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This article describes new bijective links on planar maps, which are of incremental complexity and present original
features. The first two bijection®, > are correspondences on oriented planar maps. They can be considered as
variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate
only on the embeddings in a simple local way. In tubn,. yield two new bijectiong; » between families of (rooted)

maps. (i) By identifying maps with specific constrained orientatidnse ®; specialises to a bijectiof; between
2-connected maps and irreducible triangulations; Kii) gives rise to a bijectiorf: between loopless maps and
triangulations, observing that these decompose respectively into 2-connected maps and into irreducible triangulations
in a parallel way.

Résure. Cet article @crit de nouveaux liens bijectifs sur les cartes planaires. Nos constructions sont de c@mplexit
croissante et @sentent des car&eistiques originales. Les deux prémes bijectionsb, » portent sur des cartes
orienges. Elle peuvengtre vues comme des variations sur une contruction classique de posefS sapartir
d’orientations bipolaires, ad&gs ici pour oprer de mardre tes simple sur le plongement. Les bijectiobs »
entrainent leur tour deux nouvelles bijectiods » entre familles de cartes (enraées). (i) En identifiant les cartes
avec certaines orientations contraintds,o ®; se sg@cialise en une bijectiof; entre cartes 2-connexes et triangu-
lations ireductibles, (ii)F; induit une bijectionF» entre cartes sans boucles et triangulations, quiésemposent
respectivement en cartes 2-connexes et en triangulati@skigtibles de maare parakle.
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1 Introduction

Planar maps (i.e., connected graphs equipped with a planar embedding) are a rich source of structural cor-
respondences and enumerative results. As discovered by Tutte in the 60’s (Tut63), many families of maps
(eulerian, triangulations, quadrangulations...) have strikingly simple counting coefficients, essentially of
binomial form (for counting purpose, all maps are assumed to be rooted, i.e., with a marked oriented
edge called the root). The two main methods by now to obtain such formulas are the recursive approach
introduced by Tutte (Tut73) and the bijective approach introduced by Schaeffer (Sch98). Tutte’s approach
has the advantage of being quite automatic, but requires an involved machinery —the quadratic method—
to solve equations on generating functions. In contrast, the bijective approach yields direct combinatorial
proofs (though a unifying framework is still to be found). Given a family of mapthe idea is to exhibit
aregular combinatorial structure —typically an orientation with simple outdegree conditions— specific

to the maps inM, which gives a procedure to encode each map.bby a spanning tree with simple
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Fig. 1: Relations between the combinatorial structures considered in the article. Bijective links are indicated by
double arrows

degree conditions; conversely the map is recovered by performing local operations on the tree so as to
close the faces one by one. Such a bijective construction ensures that the counting coefficidraseof

equal to those of the associated tree family, which typically have a closed formula involving binomial
coefficients.

These enumerative techniques yield thus an extensive table of counting formulas for families of maps.
By examining such a table, one notices that seemingly unrelated map families are equinumerous. This
asks for bijective explanations as direct as possible to understand the underlying structural correspon-
dences. On a few instances there already exist very simple bijective constructions. Such bijections are
of a type different from the above mentioned bijective constructions from trees. Indeed, they are from
map to map and operate directly on the embedding in a simple local way. Let us mention the classical
duality construction between maps wittvertices andj faces and maps with vertices and faces, the
radial mappingbetween maps with edges and 4-regular maps withvertices, and the so-callednity
mappingbetween bipartite 3-regular maps with vertices and eulerian maps withedges (the two latter
constructions can be traced back to Tutte (Tut63)). We have observed two further coincidences:

(): 2-connected maps with edges are equinumerous to so-called irreducible triangulations (triangula-
tions of the 4-gon with no separating triangle) with- 1 inner vertices,
(ii): loopless maps with edges are equinumerous to triangulations with 3 vertices.

In this article, we describe new bijective constructions for proving (i) and (ii). The bijection for (i)
presents original features; it is nonrecursive and operates directly on the embedding in a local way, but
it makes use of specific combinatorial structures and is thus less straightforward than the classical map-
to-map correspondences. To wit, the bijection we describe for (i) can be seen as a direct map-to-map
correspondence borrowing ideas from the above mentioned bijective constructions of maps from trees.
The first step is to associate with each map-family a combinatorial structure: plane bipolar orientations for
2-connected maps and transversal structures for irreducible triangulations (these are defined in|Section 2).
We show in Sectiof]3 that these structures are closely related: plane bipolar orientations correspond to
specific transversal structures that are calfedvoiding (they avoidV-shaped patterns). The correspon-
dence is a succession of two bijectichs., the intermediate structures being some specific plane bipolar
orientations, calledV-avoiding plane bipolar posets. The bijecti®n is interesting on its own, as it
seems to be a suitable adaptation to planar maps of a classical bijective construction on partially ordered
sets, see the discussion after Thedrer 3.2.
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Then, the correspondende o ¢, specialises to a bijection, described in Sedfipn 4, between (rooted) 2-
connected maps and irreducible triangulations. The bijection, denotEd ks/based on the two following
properties: (a) to each 2-connected map (irreducible triangulation) is associated a canonical plane bipolar
orientation (transversal structure, resp.) which is the unique one avoiding a certain pattern; such plane
bipolar orientations and transversal structures are called minimal; (b) the correspofdedgematches
minimal plane bipolar orientations with minimal transversal structures.

As described in Sectidr 5, the bijectid yields in turn a bijection, denotefl, for proving (ii). We
make use of two classical decompositions that hold on rooted maps. A loopless map decomposes as a
2-connected map, called the core, and a collection of components that are smaller loopless maps; whereas
a triangulation decomposes as an irreducible triangulation, called the core, and a collection of compo-
nents that are smaller triangulations. The key observation is that the two decompositions are parallel, for
a convenient choice of the size parameters. The bijediiois thus specified recursively: the cores are
matched by the bijectiofi’;, and the components are matched recursivelyhyl et us mention that an-
other bijective proof of (ii) has been described by Wormald (Wor80), still recursive but based on different
principles (in (Wor80), an isomorphism is established between the generating tree of loopless maps and
the generating tree of triangulations). To sum up, the whole bijective scheme of the article is shown in

Figure[].

2 Preliminaries

2.1 Planar maps

A planar map shortly called a map, is a connected unlabelled planar graph embedded in the plane with
no edge-crossings, the embedding being considered up to continuous deformation. Loops and multiple
edges are allowed. In addition to the vertices and edges of the graph embedded, a faapshakich

are the maximal connected areas of the plane split by the embedding. The unbounded face is called the
outer face, the other ones are called inner faces. Edges and vertices are said to be inner or outer whether
they are incident to the outer face or not. A mapoistedby distinguishing and orienting an edge, called
theroot, with the condition that the root has the outer face on its left. The origin of the root is called the
root vertex In this article we will consider the following families of (rooted) planar maps:

e Loopless mapsA loopless is a map with no loop, i.e., each edge has two distinct extremities.
Multiple edges are allowed.

e 2-connected mapsA map is 2-connected if it is loopless and the deletion of any one vertex does
not disconnect the map. Multiple edges are allowed.

e Triangulations. A triangulation is a map with no loop nor multiple edges and with all faces of
degree 3. These correspond to maximal planar graphs embedded in the plane.

¢ Irreducible triangulations.A triangulation of the 4-gon is a map with no loop nor multiple edges,
with a quadrangular outer face and triangular inner faces. An irreducible triangulation of the 4-gon,
shortly called irreducible triangulation, is a triangulation of the 4-gon without separating 3-cycle,
i.e., the interior of any 3-cycle is a face.
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Fig. 2: (a) Plane bipolar orientations: local conditions and an example. (b) Transversal structures: local conditions
and an example.

2.2 Plane bipolar orientations

A bipolar orientationon a connected graph is an acyclic orientation with a unique source (vertex with
only outgoing edges) and a unique sink (vertex with only ingoing edges). Equivalently, the partial order
induced on the vertices by the orientation has a uniqgue minimum and a unique maximum. The source
and the sink, which are called tipolesor the special verticesare classically denotesland¢. The

other vertices are said to lm@nspecial It is convenient when considering plane bipolar orientations to
draw two half-lines starting respectively frosrandt and reaching into the outer face. The outer face is
thus split into two unbounded faces, which are calledsipecial facesthe one on the left (right) of the

map, looking froms to ¢, is the left (right, resp.) special face. Bipolar orientations constitute the natural
combinatorial structure characterising 2-connectivity. Indeed, as is well known (DFOdMR95), agraph
with two marked vertices andt admits a bipolar orientation with soure@nd sink: iff G is 2-connected

upon connecting and¢ by an edge. Aplane bipolar orientatioris a bipolar orientation on a planar map

M such that the source and the sink are outer vertice®/ ofPlane bipolar orientations have the nice
property that they are characterised by two simple local properties, one around vertices and one around
faces, see Figufg 2(a):

(V): Around each nonspecial vertex, the edges form a nonempty interval of outgoing edges and a nonempty
interval of ingoing edges.

(F): The contour of each inner faggéis made of two oriented paths with same originand same end
t¢. The two special faces are each bordered by a path that goes twtn

Given Property (V), we can define the left (right) lateral face of a nonspecial vedexhe face incident

to the angle between the last ingoing (outgoing) edge and the first outgoing (ingoing, resp.) edge in
clockwise order around. Given an inner facg, the vertices y andt; are respectively called trsource

and thesink of f. The path froms; to ¢ that has the exterior of on its left (right) is called théeft

(right) lateral pathof f and is denoted(f) (P:(f), resp.). The last edge &%(f) is called thetopleft

edgeof f and the first edge aP,(f) is called thebottomright edgef f. The vertices o, (f)\{ss,ts}
(P:(f)\{ss,ts}) are calledleft (right, resp.) lateral vertice®f f. The path bordering the left (right)
special face is called tHeft (right, resp.) outer path
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Given a plane bipolar orientation, a transitive edge is an edge whose two extremities are connected by
an oriented path of length at least 2. pfane bipolar posets a plane bipolar orientation with at least
3 vertices and with no transitive edge. The terminology refers to the fact that a plane bipolar poset is a
planarly embedded Hasse diagram representing a poset.

The following property is easily checked from Condition (F):

Fact 1 A plane bipolar orientation with at least 3 vertices is a plane bipolar poset iff the two lateral paths
of each inner face have length at least 2.

In particular, a plane bipolar poset has no multiple edges. Another remark to be used later is that
each inner facg’ of a plane bipolar poset has at least one lateral vertex on each side: the last vertex of
Py(f)\{sy,ts} is called thetopleft lateral vertexof f and the first vertex oF, (f)\{sy, ¢} is called the
bottomright lateral vertexof f. Given a plane bipolar poset, /é-patternis a simple path of length 3
(vo, e1,v1, €2,v9, €3, v3), such that; follows e, in cw order around, es follows e, in cw order around
U2, €1 andes are ingoing at;, andey, andes are outgoing ab,. A Vi-patternis defined similarly,
upon replacing clockwise by counterclockwise. Plane bipolar posets witN-pattern are said to be
N-avoiding these play an important role in the bijections to be given next.

2.3 Transversal structures

Transversal structures play a similar part for irreducible triangulations as plane bipolar orientations for
2-connected maps.

Let us give the precise definition. Given a rooted irreducible triangul&tjafenote byV, E, S, W the
outer vertices ofl” in cw order around the outer face, starting from the origin of the roatraAsversal
structureof 7' is an orientation and a bicoloration of the inner edge% ofay each inner edge is red or
blue, such that the following conditions are satisfied, see Fjgure 2(b).

(T1): The edges incident to an inner vertexioform in cw order: a nhonempty interval of outgoing red
edges, a nonempty interval of outgoing blue edges, a nonempty interval of ingoing red edges, and a
nonempty interval of ingoing blue edges.

(T2): The edges incident td/, F, S, andW are respectively ingoing red, ingoing blue, outgoing red,
and outgoing blue.

Transversal structures were introduced by X. He (He93) under the name of regular edge-labellings. They
were further investigated by the author (Fus05) and have many applications in graph drawing: straight-line
drawing (Fus05), visibility drawind (KH97), rectangular layouts (KH97). Transversal structures charac-
terize triangulations of the 4-gon that are irreducible. Indeed, irreducibility is necessary, and each irre-
ducible triangulation admits a transversal structure (Fus05). Moreover, transversal structures are closely
related to plane bipolar orientations by the following property:

Fact 2 LetX be atransversal structure on an irreducible triangulatibrinaving at least one inner vertex.
Then the oriented maj¥, formed by the red edges and the vertice' {1V, E'} is a plane bipolar poset,
called thered bipolar posebf X. Similarly, the oriented magX;, formed by the blue edges and the
vertices of'\{S, N} is a plane bipolar poset, called th#ue bipolar posesf X .

A transversal structure is called-avoidingif both its red and its blue bipolar posets dY¥eavoiding.
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Fig. 3: (a) A plane bipolar orientation, (b) construction of (c) the associatealoiding plane bipolar poset, (d) the
associatedV-avoiding transversal structure.
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Fig. 4: (a) Insertion of the edges @ = @, (O) inside a face 0D. (b) Configuration of an inner face @ around
the associated nonspecial vertexf(c) Insertion of the blue edges &f = ®,(P) inside a face ofP.

3 Bijections between plane bipolar orientations and N-avoiding
structures

3.1 From plane bipolar orientations to N-avoiding plane bipolar posets

Let O be a plane bipolar orientation. We associate withn oriented planar map = &, (O) as follows,
see Figurg[3(a)-(c).

e Add two outer edgesAdd two edges/ andr going from the source to the sink @, so that
the whole map is contained in the 2-cycle delimited on the left lapd on the right by-. The
augmented bipolar orientation is denoted

e Insert the vertices oP. A vertex of P, depicted in white, is inserted in the middle of each edge of
O. The vertex inserted in the edgér) is denotecsp (tp, resp.).

e Insert the edges aP. Edges ofP are planarly inserted in the interior of each inner fgoef O so
as to create the following adjacencies, see Fifjlire 4(a): the vertidesrothe left lateral path of
f are connected to the vertex 8fin the bottomright edge of; and the vertices o in the right
lateral path off are connected to the vertex &fin the topleft edge off. The inserted edges are
directed from the left lateral path to the right lateral patty of

Lemma 3.1 LetO be a plane bipolar orientation with edges. Then the oriented planar m8p= ®,(O)
is a N-avoiding plane bipolar poset with + 2 vertices. The source @ is the vertexsp and the sink of
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P is the vertexp. WhenP and the augmented bipolar orientatiéhare superimposed, there is exactly
one nonspecial vertex of O in each inner facef of P: the outgoing edges af go to the left lateral
vertices off and the ingoing edges ofgo to the right lateral vertices of, see Figuré¢ (b).

Conversely, given a bipolar posgt (/N -avoiding or not), letD = ¥, (P) be the oriented planar map
defined as follows:

e Insert the vertices of). One vertex of0 is inserted in each face d?. The vertex inserted in the
right special face is denotedand the vertex inserted in the left special face is denated

e Insert the edges aP. Each nonspecial vertexof P gives rise to an edge d?, which goes from
the vertex ofO inside the right lateral face afto the vertex o inside the left lateral face af.

The correspondence between nonspecial vertic&s ahd inner faces of, as stated in Lemnfa 3.1
and shown in Figurg]4(b), ensures tliatis exactly the procedure to recover a plane bipolar orientation
from its imageP = ®,(0), i.e., ¥, is the left inverse ofb,. As stated next¥; is also the right inverse
of (I)l:

Theorem 3.2 For n > 1 andi > 0, the mapping®d; is a bijection between plane bipolar orientations
with n edges and nonspecial vertices, anty-avoiding plane bipolar posets with nonspecial vertices
andi inner faces. The inverse mappingdf is ¥;.

ReEMARK 1. It is well known that a bipolar orientation on a graphgives rise to a partial order
on the edge-set af, called edge-poset, according to the precedence order of the edges along oriented
paths (DEOdMR95) (observe that no embedding is needed to define this poset). It is well known in order
theory that this construction is indeed a bijection between bipolar orientations on graphs and st €alled
free posetswhich are posets with no inducédin the Hasse diagrarh (HM87). Moreover, itis possible to
enrich this construction so as to take a planar embedding into account: the planar embedding of the plane
bipolar orientation turns to a so-called 2-realizer of the associated poset (dFdM96).

Our mapping®; shares some resemblance with this classical bijective construction, but there are sig-
nificant differences. First, our bipolar posets might have indu€edut only in the form of d/A-pattern
(due to the embedding, an inducétican appear either asié-pattern or as &\-pattern). Second, our
constructions have the nice feature that they operate directly on the embeddings. If the ndappémg
be considered as a simple adaptation of the edge-poset construction so as to take the embedding into ac-
count, the inverse bijectioW is truly different from the inverseof the edge-poset construction. Indeed,
¥, operates locally on the embedding in a very simple way, whereaguires some considerations and
manipulations on the partially ordered sets. ............ i a....

3.2 From N-avoiding plane bipolar posets to N-avoiding transversal structures

Let ®, be the mapping that associates to a plane bipolar goé&t-avoiding or not) a transversal structure
X in the following way, see Figufg 3(c)-(d):

e Create the outer quadrangldnsert one vertex, denotddl’, in the left special face oP and one
vertex, denoted”, in the right special face aP. ConnectiW and E to the source and sink d?,
denoted respectively bg and N, thus creating an outer quadranglé’, N, £, S). The bipolar
poset augmented frorA by insertion of the quadrangle —edges of the quadrangle oriented¥rom
toward N— is denotedP.
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e Insert the blue edged-or each inner fac¢ of P, insert (in a planar way) blue edges insifiso
as to create the following adjacencies, see Figlire 4(c): left lateral verticesuef connected to
the bottomright lateral vertex gf, and right lateral vertices gf are connected to the topleft lateral
vertex of f. Blue edges insid¢ are directed from the left lateral vertices to the right lateral vertices
of f. In other words,f is triangulated by transversal blue edges in the unique way avoiding blue
N-patterns insid¢'.

Lemma 3.3 Let P be a plane bipolar poset. Theb,(P) is a transversal structure whose red bipolar
poset isP and whose blue bipolar posetié-avoiding.

Call ¥, the mapping that associates to a transversal structure its red bipolar poset.

Proposition 3.4 For n > 1 andi > 0, the mappingp is a bijection betweeV-avoiding plane bipolar
posets withh nonspecial vertices andinner faces, andvV-avoiding transversal structures withinner
vertices anch + i 4+ 1 red edges. The inverse mappinglefis Vs.

4 Bijection between 2-connected maps and irreducible triangula-
tions

4.1 2-connected maps as specific plane bipolar orientations

For rooted maps, plane bipolar orientations are always assumed to have the root edge going from the
source to the sink. As already mentioned in Sedfiof 2.2, bipolar orientations are naturally associated
with the property of 2-connectivity; a rooted map is 2-connected iff it admits a plane bipolar orientation.
Even more is true, namely, each rooted 2-connected map can be endowed with a specific plane bipolar
orientation in a canonical way. Given a plane bipolar orientation, we defigit-ariented pieceshortly

a LOP, as a 4-tuplévy, vo, f1, f2) made of two distinct vertices; , vo and two distinct faceg;, f» of O

such thatw, is the sink off, and is a left lateral vertex of;, vs is a right lateral vertex of, and is the

source off; (see Figurg¢5(a)).

Fact 3 ((DFOdMR95;/0dM94))) A rooted map is 2-connected iff it admits a bipolar orientations. A
rooted 2-connected maj has a unique plane bipolar orientation with no LOP, called thieimal plane
bipolar orientatiorof M.

The terminology is due to the fact that the set of plane bipolar orientations of a fixed rooted 2-connected
map is a distributive lattice, the minimal element of the lattice being the bipolar orientation with no LOP,
see|(OdM94).

Lemma 4.1 A plane bipolar orientatiorO has no LOP iffP = ®;(O) has no LOP (see Figu@ 5(b)).

4.2 Irreducible triangulations as specific transversal structures

As we recall here from_(Fus05), one can endow an irreducible triangulation with a specific transversal
structure in a canonical way. Given a transversal struckiranalternating 4-cycleof X is a cycle of

four edges that alternate in color, i.e., the cycle has two opposite red edges and two opposite blue edges.
Condition (T1) ensures that the orientation induced on the four edges of an alternating & tydene

source and one sink, which are denoted respectivelyzosndtz. The following properties have been
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Fig. 5: (a) A left-oriented piece (LOP) of a plane bipolar orientation. (b) Each LOP in a plane bipolar orieritation
yields a LOP inP = ®;(0). (c) Each right alternating 4-cycle infé-avoiding transversal structur€ yields a LOP
in the red bipolar poset oX.

proved in (Fus05) under a slightly different formulation, as only the edge-bicoloration of the transversal
structure was considered:

Fact 4 LetT be an irreducible triangulation endowed with a transversal structlireFor each alternat-
ing 4-cycleR of X, the oriented edge-bicolored mapg obtained by restricting to R and its interior
is a tranversal structure. Iy is the source of outgoing red edges going insitigehenR is called aleft

alternating 4-cycleOtherwisesy, is the source of outgoing blue edges going inditjén which caseR is

called aright alternating 4-cycle

Fact 5 A triangulation of the 4-gon is irreducible iff it admits a transversal structure. An irreducible
triangulation admits a unique transversal structure with no right alternating 4-cycle, callediiignal
transversal structure.

Again the terminology refers to the fact that the set of transversal structures of an irreducible triangula-
tions is a distributive lattice whose minimal element is the transversal structure with no right alternating
4-cycle, see (Fus05). Notice thahapattern induces a right alternating 4-cycle, with no vertex inside and
with the central edge of th&-pattern as the only edge inside. Hence any minimal transversal structure is
N-avoiding.

Lemma 4.2 Let X be aN-avoiding transversal structure, and 1&f, := ¥, (X) be the red bipolar poset
of X. ThenX has no right alternating 4-cycle ifk, has no LOP (see Figufg 5(c)).

4.3 The bijection

We have gathered all the ingredients to describe the bijection between rooted 2-connected maps and rooted
irreducible triangulations.
Given a rooted 2-connected map with at least 2 edges, 18t = F; (M) be the irreducible triangula-
tion obtained by the following steps: (i) endaw with its minimal plane bipolar orientatio@, the root
edge being deleted, (ii) compute the transversal structuassociated t@, i.e., X := $5(P4(0)), (iii)
returnT as the irreducible triangulation underlyid, rooted at the edge going froi to E.
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According to Lemma 4]2X is the minimal transversal structure Bf Hence, all steps of; can be
inverted. GivenI a rooted irreducible triangulation, I8¢ = G1(T) be the rooted 2-connected map
obtained as follows: (i) endoW’ with its minimal transversal structure, (ii) compute the plane bipolar
orientationO associated t: O := ¥ (¥, (X)), (iii) return the rooted 2-connected map underlying
O (M receives an additional root edge going from the source to the sink).

Theorem 4.3 For n > 2, the mappingF} is a bijection between rooted 2-connected maps witddges
and irreducible triangulations with + 3 vertices. The inverse mapping Bf is G;.

5 Bijection between loopless maps and triangulations
5.1 Decomposing loopless maps into 2-connected components

It is well known in graph theory that a connected gr&pdecomposes in a canonical way as a collection

of 2-connected components (the maximal 2-connected subgrapf} thfat are assembled by gluing
components at common vertices in a tree-like fashion. This classical decomposition adapts readily to
rooted loopless map5 (GJ83). For our purpose it proves convenient to define th&/siaka rooted
loopless map as its number of edges (counting the root) and to consider the vertex-map —made of a
unigue vertex and no edge— as a rooted 2-connected map; in particular, the vertex-map is loopless.

Fact 6 Each rooted loopless maj is obtained in a unique way as follows.

¢ Take arooted 2-connected map and order the corners af’ in a canonical way as;, . .., as|c|
(e.g., by a left-to-right d.f.s. from the root).

e Take a collection\/y, . .., My of rooted loopless maps. For eath< i < 2|C, insertM; in the
cornera; of C', merging the outer face dff; with the face incident ta,; and the root vertex ak/;
with the vertex incident ta;.

The mapC' is called thecore-mapof M, and the 2|C| + 1)-tupleF(M) = (C; My, ..., My ) is called
thefingerprintof M. The size of/ is the sum of the sizes of the maps in the fingerprint.

5.2 Decomposing triangulations into irreducible components

Similarly as for loopless maps, there exists a classical decomposition of triangulations into components
of higher connectivity: each triangulation on the topological sphere is obtained from a collection of 4-
connected triangulations (which are triangulations where all 3-cycles are facial) glued at common trian-
gles in a tree-like fashion. The same idea —decomposition at separating 3-cycles— works as well to
decompose rooted triangulations of the 4-gon into rooted irreducible components| (Tut62). First let us
introduce some terminology. Given a rooted triangulafioof the 4-gon, denote by, E, .S, W the outer
vertices ofI" in cw order around the outer face; th&rnis calledWE-diagonalif W and E are adjacent,

is calledSN-diagonalif S and N are adjacent, and is callewn-diagonalotherwise. Notice that the

two diagonal cases are disjoint by planaritylofThe unigue rooted irreducible triangulation thatig-
diagonal 6 N-diagonal) is the quadrangiev, E, S, W) split by a diagona(W, E) ((S, NV)); this map is

called theWE-link-map (SN-link-map, resp.). For our purpose it is convenient to define the size of a
triangulation or of a triangulation of the 4-g@has||T'|| := (|V(T')| — 3). Notice that|T'|| is the number

of inner vertices ifl" is a triangulation and||T'|| is the number of inner facesTt is a triangulation of the
4-gon, by Euler’s relation.
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Fact 7 Each rooted triangulatioA” of the 4-gon is obtained in a unique way as follows.

e Take a rooted irreducible triangulatiol, and order the inner faces df in a canonical way as
f1s-- -5 f211) (.., by a left-to-right d.f.s. from the root).

e Take a collectior?y, . . ., Ty ;) of rooted triangulations. For each < i < 2||I]|, substitutef; by
T; in a canonical way (e.g., the outer triangle Bf fits with the contour of;; and the root vertex of
T; fits with a distinguished vertex ¢f).

The mapl! is called thecore-triangulatiorof T'; T is nondiagonal ifl has at least one inner vertex, is
WE-diagonal if I is theWE-link-map, and isSN-diagonal if I is the SN-link-map. The(2||I|| + 1)-
tuple§(T) = (I; T, ..., Ty ry)) is called thefingerprintof 7'. The size of " is the sum of the sizes of the
maps in the fingerprint.

5.3 The bijection

Our size-preserving bijection between rooted loopless maps and rooted triangulations is defined recur-
sively from the bijectionF;. It is convenient to augment the correspondef¢cg; with one object of
size1 on each side: the edge-map —made of two vertices connected by an edge— corresponds to the
WE-link-map. We denote b{ <,, (7<,,) the family of rooted loopless maps (triangulations, resp.) of size
at mostn.

The bijectionF; is specified recursively as follows. First, the vertex-map, the unique rooted loopless
map M such thai M| = 0, is mapped by to the triangle-map, the unique rooted triangulatiosuch
that||T|| = 0. Givenn > 0, assume thaf is a well defined size-preserving mapping fraa,, to
T<n, .., ||Fo(M)|| = |M] for every rooted loopless malf € L<,,. Let M be a rooted loopless map
of sizen + 1, with fingerprint§(M) = (C; My, ..., My¢). DefineT as the rooted triangulation of the
4-gon whose fingerprint i§(7") = (F1(C); Fo(My), ..., Fo(Myc))). By the recurrence assumptidh,
is well defined and|T’|| = | M|, as the sizes df and M are obtained by adding up the sizes of the maps
in the fingerprints. Defing := F»(M) as the rooted map obtained frdmby adding an edge fromV
to S taken as the new root. Notice tHAtis a triangulation: all faces df have clearly degree 3, and the
root edge is simple (Faa 7 ensures thaand NV are not adjacent iff"). In addition,||T’|| = ||T||, so
that||T’|| = |M|. We have thus described recursively a size-preserving magpifigm rooted loopless
maps to rooted triangulations.

The inverse mappingr, is defined in a similar way: we simply invert the stepsfef First, G,
maps the triangle-map to the vertex-map. Givekr 0, assume that; is a well defined size-preserving
mapping from7<,, to L<,,, and assume thdt, is the inverse mapping dfs, i.e., F>(G2(T')) = T for
anyT € T, andGy(Fy(M)) = M forany M € L<,. LetT be a rooted triangulation of size+ 1,
and letT" be the rooted triangulation of the 4-gon obtained by deleting the rabtaofd keeping the same
root vertex. Notice thal” is notSN-diagonal. Hence, the core-triangulatidof 7" is not theS N-link-
map. Let§(T) = (I;T1,...,Tj ) be the fingerprint of". The image ofl" by G is defined to be the
rooted loopless map/ with fingerprint§(M) = (G1(1); G2(T1), ..., G2(T2) 1)) By induction,Gs is
size-preserving and is the inverse mappingd©f To sum up, we obtain the following bijective result.

Theorem 5.1 For n > 0, the mappingFs, is a bijection between rooted loopless maps witadges and
rooted triangulations with inner vertices. The inverse mappingefis Gs.
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