Schnyder woods generalized to higher genus

Eric Fusy (Ecole Polytechnique, Paris)
joint work with Luca Castelli Aleardi and Thomas Lewiner
Combinatorics of maps
Surfaces

- All surfaces here are closed and orientable
- Classification: one surface in each genus g

\[\begin{align*}
g=0 \text{ (sphere)} & \quad | \quad g=1 \text{ (torus)} & \quad | \quad g=2 \\
\end{align*}\]
Graphs on surfaces, maps

- **Graph on surface** = graph G *embedded* on a surface S_g (no edge-crossings)

- G is a map if the components of $G \setminus S_g$ are topological disks

 - **Not a map** (cylindric component)
 - **A map** (3 faces)
How to display a map?

- $g=0$: project on the plane

- $g=1$: S_g like a square with identified opposite sides

- $g>1$: S_g like a $4g$-polygon + identifications of sides
Enumeration of planar maps

• **Strikingly simple counting formulas**
 - Triangulations: $|T_n| = \frac{2(4n-3)!}{n!(3n-2)!}$
 - Quadrangulations: $|Q_n| = \frac{2(3n-3)!}{n!(2n-2)!}$
 - Tetravalent: $|E_n| = \frac{2 \cdot 3^n (2n)!}{n!(n+2)!}$

• **Recursive method**: [Tutte 60’s]
• **Bijective method**: [Cori-Vauquelin’84], [Schaeffer’97]
 (bijections rely on combinatorial structures: orientations, …)
Counting maps in higher genus

- No exact counting formula known, but
 - Can write recurrences [Bender-Canfield’84]
 - Some bijections work [Chapuy-Marcus-Schaeffer’98]
 - Simple asymptotic pattern [Bender-Canfield’86, Gao’93]]

\[\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n] \] a map family (e.g. triangulations)

Then \[|\mathcal{M}_g[n]| \sim c_g \gamma^n n^{5(g-1)/2}. \]
Counting maps in higher genus

- No exact counting formula is known, but
 - Can write recurrences [Bender-Canfield’84]
 - Some bijections work [Chapuy-Marcus-Schaeffer’98]
 - Simple asymptotic pattern [Bender-Canfield’86, Gao’93]

\[\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n] \text{ a map family (e.g. triangulations)} \]

\[\text{Then } |\mathcal{M}_g[n]| \xrightarrow{n \to \infty} c_g \gamma^n n^{5(g-1)/2}. \]

\[\Rightarrow |\mathcal{M}_g[n]| \xrightarrow{n \to \infty} |\mathcal{M}_0[n]| \cdot n^{\Theta(g)}. \]
Counting maps in higher genus

- No exact counting formula is known, but
 - Can write recurrences [Bender-Canfield’84]
 - Some bijections work [Chapuy-Marcus-Schaeffer’98]
 - Simple asymptotic pattern [Bender-Canfield’86, Gao’93]

\[M = \bigcup_{g,n} M_g[n] \quad \text{a map family (e.g. triangulations)} \]

Then
\[|M_g[n]| \sim c_g \gamma^n n^{5(g-1)/2}. \]

\[\Rightarrow \quad |M_g[n]| \sim |M_0[n]| \cdot n^{\Theta(g)} \]

A map in genus \(g \) ‘is like’ a planar map with \(\Theta(g) \) marked edges
Counting maps in higher genus

- No exact counting formula is known, but
 - Can write recurrences [Bender-Canfield’84]
 - Some bijections work [Chapuy-Marcus-Schaeffer’98]
 - Simple asymptotic pattern [Bender-Canfield’86, Gao’93]

$$\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n] \text{ a map family (e.g. triangulations)}$$

Then
$$|\mathcal{M}_g[n]| \sim c_g \gamma^n n^{5(g-1)/2}.$$

$$\Rightarrow \quad |\mathcal{M}_g[n]| \sim |\mathcal{M}_0[n]| \cdot n^{\Theta(g)}$$

A map in genus g ‘is like’ a planar map with $\Theta(g)$ marked edges

- ‘is like’ can be made rigorous in some cases:
 - Counting maps with a unique face [Chapuy’08]
 - **This talk:** Schnyder woods can be extended to genus $g>0$ by allowing $\Theta(g)$ ‘special edges’ [Castelli, F, Lewiner’08]
Schnyder woods for planar triangulations
Planar triangulations

n inner vertices

$3n$ inner edges
Definition of Schnyder woods

Each inner edge is directed and colored in red, green or blue.

Local rules:

• Every planar triangulation admits a Schnyder wood [Schnyder’89]
Fundamental property

• Schnyder wood \rightarrow 3 spanning trees (one for each color)
Applications of Schnyder woods

Graph drawing
[Schnyder’90, Bonichon-Felsner-Mosbah’04]

Coding
[He-Kao-Lu’99, Bernardi-Bonichon’07, Poulalhon-Schaeffer’03]

Planarity criterion
[Schnyder’89, Felsner-Zickfeld’04]

\[G = (V, E) \text{ planar } \iff (V \cup E, \subseteq) \text{ has dimension } \leq 3 \]
Computing a Schnyder wood

Traversal algorithm: the faces are conquered progressively

[Schnyder’89] reformulated by [Brehm’03]
Computing a Schnyder wood

First step: Conquer
The outer face
Computing a Schnyder wood

Conquest step:
Computing a Schnyder wood
Computing a Schnyder wood

Conquest step:
Result

• At each step, take care that the chosen vertex is not incident to a chord (nor to the bottom outer edge)

![is forbidden](image)

![is accepted](image)

• There is always such a vertex

![admissible vertex](image)

• Hence the algorithm terminates, it outputs a Schnyder wood

[Schnyder’89, Brehm’03]
Triangulations in higher genus

A triangulation of genus 1
Triangulations in higher genus

A triangulation of genus 1, with a root-face.

\[n \text{ inner vertices} \]

\[3(n+2g) \text{ inner edges} \]
Triangulations in higher genus

A triangulation of genus 1, with a root-face.

- n inner vertices
- $3(n+2g)$ inner edges

No hope to have outdegree 3 everywhere
Conquest in higher genus

Conquest step:
Conquest in higher genus
Conquest in higher genus

Conquest step:
Conquest in higher genus

Can not extend conquered area C
Conquest in higher genus

Can not extend conquered area C

Special step:
- choose chord e
- make it fat
- add it to C
Conquest in higher genus

Can not extend conquered area C

Special step:
- choose chord e
- make it fat
- add it to C

$C : \text{disk}\rightarrow\text{cylinder}$

$S_g \backslash C : \text{torus}\rightarrow\text{cylinder}$
Conquest in higher genus

Continue!
Conquest in higher genus

Conquest step:
Conquest in higher genus

Can not extend conquered area C
Conquest in higher genus

Can not extend conquered area C

Special step:
- choose chord e
- make it fat
- add it to C

$C : \text{cylinder} \rightarrow \text{torus}$
$S_g \setminus C : \text{cylinder} \rightarrow \text{disk}$
Conquest in higher genus

Continue and finish!
Conquest in higher genus

Conquest step:
Conquest in higher genus

Finished!
Main result

- **Theorem** [Castelli, F, Lewiner’08]: The conquest (with 2g special steps) terminates. Running time is $O((n+g)g)$.

- The structure computed is called a g-Schnyder wood.
Main result

- **Theorem** [Castelli, F, Lewiner’08]: The conquest (with $2g$ special steps) terminates. Running time is $O((n+g)g)$.

- The structure computed is called a g-Schnyder wood

- Our traversal procedure is inspired by handlebody theory:

Handlebody decomposition of a torus

From [Rossignac et al’03]: ``EdgeBreaker” procedure
Properties in higher genus
Properties in higher genus

- $T_R=\{\text{red edges}\}+\{\text{R-B}\}+\{\text{R-G}\}$ is a spanning tree
Properties in higher genus

- $T_R = \text{red edges} + \{R-B\} + \{R-G\}$ is a spanning tree
- $G_R = T_R + \{2g \text{ special edges}\}$ is a spanning submap with 1 face
• $T_R = \{\text{red edges}\} + \{\text{R-B}\} + \{\text{R-G}\}$ is a spanning tree
• $G_R = T_R + \{2g \text{ special edges}\}$ is a spanning submap with 1 face
• $G_B = \{\text{blue edges}\} + \{\text{B-R}\} + \{\text{B-G}\}$ is a spanning submap with $1 + 2g$ faces
• $T_R = \{\text{red edges}\} + \{\text{R-B}\} + \{\text{R-G}\}$ is a spanning tree
• $G_R = T_R + \{2g \text{ special edges}\}$ is a spanning submap with 1 face

• $G_B = \{\text{blue edges}\} + \{\text{B-R}\} + \{\text{B-G}\}$ is a spanning submap with 1+2g faces

• $G_G = \{\text{green edges}\} + \{\text{G-R}\} + \{\text{G-B}\}$ is a spanning submap with 1+2g faces
Application to coding
Motivation: mesh compression

- Triangulations are the combinatorial part of triangular meshes
 - mesh of genus 0
 - mesh of genus 2

- Naïve encoding: vertices are labelled \(\{1,2,\ldots,n\} \)
 - store the faces (vertex-triples), takes memory of order \(n \log(n) \)

- This talk: Schnyder woods encoding in \(4n+O(g \log(n)) \) bits
 - (extends encoding procedure of [He-Kao-Lu’99, Bernardi-Bonichon’07] to any genus)
Encoding a planar triangulation

- Reduces to encoding a Schnyder wood
Encoding a planar triangulation

• Reduces to encoding a Schnyder wood
Encoding a planar triangulation

- Some information is redundant
Encoding a planar triangulation

• Some information is redundant

can erase
blue edges
Encoding a planar triangulation

• Some information is **redundant**

(can erase blue edges)
Encoding a planar triangulation

- Some information is redundant
Encoding a planar triangulation

- Some information is **redundant**

(can cut green edges at the middle)
Encoding a planar triangulation

- Some information is redundant

(can cut green edges at the middle)
Encoding a planar triangulation

- Some information is **redundant**

cw walk around red tree: any **green edge** is met **first** at its **outgoing** end

can cut green edges at the middle
Encoding a planar triangulation

- Some information is **redundant**

cw walk around red tree:
any **green edge** is met **first** at its **outgoing** end

can cut green edges at the middle
Encoding a planar triangulation

- Some information is redundant
Encoding a planar triangulation

- Some information is **redundant**

can erase green outer half-edges
Encoding a planar triangulation

• Some information is **redundant**

can erase green outer half-edges
Encoding a planar triangulation

• Some information is redundant
Encoding a planar triangulation

- Some information is redundant

locate corners that can have ingoing green half-edges
Encoding a planar triangulation

- Some information is redundant

locate corners that can have ingoing green half-edges
Encoding a planar triangulation

What we obtain: is coded by **2 words**:

![Diagram of a planar triangulation with numbers and arrows indicating connections between points.](image-url)
Encoding a planar triangulation

2 encoding words:

• W_R codes the red tree (Dyck word)
Encoding a planar triangulation

1) $W_R = abaaabaabbbbaabbaabbbab$ \quad W_R has length $2n-2$.

2 encoding words:

- W_R codes the red tree (Dyck word)
Encoding a planar triangulation

2 encoding words:

• W_R codes the red tree (Dyck word)

• W_G codes green indegrees at framed corners

1) $W_R=$abaaabaabbbbaabbaabbbababab

W_R has length $2n-2,$
Encoding a planar triangulation

2 encoding words:

- W_R codes the red tree (Dyck word)
- W_G codes green indegrees at framed corners

1) $W_R = abaaabaabbbbaabbaabbab$

W_R has length $2n-2$,

2) $W_G = 0,0,0,0,1,0,2,1,2,3$

$W_G \sim$ binary word length $2n-6$
Encoding a planar triangulation

2 encoding words:

• W_R codes the red tree (Dyck word)

• W_G codes green indegrees at framed corners

1) $W_R = \text{abaabaabbbbaabbaabbab}$

W_R has length $2n-2$,

$W_G \sim \text{binary word length } 2n-6$

\Rightarrow code length is $4n-8$

2) $W_G = 0,0,0,0,1,0,2,1,2,3$
Encoding in higher genus

- Everything works the same! (walk along red cut-graph)
Encoding in higher genus

- Everything works the same! (walk along red cut-graph)

- Code-length is $4n + O(g \log(n))$
Results (coding)

- **Theorem** [Castelli, F, Lewiner’08]: A genus \(g \) triangulation can be encoded with \(4n + O(g \log(n)) \) bits. Coding and decoding take time \(O((n+g)g) \)
Results (coding)

- **Theorem** [Castelli, F, Lewiner’08]: A genus g triangulation can be encoded with $4n + O(g \log(n))$ bits. Coding and decoding take time $O((n+g)g)$

- Lower bound (entropy): $3.245n + O(g \log(n))$ bits [Gao]
Results (coding)

• **Theorem** [Castelli, F, Lewiner’08]: A genus g triangulation can be encoded with $4n + O(g \log(n))$ bits. Coding and decoding take time $O((n+g)g)$

• **Lower bound** (entropy): $3.245n + O(g \log(n))$ bits [Gao]

• In genus 0, **bijective coding** [Poulalhon-Schaeffer’03] optimal
Results (coding)

- **Theorem** [Castelli, F, Lewiner’08]: A genus g triangulation can be encoded with $4n + O(g \log(n))$ bits. Coding and decoding take time $O((n+g)g)$

- **Lower bound (entropy):** $3.245n + O(g \log(n))$ bits [Gao]

- In genus 0, **bijective coding** [Poulalhon-Schaeffer’03] optimal

- In higher genus, best known rate is $4n + O(g \log(n))$ bits:
 - our encoding based on Schnyder woods
 - Edgebreaker of [Rossignac et al]
Conclusion

- We extend definition/computation of Schnyder woods to higher genus

- In genus $g > 0$, there are $2g$ `special' edges

- Schnyder wood \rightarrow code triangulation of genus $g > 0$ in $4n + O(g \log(n))$ bits