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(?)

• On the other hand, using orthogonal polynomials, one shows that the
GF of 4-regular maps of unfixed genus is r1(g), where r1(g), r2(g), . . .
are solution to the recursive system (with r0 = 0)

r1(g) = 1 + 3g + 24g2 + 297g3 + 4896g4 + · · ·

Ri(g) = 1 + g Ri(g)(Ri−1(g) +Ri(g) +Ri+1(g)) i ≥ 1

(??)

(Ri(g) = 2-point function of 4-regular planar maps)

• Tree-bijections ensure that the generating function of 4-regular planar
maps is R1(g), where R1(g), R2(g), . . . are solution to the recursive
system (with R0 = 0)

R1(g) = 1 + 2g + 9g2 + 54g3 + 378g4 + · · ·

Question: bijective interpretation of (??) ? (unified with (?) ?)

Original question

[g1]R1(g) = 2

[g1]r1(g) = 3
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Maps
map = multigraph + rotation-system

faces ↔ facial walks

Euler relation:

|V | − |E|+ |F | = 2− 2 · genus

with V,E, F the sets of vertices, edges, faces
|V | = 4, |E| = 7, |F | = 3

⇒ genus = 1

rooted map = map with a marked corner

N -face-colored map = map where each face receives a color in [1..N ]

4-face-coloring

4
1

1

Eulerian map: all vertex-degrees are even

(Rk: genus=0 ⇔ map admits crossing-free drawing in the plane)



Outline

- planar case (Ri = 1 + gRi(Ri−1 +Ri +Ri+1))
recall bijective approach based on blossoming trees

- unfixed genus (ri = i+ gri(ri−1 + ri + ri+1))

adaptation of the planar case bijection

- N -face-colored maps (formula in terms of (ri)i≤N )
bijective conjecture

We focus on Eulerian maps with controlled vertex-degrees

(approach also applies for maps with controlled vertex-degrees

& for bipartite m-regular maps)

standard counting methods & orthogonal polynomials
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Blossoming trees
blossoming tree = plane tree with 2 kinds of leaves (opening/closing)

such that #(opening leaves) = #(closing leaves)
& rooted at an opening leaf

leaf-path w(T )

T

For i ≥ 1, T is i-balanced if w(i)(T ) is above x-axis

T is balanced if w(T ) is above x-axis

(Rk: balanced ⇔ 1-balanced)

translate w(i)(T )

i i−1
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Eulerian tree = blossoming tree where nodes have even degree

each node v has 1
2deg(v)− 1 children that are opening leaves
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Eulerian trees [Schaeffer’97]

Eulerian tree = blossoming tree where nodes have even degree

each node v has 1
2deg(v)− 1 children that are opening leaves

For i ≥ 1 let Ri(t) be the GF of i-balanced Eulerian trees
(with weight tkgk per node of degree 2k)

R1(t) = 1 + g2t+ (2g4 + g22)t2 + · · ·

leaf-path w(T )

root-path ℘(T )
(up-steps for )

T



Recursive system for Eulerian trees
[Bouttier-Di Francesco-Guitter’03]
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Recursive system for Eulerian trees
[Bouttier-Di Francesco-Guitter’03]

i
i-1

w(T1) w(T2) w(T3) w(i)(T )

i
i-1

℘(i)(T )

T

T1

T2

T3

℘(T )

i

i-1

i

i-1

i

i-1

Ri = 1 + t2
(
Ri+1Ri + RiRi + RiRi−1

)
= 1 + t2Ri(Ri−1 + Ri + Ri+1)

Ri(t) = 1 +
∑
k≥1

gkt
k

∑
℘∈Dyck

(i→i−1)
2k−1

∏
descending steps
h→h−1 of ℘

Rh(t)

Special case 4-regular maps (gk = δk=2):



Bijection for planar Eulerian maps [Schaeffer’97]

Balanced Eulerian tree → Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

leaf-path



Bijection for planar Eulerian maps [Schaeffer’97]

Balanced Eulerian tree → Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

leaf-path
cut the edges dual to those in

the leftmost BST of the dual map

Inverse mapping



Bijection for planar Eulerian maps [Schaeffer’97]

Balanced Eulerian tree → Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

⇒ R1(t) is the GF of Eulerian planar maps (weight t per edge, gk per vertex of degree 2k)

leaf-path



Bijection for planar Eulerian maps [Schaeffer’97]

Balanced Eulerian tree → Eulerian planar map
match (forward and planarly) the opening leaves with the closing leaves

⇒ R1(t) is the GF of Eulerian planar maps (weight t per edge, gk per vertex of degree 2k)

Rk: ‘Cyclic lemma’ argument on Eulerian trees ensures also that

R1(t) = 2
∫ 1
0 R(x, t)dx with R(x, t)=x+

∑
tkgk

(2k−1
k−1

)
R(x, t)k

k ≥ 1

leaf-path

⇒ bijective proof of Tutte’s slicings formula



Recovering the tree via Eulerian orientations
[F’07, Albenque-Poulalhon’15]

Rk: via the closure mapping, the Eulerian map is endowed with

• an orientation O
• a spanning tree T

such that edges ∈ T are directed toward the root
edges /∈ T ‘turn clockwise’ around T



α-orientations
For G = (V,E) a graph and α : V → N
α-orientation of G = orientation where every vertex v has outdegree α(v)

[Propp’02], [Felsner’03]
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α-orientations
For G = (V,E) a graph and α : V → N
α-orientation of G = orientation where every vertex v has outdegree α(v)

[Propp’02], [Felsner’03]

Let v0 ∈ V be a marked vertex
an orientation is v0-accessible if ∀v ∈ V there is a path from v to v0

2
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not v0-accessible
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α-orientations
For G = (V,E) a graph and α : V → N
α-orientation of G = orientation where every vertex v has outdegree α(v)

[Propp’02], [Felsner’03]

Let v0 ∈ V be a marked vertex
an orientation is v0-accessible if ∀v ∈ V there is a path from v to v0

Property: either all α-orientations are v0-accessible or none

In the first case (and non-emptiness), α is called root-accessible

2
1

1
1

3

1

2

v0

not v0-accessible

S

∑
v∈S

α(v) = |ES|

1



Bernardi’s bijection (planar case) [Bernardi’07]

Let M be a rooted planar map, with vertex-set V

spanning trees of M root-accessible α : V → N
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Bernardi’s bijection (planar case) [Bernardi’07]

Let M be a rooted planar map, with vertex-set V

spanning trees of M root-accessible α : V → N

3

2

1
1

3

2

1
1

‘minimal’ α-orientation
(unique without ccw cycle)

From the minimal α-orientation, the spanning tree is computed
by a certain traversal ([Poulalhon-Schaeffer’06] for 3-orientations)

We apply it to Eulerian planar maps, with α(v) = deg(v)/2



Extended bijection: Eulerian trees → 2-leg maps
[Bouttier-Di Francesco-Guitter’03]

convention: root-leaf is left unmatched

Rk: For i ≥ 1, the tree is i-balanced iff two legs are at (dual) distance ≤ i− 1

leaf-path



[Bouttier-Di Francesco-Guitter’04]• Bijection with labeled mobiles
Other bijection for Ri(t), explicit expression

0

1

1

1

2

2

2

2

3
1

1

1

2

i

j

j ≤ i+1

min-label=1

2

2
3 2

conditions
(i)

(ii)



[Bouttier-Di Francesco-Guitter’04]• Bijection with labeled mobiles
Other bijection for Ri(t), explicit expression

0

1

1

1

2

2

2

2

3
1

1

1

2

Ri(t)
blossoming

trees
labeled
mobilesdist(v1, v2)≤ i−1 dist(v, e) ≤ i− 1

v

e

v1

v2· · · · · ·

i

j

j ≤ i+1

min-label=1

2

2
3 2

conditions
(i)

(ii)

blossoming trees
(root-leaf matched)



[Bouttier-Di Francesco-Guitter’04]• Bijection with labeled mobiles
Other bijection for Ri(t), explicit expression

0

1

1

1

2

2

2

2

3
1

1

1

2

Ri(t)
blossoming

trees
labeled
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slit-slide-sew bijection [Bettinelli’18]
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(i)

(ii)

blossoming trees
(root-leaf matched)
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[Bouttier-Di Francesco-Guitter’04]• Bijection with labeled mobiles
Other bijection for Ri(t), explicit expression

0

1

1

1

2

2

2

2

3
1

1

1

2

Ri(t)
blossoming

trees
labeled
mobiles

slit-slide-sew bijection [Bettinelli’18]

dist(v1, v2)≤ i−1 dist(v, e) ≤ i− 1
v

e

v1

v2

• Explicit expression: [Bouttier-Di Francesco-Guitter’03] [Bouttier-Guitter’12]

for vertex-degrees ≤ 2p + 2, expression simplifies as biratio involving (p× p)-determinants

· · · · · ·

i

j

j ≤ i+1

min-label=1

2

2
3 2

conditions
(i)

(ii)

blossoming trees
(root-leaf matched)

slit-slide-sew bijection [Bettinelli’18]

Rn(t) =
HnHn−2

H2
n−1

with Hn = det Fi+j
0 ≤ i, j ≤ n

Fa := GF eulerian planar maps
root-vertex degree aroot-vertex degree a



Maps of unfixed genus

- standard counting approaches
- approach based on orthogonal polynomials
- bijective interpretation



4-regular maps

Let Un := family of 4-regular maps on n vertices that are

|Un| =
1

4nn!
(4n)!(4n− 1)!!
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unrooted & half-edge-labeled & not necessarily connected

• 1st approach: configuration model
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4-regular maps

Let Un := family of 4-regular maps on n vertices that are

|Un| =
1

4nn!
(4n)!(4n− 1)!!

6 8 2 11 4 3 10 1 7 12 5 9

unrooted & half-edge-labeled & not necessarily connected

• 1st approach: configuration model

⇒ GF of (rooted) 4-regular maps is M(g) = 4g
d

dg
log(U(g))

• 2nd approach: deletion of root-vertex v0

⇒ EGF of U = ∪nUn is U(g) =
∑
n≥0

|Un|
(4n)!

gn =
∑
n≥0

(4n− 1)!!

4nn!
gn

M(g) = 3g + 6g M(g) + (4g2 d
dgM(g)− 2gM(g)) + g M(g)2

still connected disconnected

2 loops
at v0

1 loop
at v0

cf [Arquès-Béraud’00, Vidal-Petitot’10, Courtiel-Yeats-Zeilberger’17]

(|U0| = 1 with convention (−1)!! = 1)
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|Un| =
1

4nn!
(4n)!(4n− 1)!!

6 8 2 11 4 3 10 1 7 12 5 9

unrooted & half-edge-labeled & not necessarily connected

• 1st approach: configuration model

⇒ GF of (rooted) 4-regular maps is M(g) = 4g
d

dg
log(U(g))

• 2nd approach: deletion of root-vertex v0

⇒ EGF of U = ∪nUn is U(g) =
∑
n≥0

|Un|
(4n)!

gn =
∑
n≥0

(4n− 1)!!

4nn!
gn

M(g) = 3g + 6g M(g) + (4g2 d
dgM(g)− 2gM(g)) + g M(g)2

still connected disconnected

2 loops
at v0

1 loop
at v0

(differential equation of Riccati type ⇒ nice continued fraction expansion)

cf [Arquès-Béraud’00, Vidal-Petitot’10, Courtiel-Yeats-Zeilberger’17]

(|U0| = 1 with convention (−1)!! = 1)



Extension to Eulerian maps
• 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
with Λ the operator: Λ

(∑
n≥0 cnt

n
)

:=
∑

n≥0(2n− 1)!!cnt
n

⇒ the GF of rooted Eulerian maps is M(t) = 2t
d

dt
log(U(t))



Extension to Eulerian maps
• 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
with Λ the operator: Λ

(∑
n≥0 cnt

n
)

:=
∑

n≥0(2n− 1)!!cnt
n

⇒ the GF of rooted Eulerian maps is M(t) = 2t
d

dt
log(U(t))

• 2nd approach: deletion of root-vertex v0 (non-linear DE for M(t))

M(t) =
∑
k≥1 t

kgkMk(t) where Mk(t) subseries of M(t) with deg(v0)=2k



Extension to Eulerian maps
• 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
with Λ the operator: Λ

(∑
n≥0 cnt

n
)

:=
∑

n≥0(2n− 1)!!cnt
n

⇒ the GF of rooted Eulerian maps is M(t) = 2t
d

dt
log(U(t))

• 2nd approach: deletion of root-vertex v0 (non-linear DE for M(t))

M(t) =
∑
k≥1 t

kgkMk(t) where Mk(t) subseries of M(t) with deg(v0)=2k

Mk(t) = (2k−1)!! +
k∑
i=1

(2k)!

(2i)!(k−i)!2k−i
M̃i(t)

where M̃i(t) := subseries
of Mi(t) with no loop at v0



Extension to Eulerian maps
• 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is U(t) = Λ
(

exp
(∑
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Extension to Eulerian maps
• 1st approach: configuration model

The EGF of Eulerian maps that are unrooted, half-edge-labeled,

and not necessarily connected is U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
with Λ the operator: Λ

(∑
n≥0 cnt

n
)

:=
∑

n≥0(2n− 1)!!cnt
n

⇒ the GF of rooted Eulerian maps is M(t) = 2t
d

dt
log(U(t))

• 2nd approach: deletion of root-vertex v0 (non-linear DE for M(t))

M(t) =
∑
k≥1 t

kgkMk(t) where Mk(t) subseries of M(t) with deg(v0)=2k

Mk(t) = (2k−1)!! +
k∑
i=1

(2k)!

(2i)!(k−i)!2k−i
M̃i(t)

where M̃i(t) := subseries

eC(t) · M̃i(t) = 2i
di

dti
eC(t) with 2t

d

dt
C(t) = M(t)

⇒ M̃i(t) = polynomial in 1
t
,M(t), . . . , di−1

dti−1M(t)

⇒ differential equation of order r − 1 for M(t) when max-degree ≤ 2r

of Mi(t) with no loop at v0



Hence ΛW (t) =
1√
2π

∫
W (tx2)e−x

2/2dx

⇒ U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
=

1√
2π

∫
eV (t,x)−x2/2dx

V (t, x)∑
k≥1

1
2kgkt

kx2k

Orthogonal polynomials (preparation)
Rk: (2n− 1)!! =

1√
2π

∫
x2ne−x

2/2dx



Hence ΛW (t) =
1√
2π

∫
W (tx2)e−x

2/2dx

⇒ U(t) = Λ
(

exp
(∑
k≥1

1

2k
tkgk

))
=

1√
2π

∫
eV (t,x)−x2/2dx

V (t, x)∑
k≥1

1
2kgkt

kx2k

Orthogonal polynomials (preparation)
Rk: (2n− 1)!! =

1√
2π

∫
x2ne−x

2/2dx

Then M(t) = 2t
d

dt
log(U(t)) =

2tU ′(t)

U(t)
=

1√
2π

∫
x2eV (t,x)−x2/2dx

1√
2π

∫
eV (t,x)−x2/2dx

− 1

proved either by integration by part
or noticing that numerator = GF maps (not necess. connected)

rooted at vertex of degree 2
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Let (pi(t, x))i≥1 be the unique family of orthogonal polynomials (in x)

such that pi(t, x) = xi + lower degrees (Hermite polynomials for t = 0)

General properties:

3-term recurrence

Rk: V (t, x) = V (t,−x) ⇒ pi(t,−x) = (−1)ipi(t, x) (so p1(t, x) = x)
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(no component pa with a ≤ i− 2 because < xpi, pa > = < pi, xpa > = 0)
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hi−1(t)
=
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hi−1(t)
=

hi(t)

hi−1(t)

Let hi(t) :=< pi, pi >

Then
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Consider the “scalar product”

< F,G >:=
1√
2π

∫
F (t, x)G(t, x)eV (t,x)−x2/2dx

Let (pi(t, x))i≥1 be the unique family of orthogonal polynomials (in x)

such that pi(t, x) = xi + lower degrees (Hermite polynomials for t = 0)

General properties:

3-term recurrence

Rk: V (t, x) = V (t,−x) ⇒ pi(t,−x) = (−1)ipi(t, x) (so p1(t, x) = x)

xpi(t, x) = pi+1(t, x) + ri(t)pi−1(t, x)

(no component pa with a ≤ i− 2 because < xpi, pa > = < pi, xpa > = 0)

<xpi, pi−1>/<pi−1, pi−1>

ri(t) =
< xpi, pi−1 >

hi−1(t)
=
< pi, xpi−1 >

hi−1(t)
=

hi(t)

hi−1(t)

Let hi(t) :=< pi, pi >

Then

In particular r1(t) =
h1(t)

h0(t)
=
< x, x >

< 1, 1 >
= M(t) + 1



Orthogonal polynomials

Recursive system for (ri(t))i≥1

Recall (pi(t, x))≥1 orthogonal polynomials with pi(t, x) = xi+ lower degrees

hi :=< pi, pi > ri = hi/hi−1
xpi(t, x) = pi+1(t, x) + ri(t)pi−1(t, x)Recurrence for (pi(t, x))i≥1:

(4-regular, gk = δk=2)

[Bessis-Itzykson-Zuber’80]
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i

i-1

i

i-1

i

i-1

− t2hi−1

(
ri+1ri + riri + riri−1

)
hi

x2pi =

pi+2

ripi+

+

ri+1pi

+ riri−1pi−2

i

i+2

i i

i

i-2

i i
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xpi(t, x) = pi+1(t, x) + ri(t)pi−1(t, x)Recurrence for (pi(t, x))i≥1:

(4-regular, gk = δk=2)

< ∂
∂xpi, pi−1 > = i hi−1

1√
2π

∫
∂

∂x
pi(t, x)pi−1(t, x)et

2x4/4−x2/2dx

integ. parts

− < pi,
∂
∂xpi−1 > +

1√
2π

∫
pi(t, x)pi−1(t, x)(x− t2x3)et

2x4/4−x2/2dx

0 < pi, xpi−1 > − t2 < x3pi, pi−1 >

i

i-1

i

i-1

i

i-1

− t2hi−1

(
ri+1ri + riri + riri−1

)
Dividing by hi−1 yields
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Orthogonal polynomials
Recall (pi(t, x))≥1 orthogonal polynomials with pi(t, x) = xi+ lower degrees

hi :=< pi, pi > ri = hi/hi−1
xpi(t, x) = pi+1(t, x) + ri(t)pi−1(t, x)Recurrence for (pi(t, x))i≥1:

(general case)

< ∂
∂xpi, pi−1 > = i hi−1

1√
2π

∫
∂

∂x
pi(t, x)pi−1(t, x)eV (t,x)−x2/2dx

integ. parts

< pi, xpi−1 > −
∑

k≥1 t
kgk < x2k−1pi, pi−1 >

−hi

x2pi =

pi+2

ripi+

+

ri+1pi

+ riri−1pi−2

i

i+2

i i

i

i-2

i i

hi−1

∑
k≥1

tkgk
∑

℘∈Dyck
(i→i−1)
2k−1

∏
descending steps
h→h−1 of ℘

rh(t)

⇒ ri(t) = i+
∑
k≥1

gkt
k

∑
℘∈Dyck

(i→i−1)
2k−1

∏
descending steps
h→h−1 of ℘

rh(t)

/hi−1

[Bessis-Itzykson-Zuber’80]

Recursive system for (ri(t))i≥1



Model of trees for ri(t)

r̂i(t) = zi +
∑
k≥1

gkt
k

∑
℘∈Dyck

(i→i−1)
2k−1

∏
descending steps
h→h−1 of ℘

r̂h(t)

Let r̂i(t) := GF i-balanced Eulerian trees with:
-weight tkgk per node of degree 2k
-weight zh per closing of i-height h ( h

h 1
)

i
i-1

w(T1) w(T2) w(T3) w(i)(T )

i
i-1

℘(i)(T )

T

T1

T2

T3

℘(T )

zi+1
zi



Model of trees for ri(t)

r̂i(t) = zi +
∑
k≥1

gkt
k

∑
℘∈Dyck

(i→i−1)
2k−1

∏
descending steps
h→h−1 of ℘

r̂h(t)

Let r̂i(t) := GF i-balanced Eulerian trees with:
-weight tkgk per node of degree 2k
-weight zh per closing of i-height h (

i-enriched Eulerian tree := i-balanced Eulerian tree
+ assign index ι ∈ [0..h− 1] to each closing leaf of i-height h

The GF of i-enriched Eulerian trees is r̂i(t)|zj=j = ri(t)
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i
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a spanning tree T and an Eulerian orientation such that

1-enriched tree

edges ∈ T are toward the root, edges /∈ T ‘turn clockwise’ around T
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We apply it to Eulerian maps, with α(v) = deg(v)/2

Rk: Extended notion of orientations (left-accessible) in [Bernardi-Chapuy’11]
(orientations for maps endowed with spanning unicellular map)
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Bijection ⇔ leaf-extensions + Schaeffer’s planar construction

Rk: Let ri(t, q) := r̂i|zj=[j], where [j] := 1 + · · · + qj−1 =
1− qj

1− q
Then r1(t, q) = GF of Eulerian maps with q conjugate to crossing-number

Ri(t) = ri(t, 0) ri(t) = ri(t, 1) w.r.t canonical
spanning tree
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Rk: Let ri(t, q) := r̂i|zj=[j], where [j] := 1 + · · · + qj−1 =
1− qj

1− q
Then r1(t, q) = GF of Eulerian maps with q conjugate to crossing-number

Ri(t) = ri(t, 0) ri(t) = ri(t, 1)

Rk: other extension of Schaeffer’s bijection with control on the genus [Lepoutre’19]
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Marked Eulerian map: Eulerian map with marked
oriented edges bearing ≥ 1 multiplicities

Admissible: possible to extend to Eulerian orientation
where the root-edge is outgoing, and

ri(t) counts admissible marked Eulerian maps with total multiplicity ≤ i− 1

root-edgeroot-accessible without using marked edges



Face-colored maps

- recall on matrix integrals + orthogonal poly. for genus expansion

- interpretation of counting formula in terms of marked maps



Face-colored maps and relation to genus-expansion
N -face-colored map = map where each face receives a color in [1..N ]

4-face-coloring
4

1

1

M(t,N) := GF N-face-colored Eulerian maps

U(t,N) := EGF unrooted N-face-colored Eulerian maps
(half-edge-labeled, not necessarily connected)

M(t,N) = 2t
d

dt
log(U(t,N))

4-regular case (gk = δk=2):

M(t,N) = (2N3 +N)t2 +O(t4)

genus =
|V | − |F |

2
+ 1

genus=0 genus=1
|F | = 3 |F | = 1



Matrix integral method (+ orthogonal poly.)

2N(N−1)/2

(2π)N
2/2

∫
HN

dH eTr
(
−H2/2+V (t,H)

)
U(t,N)

configuration-model + Wick’s formula
V (t,X)∑

k≥1

1
2kgkt

kX2k

[’t Hooft’74], [Brézin-Itzykson-Parisi-Zuber’78], [Bessis-Itzykson-Zuber’80]
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Expressions for M(t, N)
U(t,N) = c̃N hN0 r

N−1
1 rN−2

2 · · · rN−1

M(t,N) = 2t
d

dt
logU(t,N) = 2tN

h′0(t)

h0(t)
+ 2t

N−1∑
i=1

(N − i)
r′i(t)

ri(t)
(Exp1)
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(N − i)
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ri(t)
(Exp1)

⇓

Denote < F (H) >:=
2N(N−1)/2

(2π)N
2/2

∫
HN

dH F (H)eTr
(
−H2/2+V (t,H)

)Simpler expression:

Then M(t,N) =
< Tr(H2) >

U(t,N)
−N2 = −N2+

N−1∑
i=0

(
ri(t)+ri+1(t)

)

[course notes Di Francesco’14]
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(
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Then M(t,N) =
< Tr(H2) >

U(t,N)
−N2 = −N2+
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(
ri(t)+ri+1(t)
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[course notes Di Francesco’14]

(Exp2)

Rk: No bijective proofs of (Exp1) or (Exp2) for N≥2, but they are linked by

the differential identity r′i(t) = ri(t)
(
ri+1(t)− ri−1(t)− 2

)
for which we have a bijective proof (using marked maps)

N(r1(t)−1)



Genus expansion
For 4-regular maps ri(t) satisfy the recursive system

ri(t) = i+ t2ri(t)(ri−1(t) + ri(t) + ri+1(t))

⇒ ri(t) = i+ 3i2t2 + (18i3 + 6i)t4 + (135i4 + 162i2)t6 + · · ·
(by induction on k ≥ 0, Pk(i) := [t2k]ri(t) is a polynomial in i)

P0(i) = i and for k ≥ 1, Pk(i) =

k−1∑
`=0

Pk−`−1(i)
(
P`(i− 1) + P`(i) + P`(i + 1)

)
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(by induction on k ≥ 0, Pk(i) := [t2k]ri(t) is a polynomial in i)

Then one obtains

M(t,N) = −N2+

N−1∑
i=1

(
ri(t)+ri+1(t)

)
=
∑
k≥1
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(
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Rk: Expansion with N2−2genus instead of NF and letting N →∞
⇒ Mplanar(t) = 2

∫ 1

0
R(x, t)dx with R(x, t)=x+

∑
tkgk
(
2k−1
k−1

)
R(x, t)k

k≥1



Interpretation in terms of marked maps
M(t,N) = −N2+

N−1∑
i=0

(
ri(t)+ri+1(t)

)
⇒ M(t,N) = GF of admissible marked Eulerian maps of total multiplicity

µ ≤ N−1 where each such map is counted 2(N − 1− µ) + δµ=N−1 times
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M(t,N) =
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(N
L
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M̂(t, L)

uN (t) := GF of admissible marked Eulerian maps with N − 1 marked edges
(each with multiplicity 1), counted twice if the root-edge is marked

M̂(t,N) = uN (t) (bijection?)
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uN (t) := GF of admissible marked Eulerian maps with N − 1 marked edges
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Example:

M̂(t,N) = uN (t) (bijection?)

[t2g2]M̂(t, 2) =
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4 4 4

1
2

2



Interpretation in terms of marked maps
M(t,N) = −N2+

N−1∑
i=0

(
ri(t)+ri+1(t)

)
⇒ M(t,N) = GF of admissible marked Eulerian maps of total multiplicity

µ ≤ N−1 where each such map is counted 2(N − 1− µ) + δµ=N−1 times

Let M̂(t,N) = GF of fully-N-colored Eulerian maps
(every color ∈ [1..N ] is used by at least one face)
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uN (t) := GF of admissible marked Eulerian maps with N − 1 marked edges
(each with multiplicity 1), counted twice if the root-edge is marked

Example:

M̂(t,N) = uN (t) (bijection?)

[t2g2]M̂(t, 2) =

[t2g2] u2(t) =

612

12

6 0

4 4 4

More generally [tngn]M̂(t, L) = [tngn]uL(t) = (2n− 1)!!

(
n

L− 1

)
2L−1

Harer-Zagier summation formula
(bijective proofs: [Goulden-Nica’05, Bernardi’12, Chapuy-Feray-Fusy’13])
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