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This article describes new bijective links on planar maps, which are of incremental complexity and present original
features. The first two bijectionsΦ1,2 are correspondences on oriented planar maps. They can be considered as
variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate
only on the embeddings in a simple local way. In turn,Φ1,2 yield two new bijectionsF1,2 between families of (rooted)
maps. (i) By identifying maps with specific constrained orientations,Φ2 ◦ Φ1 specialises to a bijectionF1 between
2-connected maps and irreducible triangulations; (ii)F1 gives rise to a bijectionF2 between loopless maps and
triangulations, observing that these decompose respectively into 2-connected maps and into irreducible triangulations
in a parallel way.

Résuḿe. Cet article d́ecrit de nouveaux liens bijectifs sur les cartes planaires. Nos constructions sont de complexité
croissante et présentent des caractéristiques originales. Les deux premières bijectionsΦ1,2 portent sur des cartes
orient́ees. Elle peuvent̂etre vues comme des variations sur une contruction classique de posets sansN à partir
d’orientations bipolaires, adaptées ici pour oṕerer de manìere tr̀es simple sur le plongement. Les bijectionsΦ1,2

entrainent̀a leur tour deux nouvelles bijectionsF1,2 entre familles de cartes (enracinées). (i) En identifiant les cartes
avec certaines orientations contraintes,Φ2 ◦ Φ1 se sṕecialise en une bijectionF1 entre cartes 2-connexes et triangu-
lations irŕeductibles, (ii)F1 induit une bijectionF2 entre cartes sans boucles et triangulations, qui se décomposent
respectivement en cartes 2-connexes et en triangulations irréductibles de manière parall̀ele.

Keywords: Planar maps, bijections, orientations

1 Introduction
Planar maps (i.e., connected graphs equipped with a planar embedding) are a rich source of structural cor-
respondences and enumerative results. As discovered by Tutte in the 60’s (Tut63), many families of maps
(eulerian, triangulations, quadrangulations...) have strikingly simple counting coefficients, essentially of
binomial form (for counting purpose, all maps are assumed to be rooted, i.e., with a marked oriented
edge called the root). The two main methods by now to obtain such formulas are the recursive approach
introduced by Tutte (Tut73) and the bijective approach introduced by Schaeffer (Sch98). Tutte’s approach
has the advantage of being quite automatic, but requires an involved machinery —the quadratic method—
to solve equations on generating functions. In contrast, the bijective approach yields direct combinatorial
proofs (though a unifying framework is still to be found). Given a family of mapM, the idea is to exhibit
a regular combinatorial structure —typically an orientation with simple outdegree conditions— specific
to the maps inM, which gives a procedure to encode each map ofM by a spanning tree with simple
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Fig. 1: Relations between the combinatorial structures considered in the article. Bijective links are indicated by
double arrows

degree conditions; conversely the map is recovered by performing local operations on the tree so as to
close the faces one by one. Such a bijective construction ensures that the counting coefficients ofM are
equal to those of the associated tree family, which typically have a closed formula involving binomial
coefficients.

These enumerative techniques yield thus an extensive table of counting formulas for families of maps.
By examining such a table, one notices that seemingly unrelated map families are equinumerous. This
asks for bijective explanations as direct as possible to understand the underlying structural correspon-
dences. On a few instances there already exist very simple bijective constructions. Such bijections are
of a type different from the above mentioned bijective constructions from trees. Indeed, they are from
map to map and operate directly on the embedding in a simple local way. Let us mention the classical
duality construction between maps withi vertices andj faces and maps withj vertices andi faces, the
radial mappingbetween maps withn edges and 4-regular maps withn vertices, and the so-calledtrinity
mappingbetween bipartite 3-regular maps with2n vertices and eulerian maps withn edges (the two latter
constructions can be traced back to Tutte (Tut63)). We have observed two further coincidences:
(i): 2-connected maps withn edges are equinumerous to so-called irreducible triangulations (triangula-
tions of the 4-gon with no separating triangle) withn + 1 inner vertices,
(ii): loopless maps withn edges are equinumerous to triangulations withn + 3 vertices.

In this article, we describe new bijective constructions for proving (i) and (ii). The bijection for (i)
presents original features; it is nonrecursive and operates directly on the embedding in a local way, but
it makes use of specific combinatorial structures and is thus less straightforward than the classical map-
to-map correspondences. To wit, the bijection we describe for (i) can be seen as a direct map-to-map
correspondence borrowing ideas from the above mentioned bijective constructions of maps from trees.
The first step is to associate with each map-family a combinatorial structure: plane bipolar orientations for
2-connected maps and transversal structures for irreducible triangulations (these are defined in Section 2).
We show in Section 3 that these structures are closely related: plane bipolar orientations correspond to
specific transversal structures that are calledN -avoiding (they avoidN -shaped patterns). The correspon-
dence is a succession of two bijectionsΦ1,2, the intermediate structures being some specific plane bipolar
orientations, calledN -avoiding plane bipolar posets. The bijectionΦ1 is interesting on its own, as it
seems to be a suitable adaptation to planar maps of a classical bijective construction on partially ordered
sets, see the discussion after Theorem 3.2.
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Then, the correspondenceΦ2 ◦Φ1 specialises to a bijection, described in Section 4, between (rooted) 2-
connected maps and irreducible triangulations. The bijection, denoted byF1, is based on the two following
properties: (a) to each 2-connected map (irreducible triangulation) is associated a canonical plane bipolar
orientation (transversal structure, resp.) which is the unique one avoiding a certain pattern; such plane
bipolar orientations and transversal structures are called minimal; (b) the correspondenceΦ2◦Φ1 matches
minimal plane bipolar orientations with minimal transversal structures.

As described in Section 5, the bijectionF1 yields in turn a bijection, denotedF2, for proving (ii). We
make use of two classical decompositions that hold on rooted maps. A loopless map decomposes as a
2-connected map, called the core, and a collection of components that are smaller loopless maps; whereas
a triangulation decomposes as an irreducible triangulation, called the core, and a collection of compo-
nents that are smaller triangulations. The key observation is that the two decompositions are parallel, for
a convenient choice of the size parameters. The bijectionF2 is thus specified recursively: the cores are
matched by the bijectionF1, and the components are matched recursively byF2. Let us mention that an-
other bijective proof of (ii) has been described by Wormald (Wor80), still recursive but based on different
principles (in (Wor80), an isomorphism is established between the generating tree of loopless maps and
the generating tree of triangulations). To sum up, the whole bijective scheme of the article is shown in
Figure 1.

2 Preliminaries

2.1 Planar maps

A planar map, shortly called a map, is a connected unlabelled planar graph embedded in the plane with
no edge-crossings, the embedding being considered up to continuous deformation. Loops and multiple
edges are allowed. In addition to the vertices and edges of the graph embedded, a map hasfaces, which
are the maximal connected areas of the plane split by the embedding. The unbounded face is called the
outer face, the other ones are called inner faces. Edges and vertices are said to be inner or outer whether
they are incident to the outer face or not. A map isrootedby distinguishing and orienting an edge, called
the root, with the condition that the root has the outer face on its left. The origin of the root is called the
root vertex. In this article we will consider the following families of (rooted) planar maps:

• Loopless maps.A loopless is a map with no loop, i.e., each edge has two distinct extremities.
Multiple edges are allowed.

• 2-connected maps.A map is 2-connected if it is loopless and the deletion of any one vertex does
not disconnect the map. Multiple edges are allowed.

• Triangulations. A triangulation is a map with no loop nor multiple edges and with all faces of
degree 3. These correspond to maximal planar graphs embedded in the plane.

• Irreducible triangulations.A triangulation of the 4-gon is a map with no loop nor multiple edges,
with a quadrangular outer face and triangular inner faces. An irreducible triangulation of the 4-gon,
shortly called irreducible triangulation, is a triangulation of the 4-gon without separating 3-cycle,
i.e., the interior of any 3-cycle is a face.
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Fig. 2: (a) Plane bipolar orientations: local conditions and an example. (b) Transversal structures: local conditions
and an example.

2.2 Plane bipolar orientations

A bipolar orientationon a connected graphG is an acyclic orientation with a unique source (vertex with
only outgoing edges) and a unique sink (vertex with only ingoing edges). Equivalently, the partial order
induced on the vertices by the orientation has a unique minimum and a unique maximum. The source
and the sink, which are called thepolesor the special vertices, are classically denoteds and t. The
other vertices are said to benonspecial. It is convenient when considering plane bipolar orientations to
draw two half-lines starting respectively froms andt and reaching into the outer face. The outer face is
thus split into two unbounded faces, which are called thespecial faces: the one on the left (right) of the
map, looking froms to t, is the left (right, resp.) special face. Bipolar orientations constitute the natural
combinatorial structure characterising 2-connectivity. Indeed, as is well known (DFOdMR95), a graphG
with two marked verticess andt admits a bipolar orientation with sources and sinkt iff G is 2-connected
upon connectings andt by an edge. Aplane bipolar orientationis a bipolar orientation on a planar map
M such that the source and the sink are outer vertices ofM . Plane bipolar orientations have the nice
property that they are characterised by two simple local properties, one around vertices and one around
faces, see Figure 2(a):

(V): Around each nonspecial vertex, the edges form a nonempty interval of outgoing edges and a nonempty
interval of ingoing edges.

(F): The contour of each inner facef is made of two oriented paths with same originsf and same end
tf . The two special faces are each bordered by a path that goes froms to t.

Given Property (V), we can define the left (right) lateral face of a nonspecial vertexv as the face incident
to the angle between the last ingoing (outgoing) edge and the first outgoing (ingoing, resp.) edge in
clockwise order aroundv. Given an inner facef , the verticessf andtf are respectively called thesource
and thesink of f . The path fromsf to tf that has the exterior off on its left (right) is called theleft
(right) lateral pathof f and is denotedP`(f) (Pr(f), resp.). The last edge ofP`(f) is called thetopleft
edgeof f and the first edge ofPr(f) is called thebottomright edgeof f . The vertices ofP`(f)\{sf , tf}
(Pr(f)\{sf , tf}) are calledleft (right, resp.) lateral verticesof f . The path bordering the left (right)
special face is called theleft (right, resp.) outer path.
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Given a plane bipolar orientation, a transitive edge is an edge whose two extremities are connected by
an oriented path of length at least 2. Aplane bipolar posetis a plane bipolar orientation with at least
3 vertices and with no transitive edge. The terminology refers to the fact that a plane bipolar poset is a
planarly embedded Hasse diagram representing a poset.

The following property is easily checked from Condition (F):

Fact 1 A plane bipolar orientation with at least 3 vertices is a plane bipolar poset iff the two lateral paths
of each inner face have length at least 2.

In particular, a plane bipolar poset has no multiple edges. Another remark to be used later is that
each inner facef of a plane bipolar poset has at least one lateral vertex on each side: the last vertex of
P`(f)\{sf , tf} is called thetopleft lateral vertexof f and the first vertex ofPr(f)\{sf , tf} is called the
bottomright lateral vertexof f . Given a plane bipolar poset, aN -pattern is a simple path of length 3
(v0, e1, v1, e2, v2, e3, v3), such thate1 follows e2 in cw order aroundv1, e3 follows e2 in cw order around
v2, e1 and e2 are ingoing atv1, ande2 and e3 are outgoing atv2. A N-pattern is defined similarly,
upon replacing clockwise by counterclockwise. Plane bipolar posets with noN -pattern are said to be
N -avoiding; these play an important role in the bijections to be given next.

2.3 Transversal structures

Transversal structures play a similar part for irreducible triangulations as plane bipolar orientations for
2-connected maps.

Let us give the precise definition. Given a rooted irreducible triangulationT , denote byN , E, S, W the
outer vertices ofT in cw order around the outer face, starting from the origin of the root. Atransversal
structureof T is an orientation and a bicoloration of the inner edges ofT , say each inner edge is red or
blue, such that the following conditions are satisfied, see Figure 2(b).

(T1): The edges incident to an inner vertex ofT form in cw order: a nonempty interval of outgoing red
edges, a nonempty interval of outgoing blue edges, a nonempty interval of ingoing red edges, and a
nonempty interval of ingoing blue edges.

(T2): The edges incident toN , E, S, andW are respectively ingoing red, ingoing blue, outgoing red,
and outgoing blue.

Transversal structures were introduced by X. He (He93) under the name of regular edge-labellings. They
were further investigated by the author (Fus05) and have many applications in graph drawing: straight-line
drawing (Fus05), visibility drawing (KH97), rectangular layouts (KH97). Transversal structures charac-
terize triangulations of the 4-gon that are irreducible. Indeed, irreducibility is necessary, and each irre-
ducible triangulation admits a transversal structure (Fus05). Moreover, transversal structures are closely
related to plane bipolar orientations by the following property:

Fact 2 LetX be a transversal structure on an irreducible triangulationT having at least one inner vertex.
Then the oriented mapXr formed by the red edges and the vertices ofT\{W,E} is a plane bipolar poset,
called thered bipolar posetof X. Similarly, the oriented mapXb formed by the blue edges and the
vertices ofT\{S, N} is a plane bipolar poset, called theblue bipolar posetof X.

A transversal structure is calledN -avoidingif both its red and its blue bipolar posets areN -avoiding.
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Fig. 3: (a) A plane bipolar orientation, (b) construction of (c) the associatedN -avoiding plane bipolar poset, (d) the
associatedN -avoiding transversal structure.
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Fig. 4: (a) Insertion of the edges ofP = Φ1(O) inside a face ofO. (b) Configuration of an inner face ofP around
the associated nonspecial vertex ofO. (c) Insertion of the blue edges ofX = Φ2(P ) inside a face ofP .

3 Bijections between plane bipolar orientations and N -avoiding
structures

3.1 From plane bipolar orientations to N -avoiding plane bipolar posets
Let O be a plane bipolar orientation. We associate withO an oriented planar mapP = Φ1(O) as follows,
see Figure 3(a)-(c).

• Add two outer edges.Add two edges̀ and r going from the source to the sink ofO, so that
the whole map is contained in the 2-cycle delimited on the left by` and on the right byr. The
augmented bipolar orientation is denotedÕ.

• Insert the vertices ofP . A vertex ofP , depicted in white, is inserted in the middle of each edge of
Õ. The vertex inserted in the edge` (r) is denotedsP (tP , resp.).

• Insert the edges ofP . Edges ofP are planarly inserted in the interior of each inner facef of Õ so
as to create the following adjacencies, see Figure 4(a): the vertices ofP in the left lateral path of
f are connected to the vertex ofP in the bottomright edge off ; and the vertices ofP in the right
lateral path off are connected to the vertex ofP in the topleft edge off . The inserted edges are
directed from the left lateral path to the right lateral path off .

Lemma 3.1 LetO be a plane bipolar orientation withn edges. Then the oriented planar mapP = Φ1(O)
is aN -avoiding plane bipolar poset withn + 2 vertices. The source ofP is the vertexsP and the sink of
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P is the vertextP . WhenP and the augmented bipolar orientatioñO are superimposed, there is exactly
one nonspecial vertexv of O in each inner facef of P : the outgoing edges ofv go to the left lateral
vertices off and the ingoing edges ofv go to the right lateral vertices off , see Figure 4(b).

Conversely, given a bipolar posetP (N -avoiding or not), letO = Ψ1(P ) be the oriented planar map
defined as follows:

• Insert the vertices ofO. One vertex ofO is inserted in each face ofP . The vertex inserted in the
right special face is denoteds and the vertex inserted in the left special face is denotedt.

• Insert the edges ofO. Each nonspecial vertexv of P gives rise to an edge ofP , which goes from
the vertex ofO inside the right lateral face ofv to the vertex ofO inside the left lateral face ofv.

The correspondence between nonspecial vertices ofO and inner faces ofP , as stated in Lemma 3.1
and shown in Figure 4(b), ensures thatΨ1 is exactly the procedure to recover a plane bipolar orientation
from its imageP = Φ1(O), i.e.,Ψ1 is the left inverse ofΦ1. As stated next,Ψ1 is also the right inverse
of Φ1:

Theorem 3.2 For n ≥ 1 and i ≥ 0, the mappingΦ1 is a bijection between plane bipolar orientations
with n edges andi nonspecial vertices, andN -avoiding plane bipolar posets withn nonspecial vertices
andi inner faces. The inverse mapping ofΦ1 is Ψ1.

REMARK 1. It is well known that a bipolar orientation on a graphG gives rise to a partial order
on the edge-set ofG, called edge-poset, according to the precedence order of the edges along oriented
paths (DFOdMR95) (observe that no embedding is needed to define this poset). It is well known in order
theory that this construction is indeed a bijection between bipolar orientations on graphs and so calledN -
free posets, which are posets with no inducedN in the Hasse diagram (HM87). Moreover, it is possible to
enrich this construction so as to take a planar embedding into account: the planar embedding of the plane
bipolar orientation turns to a so-called 2-realizer of the associated poset (dFdM96).

Our mappingΦ1 shares some resemblance with this classical bijective construction, but there are sig-
nificant differences. First, our bipolar posets might have inducedN , but only in the form of a N-pattern
(due to the embedding, an inducedN can appear either as aN -pattern or as a N-pattern). Second, our
constructions have the nice feature that they operate directly on the embeddings. If the mappingΦ1 can
be considered as a simple adaptation of the edge-poset construction so as to take the embedding into ac-
count, the inverse bijectionΨ1 is truly different from the inverseι of the edge-poset construction. Indeed,
Ψ1 operates locally on the embedding in a very simple way, whereasι requires some considerations and
manipulations on the partially ordered sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

3.2 From N -avoiding plane bipolar posets to N -avoiding transversal structures
LetΦ2 be the mapping that associates to a plane bipolar posetP (N -avoiding or not) a transversal structure
X in the following way, see Figure 3(c)-(d):

• Create the outer quadrangle.Insert one vertex, denotedW , in the left special face ofP and one
vertex, denotedE, in the right special face ofP . ConnectW andE to the source and sink ofP ,
denoted respectively byS andN , thus creating an outer quadrangle(W,N,E, S). The bipolar
poset augmented fromP by insertion of the quadrangle —edges of the quadrangle oriented fromS
towardN— is denotedP̃ .
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• Insert the blue edges.For each inner facef of P̃ , insert (in a planar way) blue edges insidef so
as to create the following adjacencies, see Figure 4(c): left lateral vertices off are connected to
the bottomright lateral vertex off , and right lateral vertices off are connected to the topleft lateral
vertex off . Blue edges insidef are directed from the left lateral vertices to the right lateral vertices
of f . In other words,f is triangulated by transversal blue edges in the unique way avoiding blue
N -patterns insidef .

Lemma 3.3 Let P be a plane bipolar poset. ThenΦ2(P ) is a transversal structure whose red bipolar
poset isP and whose blue bipolar poset isN -avoiding.

Call Ψ2 the mapping that associates to a transversal structure its red bipolar poset.

Proposition 3.4 For n ≥ 1 andi ≥ 0, the mappingΦ2 is a bijection betweenN -avoiding plane bipolar
posets withn nonspecial vertices andi inner faces, andN -avoiding transversal structures withn inner
vertices andn + i + 1 red edges. The inverse mapping ofΦ2 is Ψ2.

4 Bijection between 2-connected maps and irreducible triangula-
tions

4.1 2-connected maps as specific plane bipolar orientations
For rooted maps, plane bipolar orientations are always assumed to have the root edge going from the
source to the sink. As already mentioned in Section 2.2, bipolar orientations are naturally associated
with the property of 2-connectivity; a rooted map is 2-connected iff it admits a plane bipolar orientation.
Even more is true, namely, each rooted 2-connected map can be endowed with a specific plane bipolar
orientation in a canonical way. Given a plane bipolar orientation, we define aleft-oriented piece, shortly
a LOP, as a 4-tuple(v1, v2, f1, f2) made of two distinct verticesv1, v2 and two distinct facesf1, f2 of O
such that:v1 is the sink off2 and is a left lateral vertex off1, v2 is a right lateral vertex off2 and is the
source off1 (see Figure 5(a)).

Fact 3 ((DFOdMR95; OdM94)) A rooted map is 2-connected iff it admits a bipolar orientations. A
rooted 2-connected mapM has a unique plane bipolar orientation with no LOP, called theminimal plane
bipolar orientationof M .

The terminology is due to the fact that the set of plane bipolar orientations of a fixed rooted 2-connected
map is a distributive lattice, the minimal element of the lattice being the bipolar orientation with no LOP,
see (OdM94).

Lemma 4.1 A plane bipolar orientationO has no LOP iffP = Φ1(O) has no LOP (see Figure 5(b)).

4.2 Irreducible triangulations as specific transversal structures
As we recall here from (Fus05), one can endow an irreducible triangulation with a specific transversal
structure in a canonical way. Given a transversal structureX, analternating 4-cycleof X is a cycle of
four edges that alternate in color, i.e., the cycle has two opposite red edges and two opposite blue edges.
Condition (T1) ensures that the orientation induced on the four edges of an alternating 4-cycleR has one
source and one sink, which are denoted respectively bysR andtR. The following properties have been
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Fig. 5: (a) A left-oriented piece (LOP) of a plane bipolar orientation. (b) Each LOP in a plane bipolar orientationO
yields a LOP inP = Φ1(O). (c) Each right alternating 4-cycle in aN -avoiding transversal structureX yields a LOP
in the red bipolar poset ofX.

proved in (Fus05) under a slightly different formulation, as only the edge-bicoloration of the transversal
structure was considered:

Fact 4 LetT be an irreducible triangulation endowed with a transversal structureX. For each alternat-
ing 4-cycleR of X, the oriented edge-bicolored mapXR obtained by restrictingX to R and its interior
is a tranversal structure. IfsR is the source of outgoing red edges going insideR, thenR is called aleft
alternating 4-cycle. OtherwisesR is the source of outgoing blue edges going insideR, in which caseR is
called aright alternating 4-cycle.

Fact 5 A triangulation of the 4-gon is irreducible iff it admits a transversal structure. An irreducible
triangulation admits a unique transversal structure with no right alternating 4-cycle, called itsminimal
transversal structure.

Again the terminology refers to the fact that the set of transversal structures of an irreducible triangula-
tions is a distributive lattice whose minimal element is the transversal structure with no right alternating
4-cycle, see (Fus05). Notice that aN -pattern induces a right alternating 4-cycle, with no vertex inside and
with the central edge of theN -pattern as the only edge inside. Hence any minimal transversal structure is
N -avoiding.

Lemma 4.2 LetX be aN -avoiding transversal structure, and letXr := Ψ2(X) be the red bipolar poset
of X. ThenX has no right alternating 4-cycle iffXr has no LOP (see Figure 5(c)).

4.3 The bijection
We have gathered all the ingredients to describe the bijection between rooted 2-connected maps and rooted
irreducible triangulations.

Given a rooted 2-connected mapM with at least 2 edges, letT = F1(M) be the irreducible triangula-
tion obtained by the following steps: (i) endowM with its minimal plane bipolar orientationO, the root
edge being deleted, (ii) compute the transversal structureX associated toO, i.e.,X := Φ2(Φ1(O)), (iii)
returnT as the irreducible triangulation underlyingX, rooted at the edge going fromN to E.
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According to Lemma 4.2,X is the minimal transversal structure ofT . Hence, all steps ofF1 can be
inverted. GivenT a rooted irreducible triangulation, letM = G1(T ) be the rooted 2-connected map
obtained as follows: (i) endowT with its minimal transversal structure, (ii) compute the plane bipolar
orientationO associated toX: O := Ψ1(Ψ2(X)), (iii) return the rooted 2-connected mapM underlying
O (M receives an additional root edge going from the source to the sink).

Theorem 4.3 For n ≥ 2, the mappingF1 is a bijection between rooted 2-connected maps withn edges
and irreducible triangulations withn + 3 vertices. The inverse mapping ofF1 is G1.

5 Bijection between loopless maps and triangulations
5.1 Decomposing loopless maps into 2-connected components
It is well known in graph theory that a connected graphG decomposes in a canonical way as a collection
of 2-connected components (the maximal 2-connected subgraphs ofG) that are assembled by gluing
components at common vertices in a tree-like fashion. This classical decomposition adapts readily to
rooted loopless maps (GJ83). For our purpose it proves convenient to define the size|M | of a rooted
loopless map as its number of edges (counting the root) and to consider the vertex-map —made of a
unique vertex and no edge— as a rooted 2-connected map; in particular, the vertex-map is loopless.

Fact 6 Each rooted loopless mapM is obtained in a unique way as follows.

• Take a rooted 2-connected mapC, and order the corners ofC in a canonical way asα1, . . . , α2|C|
(e.g., by a left-to-right d.f.s. from the root).

• Take a collectionM1, . . . ,M2|C| of rooted loopless maps. For each1 ≤ i ≤ 2|C|, insertMi in the
cornerαi of C, merging the outer face ofMi with the face incident toαi and the root vertex ofMi

with the vertex incident toαi.

The mapC is called thecore-mapof M , and the (2|C|+ 1)-tupleF(M) = (C;M1, . . . ,M2|C|) is called
thefingerprintof M . The size ofM is the sum of the sizes of the maps in the fingerprint.

5.2 Decomposing triangulations into irreducible components
Similarly as for loopless maps, there exists a classical decomposition of triangulations into components
of higher connectivity: each triangulation on the topological sphere is obtained from a collection of 4-
connected triangulations (which are triangulations where all 3-cycles are facial) glued at common trian-
gles in a tree-like fashion. The same idea —decomposition at separating 3-cycles— works as well to
decompose rooted triangulations of the 4-gon into rooted irreducible components (Tut62). First let us
introduce some terminology. Given a rooted triangulationT of the 4-gon, denote byN,E, S,W the outer
vertices ofT in cw order around the outer face; thenT is calledWE-diagonalif W andE are adjacent,
is calledSN -diagonal if S andN are adjacent, and is callednon-diagonalotherwise. Notice that the
two diagonal cases are disjoint by planarity ofT . The unique rooted irreducible triangulation that isWE-
diagonal (SN -diagonal) is the quadrangle(N,E, S,W ) split by a diagonal(W,E) ((S, N)); this map is
called theWE-link-map (SN -link-map, resp.). For our purpose it is convenient to define the size of a
triangulation or of a triangulation of the 4-gonT as||T || := (|V (T )| − 3). Notice that||T || is the number
of inner vertices ifT is a triangulation and2||T || is the number of inner faces ifT is a triangulation of the
4-gon, by Euler’s relation.
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Fact 7 Each rooted triangulationT of the 4-gon is obtained in a unique way as follows.

• Take a rooted irreducible triangulationI, and order the inner faces ofI in a canonical way as
f1, . . . , f2||I|| (e.g., by a left-to-right d.f.s. from the root).

• Take a collectionT1, . . . , T2||I|| of rooted triangulations. For each1 ≤ i ≤ 2||I||, substitutefi by
Ti in a canonical way (e.g., the outer triangle ofTi fits with the contour offi and the root vertex of
Ti fits with a distinguished vertex offi).

The mapI is called thecore-triangulationof T ; T is nondiagonal ifI has at least one inner vertex, is
WE-diagonal if I is theWE-link-map, and isSN -diagonal if I is theSN -link-map. The(2||I|| + 1)-
tupleF(T ) = (I;T1, . . . , T2||I||) is called thefingerprintof T . The size ofT is the sum of the sizes of the
maps in the fingerprint.

5.3 The bijection

Our size-preserving bijection between rooted loopless maps and rooted triangulations is defined recur-
sively from the bijectionF1. It is convenient to augment the correspondenceF1/G1 with one object of
size1 on each side: the edge-map —made of two vertices connected by an edge— corresponds to the
WE-link-map. We denote byL≤n (T≤n) the family of rooted loopless maps (triangulations, resp.) of size
at mostn.

The bijectionF2 is specified recursively as follows. First, the vertex-map, the unique rooted loopless
mapM such that|M | = 0, is mapped byF2 to the triangle-map, the unique rooted triangulationT such
that ||T || = 0. Givenn ≥ 0, assume thatF2 is a well defined size-preserving mapping fromL≤n to
T≤n, i.e., ||F2(M)|| = |M | for every rooted loopless mapM ∈ L≤n. Let M be a rooted loopless map
of sizen + 1, with fingerprintF(M) = (C;M1, . . . ,M2|C|). DefineT as the rooted triangulation of the
4-gon whose fingerprint isF(T ) = (F1(C);F2(M1), . . . , F2(M2|C|)). By the recurrence assumption,T
is well defined and||T || = |M |, as the sizes ofT andM are obtained by adding up the sizes of the maps
in the fingerprints. DefinẽT := F2(M) as the rooted map obtained fromT by adding an edge fromN
to S taken as the new root. Notice thatT̃ is a triangulation: all faces of̃T have clearly degree 3, and the
root edge is simple (Fact 7 ensures thatS andN are not adjacent inT ). In addition,||T̃ || = ||T ||, so
that ||T̃ || = |M |. We have thus described recursively a size-preserving mappingF2 from rooted loopless
maps to rooted triangulations.

The inverse mappingG2 is defined in a similar way: we simply invert the steps ofF2. First, G2

maps the triangle-map to the vertex-map. Givenn ≥ 0, assume thatG2 is a well defined size-preserving
mapping fromT≤n to L≤n, and assume thatG2 is the inverse mapping ofF2, i.e.,F2(G2(T )) = T for
anyT ∈ T≤n andG2(F2(M)) = M for anyM ∈ L≤n. Let T̃ be a rooted triangulation of sizen + 1,
and letT be the rooted triangulation of the 4-gon obtained by deleting the root ofT̃ and keeping the same
root vertex. Notice thatT is notSN -diagonal. Hence, the core-triangulationI of T is not theSN -link-
map. LetF(T ) = (I;T1, . . . , T||I||) be the fingerprint ofT . The image ofT by G2 is defined to be the
rooted loopless mapM with fingerprintF(M) = (G1(I);G2(T1), . . . , G2(T2||I||)). By induction,G2 is
size-preserving and is the inverse mapping ofF2. To sum up, we obtain the following bijective result.

Theorem 5.1 For n ≥ 0, the mappingF2 is a bijection between rooted loopless maps withn edges and
rooted triangulations withn inner vertices. The inverse mapping ofF2 is G2.
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