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Original question
Tree-bijections ensure that the generating function of 4-regular planar
maps is R1(g), where R1(g), R2(g), ... are solution to the recursive
system (with Ry = 0)
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On the other hand, using orthogonal polynomials, one shows that the
GF of 4-regular maps of unfixed genus is r1(g), where r1(g),72(9), - . -
are solution to the recursive system (with rg = 0)
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Question: bijective interpretation of (xx) ? (unified with (%) ?
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Maps
map = multigraph + rotation-system
4-face-coloring

faces < facial walks
Euler relation:

ﬂ V| —|E|+ |F| =2 — 2 genus

V4 Bl =1, F| -3 with V| E| I the sets of vertices, edges, faces
- :> gen;s _ 1 - (Rk: genus=0 < map admits crossing-free drawing in the plane)

rooted map = map with a marked corner

N-face-colored map = map where each face receives a color in [1..N]

Eulerian map: all vertex-degrees are even



Outline
- planar case  (R; =1+ gR;(Ri—1+ R; + Ri11))

recall bijective approach based on blossoming trees

- unfixed genus  (r; =14+ gri(ri—1 + 7 +7riv1))
standard counting methods & orthogonal polynomials
adaptation of the planar case bijection

- N-face-colored maps (formula in terms of (r;);<n)
bijective conjecture

We focus on Eulerian maps with controlled vertex-degrees

(approach also applies for maps with controlled vertex-degrees
& for bipartite m-regular maps)



Planar case
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such that #(opening leaves) = #(closing leaves)

& rooted at an opening leaf
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Blossoming trees

blossoming tree = plane tree with 2 kinds of leaves (opening/closing)
such that #(opening leaves) = #(closing leaves)

& rooted at an opening leaf

caf-path w(T) \ ....... A
T
L translate w((T) l \ N\

1—1

T is balanced if w(T) is above x-axis

For i > 1, T is i-balanced if w®)(T) is above z-axis
(Rk: balanced < 1-balanced)



Eulerian trees [Schaeffer'97]

Eulerian tree = blossoming tree where nodes have even degree
each node v has 1deg(v) — 1 children that are opening leaves
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Eulerian tree = blossoming tree where nodes have even degree
each node v has 1deg(v) — 1 children that are opening leaves
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leaf-path w(T)

root-path o(7T") . \ N

(up-steps for 4)



Eulerian trees [Schaeffer'97]

Eulerian tree = blossoming tree where nodes have even degree
each node v has 1deg(v) — 1 children that are opening leaves

£ \ NN \ N\
v leaf-path w(T)
t-path o(1') .
r?tﬁa—stzis forp)( ) \ AN

For i > 1 let R;(t) be the GF of i-balanced Eulerian trees
(with weight t*g;. per node of degree 2k)

Ry(t) =1+ gat + (294 + g2)t° + - -



Recursive system for Eulerian trees
[Bouttier-Di Francesco-Guitter’03]
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Recursive system for Eulerian trees
[Bouttier-Di Francesco-Guitter’03]

() (T)
NN \ A \ \@ 1
wTr) w(ly) ~w(s) Gy

\- B \\.\

T>'<\

Ri(t)=1+> git® > [[ Bu®

k>1 (i—i—1) descending steps
- eEDyckyy 17 R h—1 of o

Special case 4-regular maps (g, = 6;—2):
Ri=1+t*(RiRi + RiR; + RiRi1) =1+ *Ri(Ri-1 + R; + Ri11)

N, R, X



Bijection for planar Eulerian maps [Schaeffer'97]

Balanced Eulerian tree — Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves
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Bijection for planar Eulerian maps [Schaeffer'97]

Balanced Eulerian tree — Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

ST . o

>/

T Inverse mapping
cut the edges dual to those in

leaf-path .\, the leftmost BST of the dual map
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= Ri(t) is the GF of Eulerian planar maps (weight  per edge, gy per vertex of degree 2k)



Bijection for planar Eulerian maps [Schaeffer'97]

Balanced Eulerian tree — Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

leaf-path

= Ri(t) is the GF of Eulerian planar maps (weight  per edge, gy per vertex of degree 2k)

Rk: ‘Cyclic lemma’ argument on Eulerian trees ensures also that
Ri(t) =2 [} R(z,t)dz  with R(z,t)= x+z th g, () R(z, t)"

= bijective proof of Tutte's slicings formula



Recovering the tree via Eulerian orientations
[F'07, Albenque-Poulalhon’15]

Rk: via the closure mapping, the Eulerian map is endowed with

® a spanning tree I’
e an orientation O

such that edges € 1’ are directed toward the root
edges ¢ T ‘turn clockwise’ around T



a-orientations [Propp’'02], [Felsner'03]
For G=(V,FE)agraphand a: V — N

a-orientation of G = orientation where every vertex v has outdegree a(v)
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a-orientations [Propp’'02], [Felsner'03]
For G=(V,FE)agraphand a: V — N

a-orientation of G = orientation where every vertex v has outdegree a(v)

. not vyp-accessible

> alv) = |Bs|

Let vg € V be a marked vertex
an orientation is vg-accessible if Vv € V there is a path from v to vg

Property: either all a-orientations are vg-accessible or none
In the first case (and non-emptiness), « is called root-accessible
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Bernardi’s bijection (planar case) [Bernardi’07]
Let M be a rooted planar map, with vertex-set V'

spanning trees of M <= root-accessible o : V' — N

oD oD oL

‘minimal’ a- orlentatlon
(unique without ccw cycle)

From the minimal a-orientation, the spanning tree is computed
by a certain traversal ([Poulalhon-Schaeffer'06] for 3-orientations)

We apply it to Eulerian planar maps, with a(v) = deg(v

P QP QP <.



Extended bijection: Eulerian trees — 2-leg maps
[Bouttier-Di Francesco-Guitter’03]

- =~

convention: root-leaf is left unmatched

-
i

leaf-path

Rk: For ¢ > 1, the tree is i-balanced iff two legs are at (dual) distance <7 — 1



Other bijection for R;(t), explicit expression
e Bijection with labeled mobiles [Bouttier-Di Francesco-Guitter'04]

conditions
(i)  min-label=1
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e Bijection with labeled mobiles [Bouttier-Di Francesco-Guitter'04]
conditions
(i)  min-label=1
(ii) 4 J <+l
bl ' labeled

blossoming trees
(root-leaf matched)
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slit-slide-sew bijection [Bettinelli'18]




Other bijection for R;(t), explicit expression
e Bijection with labeled mobiles [Bouttier-Di Francesco-Guitter'04]

conditions
(i)  min-label=1

(if) { 7 <1+l

: : blossomin labeled _ .
dist(vy, v9) < i—1 frees ° RZ (t) mobiles dist(v,e) <i—1

blossoming trees
(root-leaf matched)

\ //V

slit-slide-sew bijection [Bettinelli'18]

e Explicit expression: [Bouttier-Di Francesco-Guitter'03] [Bouttier-Guitter'12]
R (t) _ H,H, - with H, = det F’i—l— . F,, .= GF eulerian planar maps
" Hﬁ_l 0<12,7<n / root-vertex degree a

for vertex-degrees < 2p + 2, expression simplifies as biratio involving (p X p)-determinants



Maps of unfixed genus

- standard counting approaches
- approach based on orthogonal polynomials
- bijective interpretation



4-regular maps
e 1st approach: configuration model
Let U4, := family of 4-regular maps on n vertices that are
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4-regular maps
o Ist approach configuration model

Let U, := family of 4-regular maps on n vertices that are
unrooted & half-edge-labeled & not necessarily connected

~
S
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s EGF of U = Uylhy is U(g) = 3 Ml gn _ 5~ Un = 1)

4np)
n>0
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4-regular maps
o Ist approach configuration model
Let U, := family of 4-regular maps on n vertices that are
unrooted & half-edge-labeled & not necessarily connected

' ’ S . \\\ K \ 3 ’ , ‘l ,‘ _ B ”
N8\ 2/ A3\ 10/ NI\ 5/ 9 Uy | = ) (4n) (4n — 1)
\'4 \% (|Uo| = 1 with convention (—1)!l = 1)

| U,| dn — DIN
= EGF of U = Upl,, is U(g)zz(’m)‘,g :Z( 4nn') I
n>0 . n>0 .

1 108U (9)

= GF of (rooted) 4-regular maps is M (g) = 4g



4-regular maps
o Ist approach configuration model

Let U, := family of 4-regular maps on n vertices that are
unrooted & half-edge-labeled & not necessarily connected
\\\:\’ —————— P :>‘—\—~~‘\ /”’—-/:’.:\—__\\“ ].
‘ Un| = = (4n)l(4n — 1)

N8\ 2/ A3\ N2\ 5/ 9 np|
(|| = 1 with convention (—1)!l = 1)

U, 4n — 1)!
jEGFofM:UnMnisU(g):Z’ ‘g"zz(n )gn

(4n)! 4mn!
n>0 n>0
d
= GF of (rooted) 4-regular maps is M (g) = 4gd— log(U(g))
g

e 2nd approach: deletion of root-vertex v,
cf [Arqués-Béraud’'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

M(g) = 3g + 69 M(g9) + (49”5, M(g9) —29M(g)) + g M(g)’

2 loops 1 loop ~— —
at vy at vy - - /\ - —> /\

still connected disconnected



4-regular maps
o Ist approach configuration model

Let U, := family of 4-regular maps on n vertices that are
unrooted & half-edge-labeled & not necessarily connected
\\\:\’ —————— P :>‘—\—~~‘\ /”’—-/:’.:\—__\\“ ].
‘ U, | = (4n) (4n — 1!

o8\ 2/ 3 AN 3\ 10/ 7125'9 np| .-
(|| = 1 with convention (—1)!l = 1)

U, 4n — 1)!
jEGFofM:UnMnisU(g):Z’ ‘g"zz(n )gn

(4n)! 4mn!
n>0 n>0
d
= GF of (rooted) 4-regular maps is M (g) = 4gd— log(U(g))
g

e 2nd approach: deletion of root-vertex v,
cf [Arqués-Béraud’'00, Vidal-Petitot'10, Courtiel-Yeats-Zeilberger'17]

M(g) = 3g + 69 M(g9) + (49”5, M(g9) —29M(g)) + g M(g)’

2 loops 1 loop ~— —
at vy at vy - - /\ - —> /\

still connected disconnected

(differential equation of Riccati type = nice continued fraction expansion)



Extension to Eulerian maps
e 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

1
and not necessarily connected is U(t) = A(exp (Z %tkgk))

k>1
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1
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d
= the GF of rooted Eulerian maps is M () = 2t§ log(U(t))

e 2nd approach: deletion of root-vertex vy (non-linear DE for M (t))
M(t) =3 5> tP g My (t) where My, (t) subseries of M (t) with deg(vg) =2k



Extension to Eulerian maps
e 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

1
and not necessarily connected is U(t) = A(exp( E %tkgk))
k>

with A the operator: A(}, ~qcnt™) = ano(Qn — Dlle,t"

d
= the GF of rooted Eulerian maps is M () = 2t§ log(U(t))

e 2nd approach: deletion of root-vertex vy (non-linear DE for M (t))
M(t) = > k>1 tkngk; (t) where My (t) subseries of M(t) with deg(vg) =2k

B (2k)! where M( ) := subseries
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1
and not necessarily connected is U(t) = A(exp( E %tkgk)>
k>

with A the operator: A(}, ~qcnt™) = ano(Qn — Dlle,t"

d
= the GF of rooted Eulerian maps is M () = 2t§ log(U(t))

e 2nd approach: deletion of root-vertex vy (non-linear DE for M (t))
M(t) = > k>1 tkngk; (t) where My (t) subseries of M(t) with deg(vg) =2k

(2k)! —~ where M( ) := subseries
Mp(t) = (2k—1)I + Z < (2)!(k—1q)12k— Mi(t) o M;(t) with no loop at v

— ! . .d
4 = ¢ CO M) =2 2 e eC®  with 2t C(t) = M(1)

= M, (t) = polynomial in L =, M(t), ..., dt’b - M(t)
= differential equation of order r — 1 for M (t) when max-degree < 2r




Orthogonal polynomials (preparation)

1 2
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Orthogonal polynomials (preparation)

1 2

Rk: (2n — 1)l = —— /:132”6_9” /2dx

oy s

Hence AW (¢ /W ta:' e~ /2y
Vor V(t, x)
1 .2 I

= U(t :A(ex L = —/ev(t’x) 7°/24x

(t) P (; o gk o Zﬁgkth%

>1

V(t x)—x /QdiE

2tU’ (¢ _ 27T /

U(t) - /EV(t,x)—x2/2d$
V2T
proved either by integration by part

or noticing that numerator = GF maps (not necess. connected)
rooted at vertex of degree 2

Then M(t) = th log(U (1)) =

— 1
dt
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Orthogonal polynomials [Bessis-ltzykson-Zuber'80]
Consider the “scalar product”

<F G >= G(t,x)e" H®)= /24

7 | 7

Let (p;(t,2));>1 be the unique family of orthogonal polynomials (in x)
such that p;(t,x) = x* + lower degrees (Hermite polynomials for t = 0)

Rk: V(t,z) =V (t,—x) = pi(t,—x) = (=1)'p;(t,z) (so pi(t,z) = x)

General properties: <api, Pie1> [ <pi-1,Pic1>

3-term recurrence |xp;(t,x) = pia1(t,x) + ri(t)pi_1(t, x)

(no component p, with a < i — 2 because < zp;, p, > = < p;, TPy > = 0)
Let h;(t) :==< p;,p; >
Then r4(t) = < IPisPi—1 > < Pi, TPi-1 > hi(t)
Z hi—1(t) hi—1(t) hi—1(t)
hq (t) T, xr >
= = M(t)+1
ho(t) <1,1> ( )

In particular r1(t) =
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Recall (p;(t,x))>1 orthogonal polynomials with p;(t, x) = 2!+ lower degrees
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Recurrence for (p;(t,x))i>1:  xpit,z) = pip1(t, @) + ri(t)pi—1(t, z)

Recursive system for (r;(t));>1 (4-regular, g = 0;—9)
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Recall (p;(t,x))>1 orthogonal polynomials with p;(t, x) = 2!+ lower degrees
hi :=<pi,p; > ry = hi/hi_1
Recurrence for (p;(t,z));>1:  |api(t, @) = pi1(t, @) + ri(t)pi—1(¢, )

Recursive system for (r;(t));>1 (4-regular, g = 0;—9) \'

@ .
< oz Pi> Pi—1 > =1 h;— $2p7; = T34+1Pi + T4iDi
|| A i

224 /14— x> + Pi+2 4 TiTi—1DPi—2
_pz t x)pz 1(t 513‘) e /4 /QdZL’ . |
\ 2T /

142 1
| mteg parts / \ i2

4 2
_<pzaampz 1 > Tt /pz t xpz 1 t x)(x_tz 3) “2t /4w /2d37

O < Pi, LPi—1 > — tz < xgpiapi—l >
| |
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Recall (p;(t,x))>1 orthogonal polynomials with p;(t, x) = 2!+ lower degrees
hi :=<pi,p; > ry = hi/hi_1
Recurrence for (p;(t,z));>1:  |api(t, @) = pi1(t, @) + ri(t)pi—1(¢, )

Recursive system for (r;(t));>1 (4-regular, g = 0;—9) \'
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Orthogonal polynomia|s |[Bessis-ltzykson-Zuber’80]

Recall (p;(t,x))>1 orthogonal polynomials with p;(t, x) = 2!+ lower degrees
hi :=<pi,p; > ry = hi/hi_1
Recurrence for (p;(t,z));>1:  |api(t, @) = pi1(t, @) + ri(t)pi—1(¢, )

Recursive system for (r;(t));>1 (general case) \'
o0 .
< %piapi—l > =1 hi—l 5132]?7; = Ti+1Pi + TiDPi
NN

82]%‘(?5,$)pi—1(t,x)ev(t’x)_xQ/QdiC + DPi+2  + TiTi—1Pi—2

||
1
A/ 27"' T . 142 1
|| integ. parts /
i 1-2

<P TPi—1 > — Y ops ge < pypi1 >
I

||
hi — hi1y thg; > [T r®

k>1 (¢—1—1) descending steps
o peDkaQk_l h—h—1 of p

= (@) =i+ > _agtt > [T r@®

h: kL>1 (z—1—1) descending steps
/ 1—1 — pEDkaQk_l h—h—1 of g




Model of trees for r;(%)

Let 7;(t) := GF i-balanced Eulerian trees with:
-weight t*g;, per node of degree 2k

-weight z;, per closing of ¢-height h ( N1 )
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Model of trees for r;(%)

Let 7;(t) := GF i-balanced Eulerian trees with:
-weight t*g;, per node of degree 2k

-weight z;, per closing of ¢-height h ( N1 )

A3 Zz+1
() (T) 5 N
NN \ AL \z 1
w(Tr) w(Tz) —w(T3) | fw(?’) (T)

\. N \\\.\

Fi(t) =z + > grtt [[ 7@

(1—1—1) descending steps
— pEDycka_l h—h—1 of @

i-enriched Eulerian tree := i-balanced Eulerian tree
+ assign index ¢ € [0..h — 1| to each closing leaf of i-height h

The GF of i-enriched Eulerian trees is 7;(t)|..—; = r;(?)



From 1-enriched trees to Eulerian maps

closing leaves cy, ..., ¢ are treated in clockwise order around the tree,
for r € [1..k|, ¢, is matched with one of the (free) opening leaves that precedes

0
leaf-path * * 0
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From 1-enriched trees to Eulerian maps

closing leaves cy, ..., ¢ are treated in clockwise order around the tree,
for r € [1..k|, ¢, is matched with one of the (free) opening leaves that precedes

leaf-path * ’ 0



From 1-enriched trees to Eulerian maps

closing leaves cy, ..., ¢ are treated in clockwise order around the tree,

leaf-path ¢ ¢
1]

1]
leaf-matching >

ree) opening leaves that precedes

[Flajolet'80]
[de Médicis-Viennot'94]



From 1- enrlched trees to Eulerian maps

(

Y

S Eulerian map

2 1
1 1
0
eaf-path ' \
[Flajolet'80]
leaf-matching



From 1-enriched trees to Eulerian maps

1-enriched tree

/4
Eulerian map

Rk: Via the mapping, the Eulerian map is naturally endowed with
a spanning tree T' and an Eulerian orientation such that

edges € T' are toward the root, edges ¢ T ‘turn clockwise’ around T
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We apply it to Eulerian maps, with a(v) = deg(v)/2
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Planarized version of the bijection
Bijection < leaf-extensions + Schaeffer’'s planar construction

2
Y
. : R
Rk: Let ri(t,q) := 74|..—;), where [j] =1+ --+¢ " = ;
—q
Then r(t,q) = GF of Eulerian maps with ¢ conjugate to
Ri(t) = r(t,0) r(t)=rit,1) e

Rk: other extension of Schaeffer’s bijection with control on the genus [Lepoutre'19]
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Bijection for 7,
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Bijection for r;(?)
i=7

Marked Eulerian map: Eulerian map with marked
oriented edges bearing > 1 multiplicities

Admissible: possible to extend to Eulerian orientation
where the root-edge is outgoing, and Z
root-accessible without using marked edges > root-edge

ri(t) counts admissible marked Eulerian maps with total multiplicity < i — 1



Face-colored maps

- recall on matrix integrals + orthogonal poly. for genus expansion

- interpretation of counting formula in terms of marked maps



Face-colored maps and relation to genus-expansion
N-face-colored map = map where each face receives a color in [1..N]

N

M(t, N) := GF N-face-colored Eulerian maps

4-face-coloring

U(t, N) := EGF unrooted N-face-colored Eulerian maps
(half-edge-labeled, not necessarily connected)

M(t,N) = 2t% log(U(t, N))

4-regular case (gr = dp—2):
M(t,N) = (2N3 + N)t?> + O(t%)

@ @ genus = Vi—IF] + 1
O

2

Fl=3 |F|=1
genus:O genus:l



Matrix integral method (4 orthogonal poly.)

['t Hooft'74], [Brézin-ltzykson-Parisi-Zuber'78]|, [Bessis-ltzykson-Zuber'80]

U(t,N
vEN) V(. X)
l configuration-model + Wick's formula I

_ k 32k
oN(N-1)/2 / I eTr(—H2/2—I-V(t,H)) Zﬁgkt X
(27T)N2/2 HN k=1
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Matrix integral method (4 orthogonal poly.)

['t Hooft'74], [Brézin-ltzykson-Parisi-Zuber'78|, [Bessis-ltzykson-Zuber'80]

u(t, N) V(t, X)
l configuration-model + Wick's formula |’|
B 1 k 2k
oN(N-1)/2 JH eTr(—H2/2—|—V(t,H)) Zﬁgkt A
(2m)IN?/2 H N =

change of variable H = SU{AUT, with A = Diag()g, ..., Av_1)
Jacobian oc [T,.;(Ai = Aj) = A(A)?

CN/ dA A(A)? eTr(_A2/2+V(t’A))
RN

l A(A) = det(pi(t, Aj))o<ij<n—1

N—1
(QW)N/QCN Z Sgn(a) Z SgIl(T) H <pa(i)7p7'(i) >
1=0

occG N TEG N

l contribution { 0 for o 7 7

h()"'hN_l foro=r

(2m)N/2¢n NUhohy - -hn_1 — EnN hévriv_lrév_Q---rN_l



Expressions for M (t, N)

U(t,N):EN hé\r’l“iv 17“57 2 ce TN 1

i o (2)

M(t,N) =2t—logU(t,N) = 2tN ri(t)
dt ho(t)

+2tZ<N—z> (e




Expressions for M(t, N)
U(t,N) = én hé\r’ri\f 17“;\7 R

Y

M(t,N) = Qt%bgﬁ(t, N)=N(rit)—1) + 2t Z(N—z) Z(t)

(Expl)




Expressions for M(t, N)
U(t,N) = én hé\rri\f 17“5 R

Y

M(t,N) = 2t—log U(t, N) = N(ri(t)—1) + 2t Z (N — z) ) (Exp1)
Simpler expression: [course notes Di Francesco’14]
N(N—1)/2
Denote < F(H) >i= > . / dH F(H)eT(-H?/2+V(5.10)
(2m)N=/2 HN
— <Te(H?) > 2 N
Then M(t, N) = —— — N = —-N“+ i (t)+7r;1 (¢t Exp2
M) =Ty Y > (r(0+ria () (Exp2)



Expressions for M(t, N)
U(t,N) = én hévriv 17“5 2 rN_1

Y

M(t,N) = 2t—log U(t, N) = N(ri(t)—1) + 2t Z (N — z) ) (Exp1)
Simpler expression: [course notes Di Francesco’14]
N(N—1)/2
Denote < F(H) >i= > . / dH F(H)eT(-H?/2+V(5.10)
(2m)N=/2 HN
— <Te(H?) > 2 N
Then M(t, N) = —— — N = —-N“+ i (t)+7r;1 (¢t Exp2
M) =Ty Y > (r(0+ria () (Exp2)

Rk: No bijective proofs of (Expl) or (Exp2) for N >2, but they are linked by
the differential identity ?“7/; (t) = 7r; (t) (7“1'_|_1(t) — Ti_l(t) — 2)

for which we have a bijective proof (using marked maps)



Genus expansion
For 4-regular maps r;(t) satisfy the recursive system

ri(t) =1+ t2r; () (ri—1(t) + 73 (t) + rip1(t))

= 1i(t) =i + 302> + (1843 + 60)t* + (135i* 4 162i2)t6 + - --
(by induction on k > 0, Pk( ) = [t2K]r;(t) is a polynomial in 1)

Py(i) =i and for k > 1, Py(i) ZPHl (Pu(i — 1) + Po(i) + Pu(i + 1))
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Genus expansion
For 4-regular maps r;(t) satisfy the recursive system

ri(t) =1+ t2r; () (ri—1(t) + 73 (t) + rip1(t))

= 1i(t) =i + 302> + (1843 + 60)t* + (135i* 4 162i2)t6 + - --
(by induction on k > 0, Pk( ) = [t2K]r;(t) is a polynomial in 1)

Py(i) =1 and for k > 1, Py(i) ZPkgl Pg2—1)+Pg()+Pg(z+1))

Then one obtains 5 _ 4
M(t,N)==N?>+Y  (ri(t)+rit1(t))

— ZQk(j_\f)t% with Q. (N Z Pp(i) + Pe(i + 1)

k>1
= (2N° + N)t* + (ON* 4 15N*)t* +(54N5+198N3+45N)t6+

@@3

Rk: Expansion with N2 2genus instead of N and letting N — oo

= Mpjanar(? —2f0 dr  with R(z,1) x—l—Ztkgk(% 1)R(a:,t)k
E>1



Interpretation in terms of marked maps !

M(t,N) = =N+ (ri(t)+rit1(t))
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= M (t, N) = GF of admissible marked Eulerian maps of total multiplicity
pu < N —1 where each such map is counted 2(N —1 — pu) +d,=n_1 times
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Interpretation in terms of marked maps |

M(t,N) = =N+ (ri(t)+rit1(t))
i=0
= M (t, N) = GF of admissible marked Eulerian maps of total multiplicity
pu < N —1 where each such map is counted 2(N —1 — pu) +d,=n_1 times

Let M(t, N) = GF of fully-N-colored Eulerian maps

(every color € [1..N] is used by at least one face)
N

— NN\ —
M(t, N) = ( ) M(t, L
€N =3 () M. 1)
upn (t) := GF of admissible marked Eulerian maps with N — 1 marked edges
(each with multiplicity 1), counted twice if the root-edge is marked

M, N)=upn(t)| (bijection?)

Example: [t2gg]]\/4\(t, 2) = 12 6 6 0
t2g2] ua(t) = 12 4@ 4 4®
More generally [tngn]M(t7 L) — [tngn]uL(t) — (277/ _ 1)”( n )2L—1

. . L—1
Harer-Zagier summation formula
(bijective proofs: [Goulden-Nica'05, Bernardi'12, Chapuy-Feray-Fusy'13])



