A master bijection for planar maps and its applications

Éric Fusy (CNRS/LIX)
Joint work with Olivier Bernardi (MIT)
Planar graphs. Definition

A **planar graph** is a graph that can be drawn in \mathbb{R}^2 without edge-crossing.

K_4 is planar

K_5 is not planar
Planar graphs. Definition

A **planar graph** is a graph that can be drawn in \(\mathbb{R}^2 \) without edge-crossing.

- \(K_4 \) is planar
- \(K_5 \) is not planar

Rk: Can be drawn in \(\mathbb{R}^2 \) \(\iff \) can be drawn in \(S^2 \)
Planar graphs. **Definition**

A **planar graph** is a graph that can be drawn in \(\mathbb{R}^2 \) without edge-crossing.

- **\(K_4 \)** is planar
- **\(K_5 \)** is not planar

Rk: Can be drawn in \(\mathbb{R}^2 \) ⇔ can be drawn in \(S^2 \)
Planar maps and plane maps. **Definition**

- A **planar map** is a connected planar graph drawn in the sphere considered up to continuous deformation.
Planar maps and plane maps. Definition

• A **planar map** is a connected planar graph drawn in the sphere considered up to continuous deformation.

(i) A map has vertices and edges (like a graph), **and also faces**

(ii) Encoded by **cyclic order of neighbours** around each vertex
Planar maps and plane maps. **Definition**

- A **planar map** is a connected planar graph drawn in the sphere considered up to continuous deformation.

\[= \neq \]

(i) A map has vertices and edges (like a graph), **and also faces**

(ii) Encoded by **cyclic order of neighbours** around each vertex

- A **plane map** is a connected planar graph drawn in the plane considered up to continuous deformation.

\[= \neq \]
Planar maps and plane maps. **Definition**

- A **planar map** is a connected planar graph drawn in the sphere considered up to continuous deformation.

(i) A map has vertices and edges (like a graph), and also **faces**
(ii) Encoded by **cyclic order of neighbours** around each vertex

- A **plane map** is a connected planar graph drawn in the plane considered up to continuous deformation.

Rk: Plane map = planar map **with a marked face** (the outer face)
The Euler relation
Let $M = (V, E, F)$ be a planar map. Then

$$|V| - |E| + |F| = 2$$
The Euler relation

Let $M = (V, E, F)$ be a planar map. Then

\[
|V| - |E| + |F| = 2
\]

\(\iff\)

\[
|E| = (|V| - 1) + (|F| - 1)
\]
The Euler relation

Let $M = (V, E, F)$ be a planar map. Then

\[|V| - |E| + |F| = 2 \]

\[\iff \quad |E| = (|V| - 1) + (|F| - 1) \]

\[\Rightarrow \text{ simple planar graph } G = (V, E) \text{ satisfies } |E| \leq 3|V| - 6 \]

(hence K_5 has too many edges to be planar)
Planar maps.

Motivations

- Algorithmic applications: efficient encoding of meshed surfaces.

- Probability and Physics: random lattices, random surfaces.

- Representation Theory: factorization problems.
Symmetry issues.

In order to identify vertices unambiguously (to *avoid symmetry issues*):

- **Planar graphs**: need to **label the vertices**

 ![A labelled planar graph](image)

- **Planar maps**: only need to **mark a corner**

 ![A rooted planar map](image)
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**

 Labelled planar graphs \(n \) vertices:
 \[
 \sim n! \, c \, n^{-7/2} \gamma^n
 \]
 [Giménez, Noy’05]

 Rooted planar maps \(n \) edges:
 \[
 \sim c \, n^{-5/2} \gamma^n
 \]
 [Tutte’63]
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**

 Labelled planar graphs \(n \) vertices: \(\sim n! c n^{-7/2} \gamma^n \) [Giménez, Noy’05]

 Rooted planar maps \(n \) edges: \(\sim c n^{-5/2} \gamma^n \) [Tutte’63]

Rk: In both cases, number of **rooted labelled objects** is \(\sim n! cn^{-5/2} \gamma^n \)
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**

 - Labelled planar graphs n vertices:
 \[\sim n! \, c \, n^{-7/2} \gamma^n \quad [\text{Giménez, Noy'05}] \]

 - Rooted planar maps n edges:
 \[\sim c \, n^{-5/2} \gamma^n \quad [\text{Tutte'63}] \]

- **Rooted**

 In both cases, number of **rooted labelled objects** is $\sim n!cn^{-5/2}\gamma^n$

- **Random planar graph/map of size n (for n large):**

 ...
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**
 - Labelled planar graphs n vertices:
 \[\sim n! \cdot c \cdot n^{-7/2} \cdot \gamma^n \] [Giménez, Noy’05]
 - Rooted planar maps n edges:
 \[\sim c \cdot n^{-5/2} \cdot \gamma^n \] [Tutte’63]

 Rk: In both cases, number of **rooted labelled objects** is \(\sim n!cn^{-5/2}\gamma^n \)

- **Random planar graph/map of size n (for n large):**
 - **Local parameters:** $\mu \cdot n + \sigma \sqrt{n} \cdot X$
 - \(\sim n!cn^{-5/2}\gamma^n \) **gaussian fluctuations**
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**
 - Labelled planar graphs n vertices: $\sim n! \cdot c \cdot n^{-7/2} \gamma^n$ [Giménez, Noy’05]
 - Rooted planar maps n edges: $\sim c \cdot n^{-5/2} \gamma^n$ [Tutte’63]

Rk: In both cases, number of **rooted labelled objects** is $\sim n!c n^{-5/2} \gamma^n$

- **Random planar graph/map of size n (for n large):**
 - **Local parameters:** $\mu \cdot n + \sigma \sqrt{n} \cdot X$
 - **Maximum vertex-degree:** scale is $\log(n)$
 - [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al’2011]
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**
 - Labelled planar graphs \(n \) vertices:
 \[
 \sim n! c n^{-7/2} \gamma^n
 \]
 [Giménez, Noy’05]
 - Rooted planar maps \(n \) edges
 \[
 \sim c n^{-5/2} \gamma^n
 \]
 [Tutte’63]

Rk: In both cases, number of **rooted labelled objects** is \(\sim n!cn^{-5/2}\gamma^n \)

- **Random planar graph/map of size \(n \) (for \(n \) large):**
 - **Local parameters:** \(\mu \cdot n + \sigma \sqrt{n} \cdot X \)
 - **Maximum vertex-degree:** scale is \(\log(n) \)
 - [Gao Wormald]
 - [Mac Diarmid, Reed]
 - [Drmota et al’2011]
 - **Diameter:** scale is \(n^{1/4} \)
 - [Chassaing, Schaeffer’04], [Le Gall’11], [Miermont’11]
 - [Chapuy el al’10]
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**

 - Labelled planar graphs n vertices:
 \[\sim n! \frac{c}{\gamma^n} n^{-7/2} \]
 [Giménez, Noy’05]

 - Rooted planar maps n edges:
 \[\sim \frac{c}{\gamma^n} n^{-5/2} \]
 [Tutte’63]

 \[\text{Rk: In both cases, number of \textbf{rooted labelled objects} is } \sim n! c n^{-5/2} \gamma^n \]

- **Random planar graph/map of size n (for n large):**

 - **Local parameters:** \[\mu \cdot n + \sigma \sqrt{n} \cdot X \]
 gaussian fluctuations

 - **Maximum vertex-degree:** scale is \(\log(n) \)
 [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al’2011]

 - **Diameter:** scale is \(n^{1/4} \)
 [Chassaing, Schaeffer’04], [Le Gall’11], [Miermont’11] [Chapuy el al’10]

- **Why do they have same behaviour ?**
Asymptotic behaviour of planar maps/graphs

- Asymptotic number:
 - Labelled planar graphs n vertices:
 \[\sim n! c n^{-7/2} \gamma^n \] [Giménez, Noy’05]
 - Rooted planar maps n edges:
 \[\sim c n^{-5/2} \gamma^n \] [Tutte’63]

Rk: In both cases, number of rooted labelled objects is $\sim n! c n^{-5/2} \gamma^n$

- Random planar graph/map of size n (for n large):
 - Local parameters: $\mu \cdot n + \sigma \sqrt{n} \cdot X$
 - Maximum vertex-degree: scale is $\log(n)$
 [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al’2011]
 - Diameter: scale is $n^{1/4}$
 [Chassaing, Schaeffer’04], [Le Gall’11], [Miermont’11] [Chapuy et al’10]

- Why do they have same behaviour? [Giménez, Noy, Rué’10]

<table>
<thead>
<tr>
<th>Random planar graph</th>
<th>random (3-connected) planar map</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sim</td>
<td>\sim</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>+ little pieces</td>
<td>attached into it</td>
</tr>
</tbody>
</table>
Asymptotic behaviour of planar maps/graphs

- **Asymptotic number:**

 Labelled planar graphs n vertices:
 \[\sim n! \cdot cn^{-7/2}\gamma^n \] \[\text{[Giménez, Noy’05]}\]

 Rooted planar maps n edges:
 \[\sim c \cdot n^{-5/2}\gamma^n \] \[\text{[Tutte’63]}\]

- **Random planar graph/map of size** n (for n large):

 - **Local parameters:** $\mu \cdot n + \sigma \sqrt{n} \cdot X$

 - **Maximum vertex-degree:** scale is $\log(n)$

 - [Gao Wormald] [Mac Diarmid, Reed] [Drmota et al’2011]

 - **Diameter:** scale is $n^{1/4}$

 - [Chassaing, Schaeffer’04], [Le Gall’11], [Miermont’11] [Chapuy el al’10]

- **Why do they have same behaviour?** [Giménez, Noy, Rué’10]

Random planar graph \sim random (3-connected) planar map of size $\Theta(n)$ + little pieces attached into it

- **Planar maps:**

 - simpler enumeration formulas

 - can control distance parameters

 - bijections!
The girth parameter

The **girth** of a graph is the length of a shortest cycle within the graph.
The girth parameter

The girth of a graph is the length of a shortest cycle within the graph.
The girth parameter

The **girth** of a graph is the length of a shortest cycle within the graph.

Girth = 3

Rk: If $girth = d$ then all faces have **degree at least** d
The girth parameter

The **girth** of a graph is the length of a shortest cycle within the graph.

Rk: If \(girth = d \) then all faces have **degree at least** \(d \)

<table>
<thead>
<tr>
<th>Property</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopless</td>
<td>(girth \geq 2)</td>
</tr>
<tr>
<td>Simple</td>
<td>(girth \geq 3)</td>
</tr>
<tr>
<td>Triangle-free</td>
<td>(girth \geq 4)</td>
</tr>
</tbody>
</table>
The girth parameter

The **girth** of a graph is the length of a shortest cycle within the graph.

\[
Girth = 3
\]

Rk: If \(girth = d \) then all faces have *degree at least* \(d \).

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Girth Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopless</td>
<td>(girth \geq 2)</td>
</tr>
<tr>
<td>Simple</td>
<td>(girth \geq 3)</td>
</tr>
<tr>
<td>Triangle-free</td>
<td>(girth \geq 4)</td>
</tr>
</tbody>
</table>

Many natural map families are specified by constraints on the *girth* and on the **face-degrees** (loopless triangulations, simple quadrangulations, ...).
Planar maps. Exact counting results

- Triangulations ($2n$ faces)
 - Loopless: $\frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$
 - Simple: $\frac{1}{n(2n-1)} \binom{4n-2}{n-1}$

- Quadrangulations (n faces)
 - General: $\frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}$
 - Simple: $\frac{2}{n(n+1)} \binom{3n}{n-1}$

- Bipartite maps (n_i faces of degree $2i$)
 $\frac{2 \cdot (\sum i n_i)!}{(2 + \sum (i-1)n_i)!} \prod_i \frac{1}{n_i!} \binom{2i-1}{i}^{n_i}$
Planar maps. Counting methods

- **Generating functions** [Tutte 63]
 Recursive description of maps \leadsto recurrences.

- **Matrix Integrals** [’t Hooft 74, Brézin et al’78]
 Feynmann Diagram \approx maps.

- **Bijections** [Cori-Vauquelin 81, Schaeffer 98]
 Maps \leadsto decorated trees.
Outline

1. **Master bijection** between a class of **oriented maps** and a class of bicolored **decorated trees** (which are called mobiles).

2. **Specializations** to classes of maps (via canonical orientations).

![Diagram showing bijection between oriented maps and decorated trees](image-url)

<table>
<thead>
<tr>
<th>Girth</th>
<th>Degree of the faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Sc98, BoDiGu04]</td>
</tr>
<tr>
<td>2</td>
<td>[PoSc02]</td>
</tr>
<tr>
<td>3</td>
<td>[FuPoSc08]</td>
</tr>
<tr>
<td>4</td>
<td>[Sc98]</td>
</tr>
</tbody>
</table>

References:

- Sc98
- FuPoSc08
- BoDiGu04
From oriented maps to mobiles
Pointed bipartite map \rightarrow labelled mobile. [Sc98] [BoDiGu04]
Pointed bipartite map \rightarrow labelled mobile. \cite{Sc98} \cite{BoDiGu04}

Label the vertices by the distance from pointed vertex.
Pointed bipartite map \rightarrow labelled mobile. \[[\text{Sc98}]\] \[[\text{BoDiGu04}]\]

Construct the labelled mobile.
Pointed bipartite map \rightarrow labelled mobile. \[\text{[Sc98]} \quad \text{[BoDiGu04]}\]

Construct the labelled mobile

(i) put one black vertex in each face
Pointed bipartite map \rightarrow labelled mobile.

[Sc98] [BoDiGu04]

Construct the labelled mobile

(i) put one black vertex in each face

(ii) each edge of the map gives one edge in the mobile
Pointed bipartite map \rightarrow labelled mobile. \cite{Sc98,BoDiGu04}

Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map
Let T be the associated mobile
Pointed bipartite map \rightarrow labelled mobile.

Let $G = (V,E,F)$ be a pointed bipartite map. Let T be the associated mobile.

Local rule

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation).

Proof that the mobile is a tree

Let $G = (V,E,F)$ be a pointed bipartite map.
Let T be the associated mobile.

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation).
Pointed bipartite map \rightarrow labelled mobile.

Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map
Let T be the associated mobile

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation)
Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map

Let T be the associated mobile

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation)

Assume that T has a cycle C

smallest label on C
Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map.
Let T be the associated mobile.

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation).

Assume that T has a cycle C.

The smallest label on C is i.
Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map

Let T be the associated mobile

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation)

Assume that T has a cycle C

smallest label on C
Pointed bipartite map \rightarrow labelled mobile. [Sc98] [BoDiGu04]

Proof that the mobile is a tree

Let $G = (V, E, F)$ be a pointed bipartite map.

Let T be the associated mobile.

T has $|E|$ edges, and has $|V| + |F| - 1 = |E| + 1$ vertices (Euler relation).

Assume that T has a cycle C.

Label $< i$ contradiction.
Pointed bipartite map \rightarrow labelled mobile. [Sc98] [BoDiGu04]
Pointed bipartite map \rightarrow labelled mobile. \cite{Sc98, BoDiGu04}

\begin{itemize}
 \item [(i)] \exists vertex label 1
 \item [(ii)] $j \leq i + 1$
\end{itemize}
Pointed bipartite map \to labelled mobile.

\[\Rightarrow \]

\begin{itemize}
 \item [(i)] \exists vertex label 1
 \item [(ii)] $j \leq i + 1$
\end{itemize}

Local rule

Theorem: The mapping is a \textbf{bijection}. Each \textbf{face of degree $2i$} of the bipartite map corresponds to a \textbf{black vertex of degree i} in the mobile.
Pointed bipartite map \(\rightarrow\) labelled mobile. \([\text{Sc98}]\) \([\text{BoDiGu04}]\)

\[
\begin{align*}
\text{Local rule} & \quad (i) \exists \text{ vertex label } 1 \\
\text{Conditions:} & \quad (\text{i}) \quad j \leq i+1
\end{align*}
\]

Theorem: The mapping is a **bijection**. Each face of degree 2\(i\) of the bipartite map corresponds to a **black vertex of degree** \(i\) in the mobile

\[
\# \text{ rooted bipartite maps with } n_i \text{ faces of degree } 2i \text{ is } \frac{2 \cdot (\sum i n_i)!}{(2 + \sum (i - 1)n_i)!} \prod_i \frac{1}{n_i!} \left(\frac{2i - 1}{i}\right)^{n_i}
\]
Reformulation with orientations.

Distance labelling

Geodesic orientation

Local rule

\[\delta = i - j \]

\[\delta + 1 \] buds
Reformulation with orientations.

Condition: At each black vertex, as many buds as white neighbours.

Theorem: The mapping is a **bijection**. Each face of degree $2i$ of the bipartite map corresponds to a **black vertex of degree** $2i$ in the mobile.
Reformulation with orientations.

Condition:
At each black vertex, as many buds as white neighbours

Theorem: The mapping is a **bijection**. Each face of degree $2i$ of the bipartite map corresponds to a **black vertex of degree** $2i$ in the mobile
Source-orientations

A source-orientation is an orientation of a pointed map such that

- The pointed vertex (called the source) has only outgoing edges
- Accessibility: Each vertex can be reached from the source
Mobile construction for source-orientations
Mobile construction for source-orientations

Local rule
Mobile construction for source-orientations

Cycle in mobile ⇒ ccw circuit in the source-orientation
Mobile construction for source-orientations

Cycle in mobile \Rightarrow ccw circuit in the source-orientation
Mobile construction for source-orientations

Local rule

Cycle in mobile \Rightarrow ccw circuit in the source-orientation
Mobile construction for source-orientations

Cycle in mobile \Rightarrow ccw circuit in the source-orientation
Mobile construction for source-orientations

Cycle in mobile \Rightarrow ccw circuit in the source-orientation
Mobile construction for source-orientations

Local rule

Cycle in mobile \Rightarrow ccw circuit in the source-orientation

Prisoner cycle lemma
Mobile construction for source-orientations

Cycle in mobile \Rightarrow ccw circuit in the source-orientation

Prisoner cycle lemma
d-gonal source-orientations

We allow the source of the orientation to be a d-gon, with $d \geq 0$

Example for $d = 3$
d-gonal source-orientations
We allow the source of the orientation to be a d-gon, with $d \geq 0$

Example for $d = 3$

If $d > 0$, can take d-gonal source as outer face
d-gonal source-orientations

We allow the source of the orientation to be a d-gon, with $d \geq 0$

Example for $d = 3$

Let \mathcal{O}_d be the set of d-gonal source-orientations with no ccw circuit

Let $\mathcal{O} = \bigcup_{d \geq 0} \mathcal{O}_d$
Mobiles

A mobile is a plane tree with vertices properly colored in black and white, together with buds (half-edges) incident to black vertices.

The excess is the number of buds minus the number of edges.
Mobiles

A **mobile** is a plane tree with vertices properly colored in black and white, together with **buds** (half-edges) incident to black vertices.

![Diagram of a mobile]

The **excess** is the number of buds minus the number of edges.

Let \mathcal{M} be the set of mobiles of nonnegative excess.
Theorem [Bernardi-F’10]: \(\Phi \) is a \textbf{bijection} between \(\mathcal{O} \) and \(\mathcal{M} \).

Moreover,

- degree of external face \(\leftrightarrow \) excess
- degree of internal faces \(\leftrightarrow \) degree of black vertices
- indegree of internal vertices \(\leftrightarrow \) degree of white vertices
Master bijection Φ

Theorem [Bernardi-F’10]: Φ is a bijection between O and M.
Moreover,

- degree of external face \leftrightarrow excess
- degree of internal faces \leftrightarrow degree of black vertices
- indegree of internal vertices \leftrightarrow degree of white vertices

cf [Bernardi’07], [Bernardi-Chapuy’10]
Using the master bijection for map enumeration
Main new results

The **Master bijection** between \mathcal{O} (orientations) and \mathcal{M} (mobiles) allows to count maps by girth & face-degrees (via canonical orientations).

<table>
<thead>
<tr>
<th>Girth</th>
<th>Degree of the faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
</tbody>
</table>

References:
- [FuPoSc08]
- [Sc98]
- [PoSc02]
Scheme for the strategy

(1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_C of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees
Scheme for the strategy

(1) Map family \mathcal{C} identifies with a **subfamily** $\mathcal{O}_\mathcal{C}$ of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees

Example: $\mathcal{C} =$ Family of **simple triangulations**

$\mathcal{C} \simeq$ subfamily $\mathcal{O}_\mathcal{C}$ of \mathcal{O} with

- Face-degree $= 3$
- Vertex-indegree $= 3$
Scheme for the strategy

(1) Map family \mathcal{C} identifies with a **subfamily** \mathcal{O}_C of \mathcal{O} with conditions on:
- Face degrees
- Vertex indegrees

Example: $\mathcal{C} = \text{Family of simple triangulations}$

\[\mathcal{C} \simeq \text{subfamily } \mathcal{O}_C \text{ of } \mathcal{O} \text{ with} \]
- Face-degree $= 3$
- Vertex-indegree $= 3$

(2) **Specialize** the master bijection to the subfamily \mathcal{O}_C

degree of internal faces \longleftrightarrow degree of black vertices
indegree of internal vertices \longleftrightarrow degree of white vertices
\(\alpha\)-orientations

Let \(G = (V, E) \) be a graph

Let \(\alpha \) be a function from \(V \) to \(\mathbb{N} \)

\[\begin{align*}
\alpha : \quad a &\rightarrow 2 \\
b &\rightarrow 1 \\
c &\rightarrow 2 \\
d &\rightarrow 0 \\
e &\rightarrow 2
\end{align*}\]
\(\alpha \)-orientations

Let \(G = (V, E) \) be a graph
Let \(\alpha \) be a function from \(V \) to \(\mathbb{N} \)

\[
\begin{align*}
\alpha : &
\begin{array}{c}
a \rightarrow 2 \\
b \rightarrow 1 \\
c \rightarrow 2 \\
d \rightarrow 0 \\
e \rightarrow 2 \\
\end{array}
\end{align*}
\]

Def: An \(\alpha \)-orientation is an orientation of \(G \) where for each \(v \in V \)

\[
\text{indegree}(v) = \alpha(v)
\]
α-orientations
Let $G = (V, E)$ be a graph
Let α be a function from V to \mathbb{N}

\[
\begin{array}{c}
\alpha : a \rightarrow 2 \\
b \rightarrow 1 \\
c \rightarrow 2 \\
d \rightarrow 0 \\
e \rightarrow 2
\end{array}
\]

Def: An α-orientation is an orientation of G where for each $v \in V$
\[
\text{indegree}(v) = \alpha(v)
\]
\(\alpha\)-orientations: criteria for existence and accessibility

- If an \(\alpha\)-orientation \textbf{exists}, then

\[
\begin{align*}
(i) & \quad \sum_{v \in V} \alpha(v) = |E| \\
(ii) & \quad \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S|
\end{align*}
\]
α-orientations: criteria for existence and accessibility

• If an α-orientation exists, then

\begin{align*}
&\text{(i) } \sum_{v \in V} \alpha(v) = |E| \\
&\text{(ii) } \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S| \\
\end{align*}

• If the α-orientation is accessible from a vertex \(u \in V \) then

\[\sum_{v \in S} \alpha(v) > |E_S| \text{ whenever } u \notin S \text{ and } S \neq \emptyset \]
α-orientations: criteria for existence and accessibility

- If an α-orientation exists, then

\[
\begin{align*}
\text{(i)} & \quad \sum_{v \in V} \alpha(v) = |E| \\
\text{(ii)} & \quad \forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S|
\end{align*}
\]

- If the α-orientation is accessible from a vertex \(u \in V \) then

\[
\sum_{v \in S} \alpha(v) > |E_S| \text{ whenever } u \not\in S \text{ and } S \neq \emptyset
\]

Lemma (folklore): The conditions are necessary and sufficient
\textbf{\(\alpha\)-orientations: criteria for existence and accessibility}

- If an \(\alpha\)-orientation \textbf{exists}, then

\[\sum_{v \in V} \alpha(v) = |E| \]

\[\forall S \subseteq V, \sum_{v \in S} \alpha(v) \geq |E_S| \]

- If the \(\alpha\)-orientation is \textbf{accessible} from a vertex \(u \in V\) then

\[\sum_{v \in S} \alpha(v) > |E_S| \text{ whenever } u \notin S \text{ and } S \neq \emptyset \]

\textbf{Lemma (folklore):} The conditions are necessary \textbf{and sufficient} \(\Rightarrow\) accessibility from \(u \in V\) just depends on \(\alpha\) (not on which \(\alpha\)-orientation)
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a **unique α-orientation without ccw circuit**, called **minimal**.
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a **unique** α-orientation **without ccw circuit**, called **minimal**.

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 **disagree** form an **eulerian suborientation** of O_1 ⇒ contains a circuit (ccw in O_1 or O_2)
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a **unique α-orientation without ccw circuit**, called **minimal**

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 **disagree** form an **eulerian suborientation** of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2)

Set of α-orientations = **distributive lattice**

[Khueller et al'93], [Propp'93], [O. de Mendez'94], [Felsner'03]
α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation **without ccw circuit**, called **minimal**

Uniqueness proof: if $O_1 \neq O_2$, edges where O_1 and O_2 **disagree** form an **eulerian suborientation** of $O_1 \Rightarrow$ contains a circuit (ccw in O_1 or O_2)

Set of α-orientations = **distributive lattice**

[Khueller et al’93], [Propp’93], [O. de Mendez’94], [Felsner’03]
\(\alpha\)-orientations for plane maps in our setting

- **External polygon** (the source) of the plane map is **unoriented**
- **Indegrees** are only on the **internal vertices**

\[\begin{array}{c}
\alpha : \ a \rightarrow 3 \\
\quad \quad \ b \rightarrow 2 \\
\quad \quad \ c \rightarrow 2 \\
\quad \quad \ d \rightarrow 3
\end{array}\]

An \(\alpha\)-orientation
α-orientations for plane maps in our setting

- **External polygon** (the source) of the plane map is **unoriented**
- **Indegrees** are only on the **internal vertices**

\[\alpha : \begin{align*}
 a & \rightarrow 3 \\
 b & \rightarrow 2 \\
 c & \rightarrow 2 \\
 d & \rightarrow 3
\end{align*} \]

An \(\alpha\)-orientation

Partition \(V\) (vertex-set) as \(V_i \cup V_e\) and \(E\) (edge-set) as \(E_i \cup E_e\)

Existence:

(i) \(\sum_{v \in V_i} \alpha(v) = |E_i|\)

(ii) \(\forall S \subseteq V, \sum_{v \in S \cap V_i} \alpha(v) \geq |E_S \cap E_i|\)

Accessibility from outer face:

(iii) \(\forall S \subseteq V_i, \sum_{v \in S \cap V_i} \alpha(v) > |E_S \cap E_i|\)

Distributive lattice structure
Example: simple triangulations

![Diagram showing simple triangulations with degrees of faces and girths.]
Fact: A triangulation with \(n \) internal vertices has \(3n \) internal edges.

Proof: The numbers \(v, e, f \) of vertices edges and faces satisfy:
- Incidence relation: \(3f = 2e \).
- Euler relation: \(v - e + f = 2 \).
Fact: A triangulation with \(n \) internal vertices has \(3n \) internal edges.

Natural candidate for indegree function:

\[
\alpha : v \mapsto 3 \text{ for each internal vertex } v.
\]

call \textbf{3-orientation} such an \(\alpha \)-orientation
Fact: A triangulation admitting a 3-orientation is simple

k internal vertices
$3k + 1$ internal edges
Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.

New (easier) proof: Any simple planar graph $G = (V, E)$ satisfies

$$\frac{|E| - 3}{|V| - 3} \geq 3$$

(Euler relation)

hence the existence/accessibility conditions are satisfied. □
The class \mathcal{T} of simple triangulations is identified with the class of plane orientation $\mathcal{O}_T \subset \mathcal{O}$ with faces of degree 3, and internal vertices of indegree 3.

Thm [recovering FuPoSc08]: By specializing the master bijection Φ to \mathcal{O}_T one obtains a bijection between simple triangulations and mobiles such that

- black vertices have degree 3
- white vertices have degree 3
- the excess is $+3$ (redundant).
Triangulations

Counting: The generating function of mobiles with vertices of degree 3 rooted on a white corner is $T(x) = U(x)^3$, where $U(x) = 1 + xU(x)^4$.

Consequently, the number of (rooted) simple triangulations with $2n$ faces is $\frac{1}{n(2n-1)} \binom{4n-2}{n-1}$.
Triangulations: two constructions

- **mobiles**
 - [FuPoSc’08], [Bernardi-F’10]

- **blossoming trees**
 - [PoSc’03], [AlPo’11]
More specializations

d-angulations of girth d.

<table>
<thead>
<tr>
<th>Girth</th>
<th>Degree of faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
d-angulations of girth d

Fact: A d-angulation with $(d-2)n$ internal vertices has dn internal edges.
d-angulations of girth d

Fact: A d-angulation with $(d-2)n$ internal vertices has dn internal edges.

Natural candidate for indegree function:

$$\alpha : v \mapsto \frac{d}{d-2} \quad \text{for each internal vertex } v...$$
Fact: A d-angulation with $(d-2)n$ internal vertices has dn internal edges.

Idea: We can look for an orientation of $(d-2)G$ with indegree function $\alpha : v \mapsto d$ for each internal vertex v.

d-angulations of girth d
d-angulations of girth d

Fact: A d-angulation with $(d-2)n$ internal vertices has dn internal edges.

Idea: We can look for an orientation of $(d-2)G$ with indegree function $\alpha: v \mapsto d$ for each internal vertex v. Call $d/(d-2)$-orientation such an orientation
\(d\)-angulations of girth \(d\)

Thm [Bernardi-F’10]: Let \(G\) be a \(d\)-angulation. Then \((d-2)G\) admits a \(d/(d-2)\)-orientation if and only if \(G\) has girth \(d\).
d-angulations of girth \(d \)

Thm [Bernardi-F’10]: Let \(G \) be a \(d \)-angulation. Then \((d-2)G \) admits a \(d/(d-2) \)-orientation if and only if \(G \) has girth \(d \).

Proof: Similar to \(d = 3 \). Uses the fact that a planar graph \(G = (V, E) \) of girth at least \(d \) satisfies \(\frac{|E| - d}{|V| - d} \geq d \).
Master bijection for weighted orientations

There are now white-white edges in the mobile, with two positive weights summing to $d - 2$.
Theorem [Bernardi-F’10]: The master bijection can be expressed in the weighted setting:

Moreover,

- degree of internal faces \leftrightarrow degree of black faces
- indegree of internal vertices \leftrightarrow indegree of white vertices
- weights of internal edges \leftrightarrow weights of edges
- degree of external face \leftrightarrow excess
\textbf{d-angulations of girth }d\textbf{ }

\textbf{Thm [Bernardi-F’10]:} A \textit{d}-angulation \(G\) admits a \(d/(d-2)\)-orientation if and only if \(G\) has girth \(d\).

\(\Rightarrow\) The class \(\mathcal{T}_d\) of \textit{d}-angulations of girth \(d\) can be identified with the class of weighted orientations in \(\mathcal{O}\), with faces of degree \(d\), edges of weight \(d-2\), and internal vertices of indegree \(d\).
\textit{d-angulations of girth }d\

\textbf{Thm [Bernardi-F’10]:} A \textit{d-angulation} G admits a $d/(d-2)$-orientation if and only if G has girth d.

\textbf{Thm [Bernardi-F’10]:} By specializing the master bijection one obtains a bijection between \textit{d-angulations of girth} d and mobiles (with white-white edges having weights summing to $d-2$) such that

- black vertices have degree d
- white vertices have indegree d
- the excess is d (redundant).
d-angulations of girth d: counting

Thm[Bernardi-F’10]: Let $W_0, W_1, \ldots, W_{d-2}$ be the power series in x defined by: $W_{d-2} = x(1 + W_0)^{d-1}$ and $\forall j < d - 2$, $W_j = \sum_{r} \sum_{i_1, \ldots, i_r > 0 \text{ s.t. } i_1 + \cdots + i_r = j + 2} W_{i_1} \cdots W_{i_r}$.

The generating function F_d of rooted d-angulations of girth d satisfies

\[
F'_d(x) = (1 + W_0)^d.
\]
\textbf{Thm}[Bernardi-F’10]: Let $W_0, W_1, \ldots, W_{d-2}$ be the power series in x defined by: $W_{d-2} = x(1 + W_0)^{d-1}$ and $\forall j < d - 2, \quad W_j = \sum_r \sum_{i_1, \ldots, i_r > 0, \ i_1 + \ldots + i_r = j+2} W_{i_1} \cdots W_{i_r}$.

The generating function F_d of rooted d-angulations of girth d satisfies

$$F'_d(x) = (1 + W_0)^d.$$

\textbf{Example $d=5$:}

$W_3 = x(1 + W_0)^4$
$W_0 = W_1^2 + W_2$
$W_1 = W_1^3 + 2W_1W_2 + W_3$
$W_2 = W_1^4 + 3W_1^2W_2 + 2W_1W_3 + W_2^2$
Simplification in the bipartite case

- For d even, $d = 2b$, we have $\frac{d}{d-2} = \frac{b}{b-1}$

- Can work with $b/(b-1)$-orientations:
 - edges have weight $b - 1$
 - vertices have indegree b

Example: $b = 2$, simple quadrangulations

recover a bijection of Schaeffer (1999)
More specializations
Maps of girth \(d \).
We show only the bipartite case (simpler)
Case \(b = 2 \) (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face

Insert a star in each internal face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face

Generalized 2-orientation
- Each internal white vertex has indegree 2
- Each black vertex of degree $2i$ has outdegree $i - 2$
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face

Generalized 2-orientation
- Each internal white vertex has indegree 2
- Each black vertex of degree $2i$ has outdegree $i - 2$
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face

- Each internal white vertex has indegree 2
- Each black vertex of degree $2i$ has outdegree $i - 2$

For the minimal one:

& still accessible after deleting the stars
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face.
We show only the bipartite case (simpler)
Case $b = 2$ (simple bipartite maps), with quadrangular outer face

White vertices either have:
- indegree 2 (middle of red edge)
- indegree 1 (end of leg)

Each black vertex of degree $2i$ has $i - 2$ legs
Closed formulas

Prop [Bernardi-F’11]: The number of **rooted simple bipartite maps** with n_i faces of degree $2i$ is

$$2 \frac{\left(\sum (i+1) n_i - 3 \right)!}{\left(\sum i n_i - 1 \right)!} \prod_{i \geq 2} \frac{1}{n_i!} \binom{2i - 1}{i+1}^{n_i}$$

This can be compared with the formula obtained by Tutte (62) (recovered bijectively by Schaeffer) for **unconstrained rooted bipartite maps**:

$$2 \frac{\left(\sum i n_i \right)!}{\left(\sum (i-1)n_i + 2 \right)!} \prod_{i \geq 1} \frac{1}{n_i!} \binom{2i - 1}{i}^{n_i}$$
Shape of the mobile in higher (bipartite) girth

- Each black vertex of degree $2i$ has $i - b$ legs
- There are connectors between the black vertices

Connectors, for $b = 1$: $\bullet 0 0 \bullet$

$b = 2$: $\bullet 0 1 1 0 \bullet$

$b = 3$: binary trees
Thanks.

On the ArXiv:
- A bijection for triangulations, quadrangulations, pentagulations, etc.
- Bijective counting of maps by girth and degree.