{O} = -N^2 + \sum_{i=0}^{N-1} \left(r_i(t) + r_{i+1}(t) \right)$$
 (Exp2)

Rk: No bijective proofs of **(Exp1)** or **(Exp2)** for $N \ge 2$, but they are linked by the differential identity $r'_i(t) = r_i(t)(r_{i+1}(t) - r_{i-1}(t) - 2)$ for which we have a bijective proof (using marked maps)

Genus expansion For 4-regular maps $r_i(t)$ satisfy the recursive system

$$r_i(t) = i + t^2 r_i(t) (r_{i-1}(t) + r_i(t) + r_{i+1}(t))$$

$$\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$$

(by induction on $k \ge 0$, $P_k(i) := [t^{2k}]r_i(t)$ is a polynomial in i)
 $P_0(i) = i$ and for $k \ge 1$, $P_k(i) = \sum_{\ell=0}^{k-1} P_{k-\ell-1}(i)(P_\ell(i-1) + P_\ell(i) + P_\ell(i+1))$

Genus expansion

For 4-regular maps $r_i(t)$ satisfy the recursive system

$$r_i(t) = i + t^2 r_i(t) (r_{i-1}(t) + r_i(t) + r_{i+1}(t))$$

$$\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$$
(by induction on $k \ge 0$, $P_k(i) := [t^{2k}]r_i(t)$ is a polynomial in i)
$$P_0(i) = i \text{ and for } k \ge 1, \ P_k(i) = \sum_{\ell=0}^{k-1} P_{k-\ell-1}(i)(P_\ell(i-1) + P_\ell(i) + P_\ell(i+1))$$
Then one obtains
$$N-1$$

 $\overline{M}(t,N) = -N^2 + \sum_{i=1}^{N-1} (r_i(t) + r_{i+1}(t))$

Genus expansion For 4-regular maps $r_i(t)$ satisfy the recursive system

$$r_i(t) = i + t^2 r_i(t) (r_{i-1}(t) + r_i(t) + r_{i+1}(t))$$

$$\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$$

(by induction on $k \ge 0$, $P_k(i) := [t^{2k}]r_i(t)$ is a polynomial in i)
 $P_0(i) = i$ and for $k \ge 1$, $P_k(i) = \sum_{\ell=0}^{k-1} P_{k-\ell-1}(i)(P_\ell(i-1) + P_\ell(i) + P_\ell(i+1))$

Then one obtains $N\!-\!1$

$$\overline{M}(t,N) = -N^2 + \sum_{i=1}^{N-1} \left(r_i(t) + r_{i+1}(t) \right)$$

= $\sum_{k \ge 1} Q_k(N) t^{2k}$ with $Q_k(N) = \sum_{i=0}^{N-1} P_k(i) + P_k(i+1)$

Genus expansion For 4-regular maps $r_i(t)$ satisfy the recursive system

N = 1

$$r_i(t) = i + t^2 r_i(t) (r_{i-1}(t) + r_i(t) + r_{i+1}(t))$$

$$\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$$

(by induction on $k \ge 0$, $P_k(i) := [t^{2k}]r_i(t)$ is a polynomial in i)
 $P_0(i) = i$ and for $k \ge 1$, $P_k(i) = \sum_{\ell=0}^{k-1} P_{k-\ell-1}(i)(P_\ell(i-1) + P_\ell(i) + P_\ell(i+1))$

Then one obtains

Genus expansion

For 4-regular maps $r_i(t)$ satisfy the recursive system

N = 1

$$r_i(t) = i + t^2 r_i(t) (r_{i-1}(t) + r_i(t) + r_{i+1}(t))$$

$$\Rightarrow r_i(t) = i + 3i^2t^2 + (18i^3 + 6i)t^4 + (135i^4 + 162i^2)t^6 + \cdots$$

(by induction on $k \ge 0$, $P_k(i) := [t^{2k}]r_i(t)$ is a polynomial in i)
 $P_0(i) = i$ and for $k \ge 1$, $P_k(i) = \sum_{\ell=0}^{k-1} P_{k-\ell-1}(i)(P_\ell(i-1) + P_\ell(i) + P_\ell(i+1))$

Then one obtains

$$\overline{M}(t,N) = -N^{2} + \sum_{i=1}^{N-1} (r_{i}(t) + r_{i+1}(t))$$

$$= \sum_{k \ge 1} Q_{k}(N)t^{2k} \quad \text{with } Q_{k}(N) = \sum_{i=0}^{N-1} P_{k}(i) + P_{k}(i+1)$$

$$= (2N^{3} + N)t^{2} + (9N^{4} + 15N^{2})t^{4} + (54N^{5} + 198N^{3} + 45N)t^{6} + \cdots$$

$$\bigcirc$$

Rk: Expansion with $N^{2-2\text{genus}}$ instead of N^F and letting $N \to \infty$ $\Rightarrow M_{\text{planar}}(t) = 2 \int_0^1 R(x, t) dx$ with $R(x, t) = x + \sum_{k \ge 1} t^k g_k {2k-1 \choose k-1} R(x, t)^k$

Interpretation in terms of marked maps $\overline{M}(t, N) = -N^2 + \sum_{i=0}^{N-1} (r_i(t) + r_{i+1}(t))$

 $\Rightarrow \overline{M}(t,N) = \text{GF}$ of admissible marked Eulerian maps of total multiplicity $\mu \leq N-1$ where each such map is counted $2(N-1-\mu) + \delta_{\mu=N-1}$ times

Interpretation in terms of marked maps $\overline{M}(t,N) = -N^2 + \sum \left(r_i(t) + r_{i+1}(t) \right)$ i=0 $\Rightarrow M(t, N) = \mathsf{GF}$ of admissible marked Eulerian maps of total multiplicity $\mu \leq N-1$ where each such map is counted $2(N-1-\mu) + \delta_{\mu=N-1}$ times Let $M(t, N) = \mathsf{GF}$ of fully-N-colored Eulerian maps (every color $\in [1..N]$ is used by at least one face) $\overline{M}(t,N) = \sum_{L=1}^{N} {\binom{N}{L}} \widehat{M}(t,L)$

Interpretation in terms of marked maps $\overline{M}(t, N) = -N^2 + \sum_{i=1}^{N-1} (r_i(t) + r_{i+1}(t))$

i=0

 $\Rightarrow \overline{M}(t,N) = \text{GF of admissible marked Eulerian maps of total multiplicity} \\ \mu \leq N-1 \text{ where each such map is counted } 2(N-1-\mu) + \delta_{\mu=N-1} \text{ times}$

Let
$$\widehat{M}(t, N) = \mathsf{GF}$$
 of fully-N-colored Eulerian maps
(every color $\in [1..N]$ is used by at least one face)
 $\overline{M}(t, N) = \sum_{L=1}^{N} {N \choose L} \widehat{M}(t, L)$

 $u_N(t) := GF$ of admissible marked Eulerian maps with N - 1 marked edges (each with multiplicity 1), counted twice if the root-edge is marked

$$\widehat{M}(t,N) = u_N(t)$$
 (bijection?)

Interpretation in terms of marked maps $\overline{M}(t, N) = -N^2 + \sum (r_i(t) + r_{i+1}(t))$

i=0

 $\Rightarrow \overline{M}(t,N) = \text{GF}$ of admissible marked Eulerian maps of total multiplicity $\mu \leq N-1$ where each such map is counted $2(N-1-\mu) + \delta_{\mu=N-1}$ times

Let
$$\widehat{M}(t, N) = \mathsf{GF}$$
 of fully-N-colored Eulerian maps
(every color $\in [1..N]$ is used by at least one face)
 $\overline{M}(t, N) = \sum_{L=1}^{N} {N \choose L} \widehat{M}(t, L)$

 $u_N(t) := GF$ of admissible marked Eulerian maps with N - 1 marked edges (each with multiplicity 1), counted twice if the root-edge is marked

$$\widehat{M}(t,N) = u_N(t)$$
 (bijection?)

Example: $[t^2g_2]\widehat{M}(t,2) = 12$ 6 6 0 $[t^2g_2]u_2(t) = 12$ 4 4 4

Interpretation in terms of marked maps $\overline{M}(t, N) = -N^2 + \sum (r_i(t) + r_{i+1}(t))$

i=0

 $\Rightarrow \overline{M}(t,N) = \mathsf{GF} \text{ of admissible marked Eulerian maps of total multiplicity} \\ \mu \leq N-1 \text{ where each such map is counted } 2(N-1-\mu) + \delta_{\mu=N-1} \text{ times}$

Let
$$\widehat{M}(t, N) = \mathsf{GF}$$
 of fully-N-colored Eulerian maps
(every color $\in [1..N]$ is used by at least one face)
 $\overline{M}(t, N) = \sum_{L=1}^{N} {N \choose L} \widehat{M}(t, L)$

 $u_N(t) := GF$ of admissible marked Eulerian maps with N - 1 marked edges (each with multiplicity 1), counted twice if the root-edge is marked

$$\widehat{M}(t,N) = u_N(t) \qquad \text{(bijection?)}$$

Example: $[t^2g_2]\widehat{M}(t,2) = 12$ $[t^2g_2] u_2(t) = 12$ More generally $[t^ng_n]\widehat{M}(t,L) = [t^ng_n]u_L(t) = (2n-1)!!\binom{n}{L-1}2^{L-1}$ Harer-Zagier summation formula (bijective proofs: [Goulden-Nica'05, Bernardi'12, Chapuy-Feray-Fusy'13])