Baxter permutations and meanders

Éric Fusy (LIX, École Polytechnique)
Meanders on two lines

- A 2-line meander
Meanders on two lines

• A 2-line meander

encoded by a permutation

7 8 9 6 1 4 3 2 5
Meanders on two lines

- A 2-line meander encoded by a permutation

- Monotone 2-line meander:
can be obtained from two monotone lines (one in \(x \), the other in \(y \))
Meanders on two lines

• A 2-line meander

• Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

encoded by a permutation

Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)
Meanders on two lines

- A 2-line meander

- Monotone 2-line meander: can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Meanders on two lines

- A 2-line meander

- Monotone 2-line meander:
 can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Meanders on two lines

• A 2-line meander

 encoded by a permutation

• Monotone 2-line meander:
 can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Maps odd numbers to odd numbers, even numbers to even numbers
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders
[Baxter'64, Boyce'67&'81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]

then has to go left
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter'64, Boyce'67&'81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders
[Baxter'64, Boyce'67&'81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]

white points are either:

- rising
- descending

or
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]

white points are either:

- rising
- descending
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]

white points are either:

rising

descending
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’67&’81]

white points are either:

- rising
- descending

or
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’67&’81]

Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called complete Baxter permutations
Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called complete Baxter permutations.

Theorem ([Boyce’81] reformulated bijectively):
Monotone 2-line meanders with \(2n - 1\) crossings are in bijection with complete Baxter permutations on \(2n - 1\) elements.
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve

or
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve

The two curves meet only at the permutation points (because of the empty area-property at white points)
Complete and reduced Baxter permutations
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one
Complete and reduced Baxter permutations

• complete one can be recovered from reduced one

Complete: [Diagram of complete Baxter permutations]
Reduced: [Diagram of reduced Baxter permutations]

Case of a descent
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one

Case of a descent
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one.

- Case of a descent.
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

case of a rise

complete

reduced
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Case of a rise
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one.
- Reduced one is characterized by forbidden patterns $2 - 41 - 3$ and $3 - 14 - 2$.
Complete and reduced Baxter permutations

• complete one can be recovered from reduced one
• reduced one is characterized by forbidden patterns $2 - 41 - 3$ and $3 - 14 - 2$
• permutation on white points (called anti-Baxter) is characterized by forbidden patterns $2 - 14 - 3$ and $3 - 41 - 2$
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with \(n \) elements

 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]

[Chung et al’78] [Mallows’79]
Counting results

• Baxter permutations
 - Number of reduced Baxter permutations with \(n \) elements
 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]
 [Chung et al’78] [Mallows’79]
 - Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

5 7 6 2 1 4 3 ⇔

\[
\begin{array}{c}
\begin{array}{cccccc}
5 & 7 & 6 & 2 & 1 & 4 & 3
\end{array}
\end{array}
\]
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with n elements
 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]
 - Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

- Subfamilies
 - alternating [Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]
 \[
 \text{Cat}_k \text{Cat}_k \text{ if } n = 2k \quad \text{Cat}_k \text{Cat}_{k+1} \text{ if } n = 2k + 1
 \]
 - doubly alternating [Guibert-Linusson’00]
 \[
 \text{Cat}_k \text{ where } k = \lfloor n/2 \rfloor
 \]
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with \(n \) elements

 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]

 \[\text{[Chung et al'78] [Mallows'79]}\]
 - Bijective proof: \[\text{[Viennot'81], [Dulucq-Guibert'98]}\]

- Subfamilies
 - alternating \[\text{[Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]}\]

 \[
 \text{Cat}_k \text{Cat}_k \text{ if } n = 2k
 \]

 \[
 \text{Cat}_k \text{Cat}_{k+1} \text{ if } n = 2k + 1
 \]
 - doubly alternating \[\text{[Guibert-Linusson'00]}\]

 \[
 \text{Cat}_k \text{ where } k = \lfloor n/2 \rfloor
 \]

- anti-Baxter permutations \[\text{[Asinowski et al’10]}\]

 \[
 a_n = \sum_{i=0}^{\lfloor (n+1)/2 \rfloor} (-1)^i \binom{n+1}{i} b_{n+1-i}
 \]
Local conditions for monotone 2-line meanders
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either rising or descending
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):

then the leftmost and the rightmost point on the loop are of different colors
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either rising or descending

Proof of \iff

Assume there is a red loop (say, clockwise):

then the leftmost and the rightmost point on the loop are of different colors
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):

then the leftmost and the rightmost point on the loop are of different colors

\Rightarrow we have a 2-line meander
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either
 \[\begin{array}{c}
 \text{or}
 \end{array}\]

Proof of \(\Leftarrow\): construct permutation step by step
Local conditions for monotone 2-line meanders

\[\iff\]

- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

\[\text{Proof of } \iff: \text{ construct permutation step by step}\]
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

important observation:

By similar argument as to show there is no red loop
Local conditions for monotone 2-line meanders

\[\iff \]

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either [diagram showing two possible configurations]

Proof of \(\iff \): construct permutation step by step

Important Observation:

- already labelled
- already labelled

By similar argument as to show there is no red loop
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

Important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either or

Proof of \iff: construct permutation step by step

important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

\[\iff \]

\begin{itemize}
 \item two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
 \item white nodes are either
\end{itemize}

Proof of \(\iff \): construct permutation step by step

Important observation:

- Already labelled
- Already labelled
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step

Important observation:

- already labelled
- already labelled
Local conditions for monotone 2-line meanders

Conditions

- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

important observation:

<table>
<thead>
<tr>
<th>i</th>
<th>$i+1$</th>
<th>$i+1$</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>already labelled</td>
<td>already labelled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either \[\begin{array}{c}
\text{important observation:} \\
\begin{array}{c}
\text{already labelled} \\
i \\
\text{already labelled}
\end{array}
\quad \text{or} \\
\begin{array}{c}
\text{already labelled} \\
i+1 \\
\text{already labelled}
\end{array}
\end{array} \]

Proof of \(\Leftarrow \): construct permutation step by step
Local conditions for monotone 2-line meanders

\[\iff \]

Conditions
- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either

\[\begin{array}{c}
\text{already labelled} \\
\text{already labelled}
\end{array} \]

Proof of \(\iff \): construct permutation step by step

Important observation:
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of ⇐: construct permutation step by step

important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \iff: construct permutation step by step

important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

\[\iff\]

Conditions
- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either

Proof of \(\iff\): construct permutation step by step

important observation:
\[i\quad\quad\quad\quad i+1\quad\quad\quad\quad i+1\quad\quad\quad\quad i\]
\[\text{already labelled} \quad\quad\quad\quad \text{already labelled}\]

\[\emptyset\quad\quad\quad\quad \emptyset\]
Local conditions for monotone 2-line meanders

\[\iff \]

- two (bipartite) matchings missing a (black) point
 (one matching above, one below the blue line)
- white nodes are either \[\quad \text{or} \quad \]

Conditions

Proof of \(\iff \): construct permutation step by step

Similarly:

\[\quad \text{or} \quad \]

\[\quad \text{or} \quad \]
Encoding a monotone 2-line meander

\[\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0
\end{array} \]
Encoding a monotone 2-line meander

Each path has length $n - 1$
Encoding a monotone 2-line meander

close to encoding in [Viennot’81, Dulucq-Guibert’98]

each path has length $n - 1$
Encoding a monotone 2-line meander

Each path has length $n - 1$.

Close to encoding in [Viennot'81, Dulucq-Guibert'98]
Exactly coincides with encoding in [Felsner-F-Noy-Orden'11]
(uses "equatorial line" in separating decompositions of quadrangulations)
Enumeration using the LGV lemma

Each path has length $n - 1$
Enumeration using the LGV lemma

Let $a_{i,j} = \# (\text{upright lattice paths from } A_i \text{ to } B_j) = \binom{n-1}{x(B_j) - x(A_i)}$

By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot’81]) the number $b_{n,r}$ of such nonintersecting triples of paths is

$$b_{n,r} = \text{Det}(a_{i,j}) = \begin{vmatrix} \binom{n-1}{r} & \binom{n-1}{r+1} & \binom{n-1}{r+2} \\ \binom{n-1}{r-1} & \binom{n-1}{r} & \binom{n-1}{r+1} \\ \binom{n-1}{r-2} & \binom{n-1}{r-1} & \binom{n-1}{r} \end{vmatrix} = \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$
Enumeration using the LGV lemma

Let \(a_{i,j} = \# \) (upright lattice paths from \(A_i \) to \(B_j \)) = \(\binom{n-1}{x(B_j) - x(A_i)} \)

By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot’81]),
the number \(b_{n,r} \) of such nonintersecting triples of paths is

\[
b_{n,r} = \text{Det}(a_{i,j}) = \begin{vmatrix}
\binom{n-1}{r} & \binom{n-1}{r+1} & \binom{n-1}{r+2} \\
\binom{n-1}{r-1} & \binom{n-1}{r} & \binom{n-1}{r+1} \\
\binom{n-1}{r-2} & \binom{n-1}{r-1} & \binom{n-1}{r}
\end{vmatrix} = \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
\]

\(b_{n,r} \) is also the number of reduced Baxter permutations of size \(n \) with \(r \) rises
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$

alternation \iff middle word is $010101\ldots0$
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$

alternation \Leftrightarrow middle word is $010101\ldots0$

middle path is

...
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$

alternation \Leftrightarrow middle word is 010101...0

middle path is

There are $\text{Cat}_k \text{Cat}_k$ alternating (reduced) Baxter permutations of size n
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

2) Case n odd, $n = 2k + 1$

There are $\text{Cat}_k \text{Cat}_{k+1}$ alternating (reduced) Baxter permutations of size n
Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]

1) Case \(n \) even, \(n = 2k \)

\[\pi = 5 \ 7 \ 6 \ 8 \ 3 \ 4 \ 1 \ 2 \]

alternation of \(\pi \): middle word is 010101...0

middle path is

alternation of \(\pi^{-1} \): black points are \(\bullet \) or \(\circ \)
Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]

1) Case n even, $n = 2k$

$\pi = 5 \ 7 \ 6 \ 8 \ 3 \ 4 \ 1 \ 2$

alternation of π: middle word is $010101 \ldots 0$

middle path is \Rightarrow

alternation of π^{-1}: black points are \bullet or \circ

There are Cat_k doubly alternating (reduced) Baxter permutations of size n
2) Case n odd, $n = 2k + 1$

There are Cat_k doubly alternating (reduced) Baxter permutations of size n