Directed Algebraic Topology and Concurrency

Emmanuel Haucourt

emmanuel.haucourt@polytechnique.edu

MPRI : Concurrency (2.3.1)

Wednesday, the 15th of February 2017

Goal

Let $\ensuremath{\mathcal{C}}$ be a one-way category:

- Define a class Σ of morphisms of ${\cal C}$ so we can keep one representative in each class of $\Sigma\text{-related}$ objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms
- From now on ${\mathcal C}$ denotes a one-way category

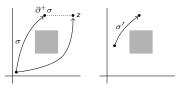
Potential weak isomorphisms

Let $\ensuremath{\mathcal{C}}$ is one-way

- For all morphisms σ and all objects z define
 - the σ, z -precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \rightarrow \gamma \circ \sigma \in \mathcal{C}(\partial^- \sigma, z)$
 - the z, σ -postcomposition as $\delta \in \mathcal{C}(z, \partial^{\perp} \sigma) \mapsto \sigma \circ \delta \in \mathcal{C}(z, \partial^{\perp} \sigma)$
- One may have $\mathcal{C}(\partial^+\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^-\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $C(\partial^+\sigma, z) \neq \emptyset$ (resp. $C(z, \partial^-\sigma) \neq \emptyset$) then the precomposition (resp. postcomposition) is bijective.
- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak isomorphisms compose.
- If C(x, y) contains a potential weak isomorphism, then it is a singleton Requires the assumption that C is one-way

An example

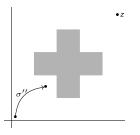
of potential weak isomorphism



Due to the lower dipath, the $\sigma,z\text{-}precomposition}$ is not bijective; yet σ' is a potential weak isomorphism.

An unwanted example

of potential weak isomorphism



Note that σ'' is a potential weak isomorphism though there exists a morphism from $\partial^+ \sigma''$ to z but none from $\partial^+ \sigma''$ to z.

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all $\sigma \in \Sigma$, for all γ with $\partial^{2}\gamma = \partial^{2}\sigma$, the pushout of σ along γ exists and belongs to Σ

- A collection of morphisms Σ is said to be stable under pullback when for all $\sigma \in \Sigma$, for all γ with $\partial^+ \gamma = \partial^+ \sigma$, the pullback of σ along γ exists and belongs to Σ

Greatest inner collection

stable under pushout and pullback

- Any collection Σ of morphisms of a category ${\cal C}$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0=\Sigma$
 - For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_n$ s.t. the pushout and the pullback of σ along with all morphisms exist (when sources or targets match) and belong to Σ_n

$$\Sigma_0 \supseteq \cdots \Sigma_1 \supseteq \cdots \supseteq \Sigma_n \supseteq \Sigma_{n+1} \supseteq \cdots$$

- The expected subcollection is the decreasing intersection

$$\Sigma_{\infty} := \bigcap_{n \in \mathbb{N}}^{\downarrow} \Sigma_n$$

- The collection Σ_∞ is stable under the action of $\mathsf{Aut}(\mathcal{C})$

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms
- If $\boldsymbol{\Sigma}$ is a system of weak isomorphisms, then so is its closure under composition
- Hence we suppose the systems of weak isomorphisms are closed under composition

Examples

of systems of weak ismorphisms

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

 $\{(x, y) \mid x \leq y; \exists I \in \mathcal{P}, [x, y] \subseteq I\}$

- In the preceding example, ${\mathbb R}$ can be replaced by any totally ordered set
- Let $\Sigma_i \subseteq C_i$ be a family of collections of morphisms, then

 $\prod_i \Sigma_i$ is a swi of $\prod_i C_i$ iff each Σ_i is a swi of C_i

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a system of weak isomorphisms.

Pureness

- A collection Σ of morphisms is said to be pure when

$$\gamma\circ\delta\in\Sigma\ \Rightarrow\ \gamma,\delta\in\Sigma$$

- Given a one-way category $\mathcal C$ we have:

All the systems of weak isomorphisms of ${\mathcal C}$ are pure

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: Top \to Loc$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f : X \to Y$ and $W \in \Omega Y$
- The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category $\mathcal C$ we have:
 - The collection of systems of weak isomorphisms of $\mathcal C$ forms a locale

The greatest swi is invariant under the action of Aut(C)

The filling square property of a category ${\mathcal C}$

- By definition, a filling square category C is such that for all commutative squares which are both pushout and pullack (see below), if $C(x, y) \neq \emptyset$ then there exists $\alpha \in C(x, y)$ that makes both triangles commute.

- If ${\mathcal C}$ satisfies the filling square property, then any collection of morphisms of ${\mathcal C}$ that is stable under pushout and pullback is a system of weak isomorphisms.
- A conjecture:

For all loop-free isothetic region X, $\overrightarrow{\pi_1}X$ satisfies the square filling property

Components

of a one-way category $\ensuremath{\mathcal{C}}$

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \xleftarrow{\Sigma} z \xrightarrow{\Sigma} y$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} y$
- When any of the following property is satisfied x and y are said to be Σ -connected
- $\Sigma\text{-}\text{connectedness}$ is an equivalence relation on the objects of $\mathcal C$
- The equivalence classes are called a Σ -components

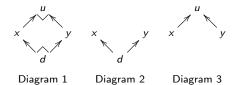
Structure of the Σ -components

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \land y$ and $x \lor y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

- [1.] The category \mathcal{K} is isomorphic with the preorder $(\mathcal{K},\preccurlyeq)$ where $x \preccurlyeq y$ stands for $\mathcal{C}[x,y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
- [2.] The preordered set (K, \preccurlyeq) is a prelattice.
- [3.] If *d* and *u* are respectively a greatest lower bound and a least upper bound of the pair $\{x, y\}$, then Diagram 1 is both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to Σ .
- [4.] $C = \mathcal{K}$ iff C is a prelattice, and Σ is the greatest system of weak isomorphisms of C i.e. all the morphisms in this case.

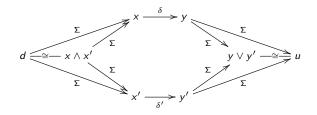


Construction

Equivalent morphisms

with respect to Σ

- Let $\delta \in \mathcal{C}(x, y)$ and $\delta' \in \mathcal{C}(x', y')$. Then write $\delta \sim \delta'$ when
 - $x \sim x'$ and $y \sim y'$, and
 - the inner hexagon of the next diagram commutes

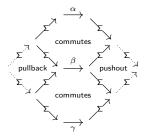


- Note that if $d \cong x \land x'$ and $u \cong y \lor y'$ then the outter hexagon also commutes, hence the relation \sim is well defined.
- If $\gamma \sim \delta$ then $\partial^{\scriptscriptstyle -} \gamma \sim \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma \sim \partial^{\scriptscriptstyle +} \delta$

The relation \sim is an equivalence

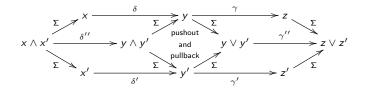
- The relation \sim is:

- reflexive since Σ contains all identities
- symmetric by definition
- transitive



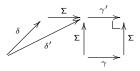
The relation \sim fits with composition

- Suppose $\partial^{\scriptscriptstyle -}\gamma = \partial^{\scriptscriptstyle +}\delta$, $\partial^{\scriptscriptstyle -}\gamma' = \partial^{\scriptscriptstyle +}\delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$



The category of components denoted by \mathcal{C}/Σ

- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ-components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma' \sim \gamma$, $\delta' \sim \delta$, and $\partial^- \gamma' = \partial^+ \delta'$



- so we define $[\gamma]\circ[\delta]=[\gamma'\circ\delta']$
- We have the quotient functor ${\mathcal Q}: {\mathcal C} o {\mathcal C} / \Sigma$
- The category of components is \mathcal{C}/Σ with Σ being the greatest swi of $\mathcal C$

Characterizing the identities of \mathcal{C}/Σ

For any morphism δ of C t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $[\delta]$ is an identity of \mathcal{C}/Σ

The quotient functor $Q : C \to C/\Sigma$ satisfies the following universal property: for all functor $F : C \to D$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } D\}$ there exists a unique $G : C/\Sigma \to D$ s.t. $F = G \circ Q$

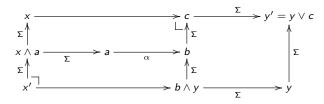
The fundamental properties of \mathcal{C}/Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C}\to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x, y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x), Q(y))$$

- If $\mathcal{C}/\Sigma(Q(x), Q(y)) \neq \emptyset$ then there exist x' and y' such that $\Sigma(x', x)$, $\Sigma(y, y')$, $\mathcal{C}(x', y)$, and $\mathcal{C}(x, y')$ are nonempty.

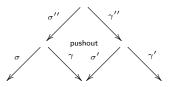


- The quotient functor Q preserves and reflects potential weak isomorphisms
- If ${\mathcal C}$ is finite then so is the quotient ${\mathcal C}/\Sigma$
- C is a preorder iff C/Σ is a poset

Describing the localization of ${\mathcal C}$ by Σ

with Σ system of weak isomoprphisms of ${\mathcal C}$

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of $\mathcal C$
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$,
 - Two pairs (γ, σ) and (γ', σ') being equivalent when $\partial^{\cdot}\sigma = \partial^{\cdot}\sigma'$, $\partial^{\cdot}\gamma = \partial^{\cdot}\gamma'$, and $Q(\gamma) = Q(\gamma')$
 - In the diagram below we have $Q(\gamma' \circ \gamma'') = Q(\gamma') \circ Q(\gamma'') = Q(\gamma') \circ Q(\gamma)$ hence the composite $(\gamma' \circ \gamma'', \sigma \circ \sigma'')$ neither depend on the choice of the pushout nor on the representatives (γ, σ) and (γ', σ') .



The canonical inclusion $I : \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$

with Σ system of weak isomoprphisms of ${\mathcal C}$

- Define I by $I(\gamma):=(\gamma,\mathsf{id}_{\partial^-\gamma})$ and the identity on objects
- Given a functor $F : \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{iomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $\mathcal{C}[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$
- The functor $I : \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ then satisfies the universal property: for all functor $F : \mathcal{C} \to \mathcal{D}$ there exists a unique $G : \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ s.t. $F = G \circ I$
- In particular there is a unique functor P s.t. $Q = P \circ I$ with $Q : C \to C/\Sigma$ and we have

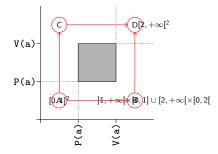
The functor P is an equivalence of categories

- The skeleton of $\mathcal{C}[\Sigma^{-1}]$ is \mathcal{C}/Σ and $\mathcal{C}[\Sigma^{-1}]$ is one-way.

Embeding \mathcal{C} / Σ into \mathcal{C}

- Let $\phi: \Sigma$ -components of $\mathcal{C} o \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case C/Σ is isomorphic with the full subcategory of C whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \preccurlyeq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K
 - The collection of admissible choice then forms a (pre)lattice
 - If \mathcal{C}/Σ is finite then there exists an admissible choice
 - If \mathcal{C}/Σ is infinite the existence of an admissible choice is a open question

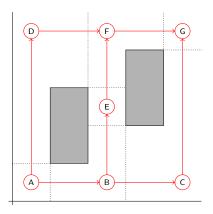
Plane without a square $x = \mathbb{R}^2_+ \setminus]0, 1[^2$



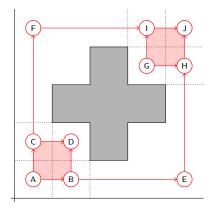
Let x, y such that $x \leq^2 y$, then $\overrightarrow{\pi_1}X(x, y)$ only depends on which elements of the partition x and y belong to

\rightarrow	A	B	C	D
A	σ	β	γ	$\beta' \circ \beta$
				$\alpha' \circ \alpha$
В		σ		β'
С			σ	γ'
D				σ

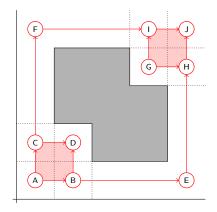
Two rectangles



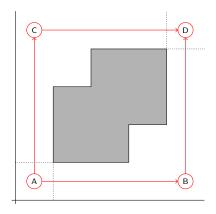
Swiss Flag



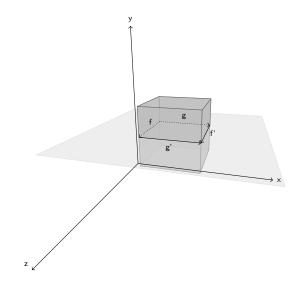
Achronal overlaping square



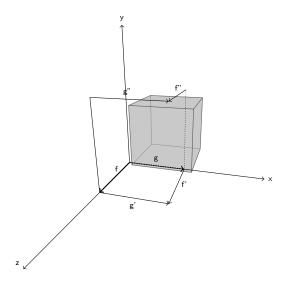
Diagonal overlaping squares



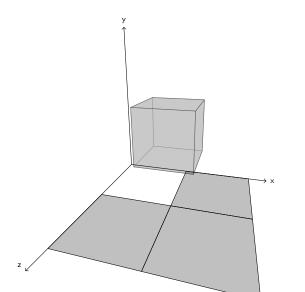
Non potential weak isomorphisms



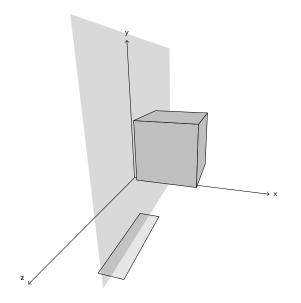
A "vee" that does not extend to a pushout



Some pushouts squares



31 / 51

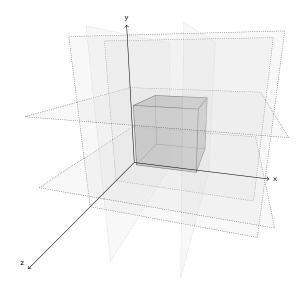


Construction

The floating cube

- Since the pushout of f (resp. g) along g (resp. f) does not exist, $f,g \not\in \Sigma$
- The commutative square f, g, f', and g' is a pullback:
 - Therefore $f',g' \not\in \Sigma$ (anyway they do not preserve the future cones)

boundaries of the components



Commutative monoid

of nonempty finite connected loop-free categories

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .

If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have

- $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A}\times\mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative monoid ${\cal M}$

The commutative monoid \mathcal{M} is free.

Criteria for primality

- The monoid ${\mathcal M}$ is graded by the following morphisms
 - $\#Ob: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\#Mo: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\#Mo(\mathcal{C}) \geqslant 2 \times \#Ob(\mathcal{C}) 1$, for all $\mathcal{C} \in \mathcal{M}$
- In particular if $\#Ob(\mathcal{C})$ or $\#Mo(\mathcal{C})$ is prime, then so is \mathcal{C} . The converse is false.
- Any element of ${\mathcal M}$ freely generated by a graph, is prime

Comparing decompositions

- The mapping $\mathcal{C}\in\mathcal{M}\mapsto\overrightarrow{\pi_0}(\mathcal{C})\in\mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0 < 1) = \{0\}$ though $\{0 < 1\}$ is prime in \mathcal{M})
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}' := \{ X \in \mathcal{H}_f | G \mid | \overrightarrow{\pi_1} X \text{ is nonempty, connected, and loop-free} \}$ is a pure submonoid of $\mathcal{H}_f | G |$
- Then $\mathcal{N} := \{X \in \mathcal{N}' \mid \overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \text{ is finite}\}$ is a pure submonoid of \mathcal{N}'
- Therefore it is free commutative and we would like to know which prime elements are preserved by $X \in \mathcal{N} \mapsto \overrightarrow{n}(\overrightarrow{n_1}X) \in \mathcal{M}$
- Conjecture

If $P \in \mathcal{N}$ is prime and $\overrightarrow{\pi_1}(P)$ is not a lattice, then $\overrightarrow{\pi_0}(\overrightarrow{\pi_1}(P))$ is prime

Homotopy of maps

- Let f,g:X o Y be continuous maps that agree on $A\subseteq X$
- An A-homotopy from f to g is a mapping $\eta : X \times [0, r] \to Y$, for some $r \in \mathbb{R}_+$, such that $\eta(_, 0) = f$, $\eta(_, r) = g$, and $t \mapsto \eta(_, t)|_A$ is constant
- If X is exponentiable, then A-homotopies can be seen as a path on Y^X
- If η is an A-homotopy from f to g then $(x, t) \mapsto \eta(x, r t)$ is an A-homotopy from g to f called the opposite of η
- If $\eta': X imes [0, r']$ is an A-homotopy from g to h then the concatenation

$$\begin{array}{rcl} \eta' \cdot \eta : X \times [0, r+r'] & \to & Y \\ (x,t) & \mapsto & \left\{ \begin{array}{l} \eta(x,t) & \text{if } t \leqslant r \\ \eta'(x,t-r) & \text{if } r \leqslant t \end{array} \right. \end{array}$$

is an A-homotopy from f to g

- Writting $f \sim g$ when there is an A-homotopy from f to g, we define an equivalence relation over the mappings from X to Y.

Homotopy groups

Homotopy groups of a space Y

The n^{th} homotopy group of Y at point $p \in Y$, $\pi_n(Y, p)$, is defined as follows:

- The elements of the group are the $\partial [0,1]^n$ -homotopy classes of maps from $[0,1]^n$ to Y that sends $\partial [0,1]^n$ to p
- Define, for $i \in \{1, \ldots, n\}$, $f +_i g(\ldots, t_i, \ldots)$ by $f(\ldots, 2t_i, \ldots)$ if $t_i \leq \frac{1}{2}$; $f(\ldots, 2t_i 1, \ldots)$ if $\frac{1}{2} \leq t_i$
- One proves that

-
$$[f +_i g]$$
 only depends on $[f]$ and $[g]$
- $[f +_i g] = [f +_j g]$ for all i, j
- $[f]^{-1} = [t_i \mapsto f(\dots, 1 - t_i, \dots)]$
for $n \ge 2$, the group π (X, n) is abelian

- for $n \geqslant 2$, the group $\pi_n(Y,p)$ is abelian

Some elementary facts about homotopy groups

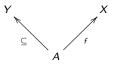
- If Y is path-connected, the homotopy groups do not depend on the base point
- for n = 0 the construction extends to a functor $\pi_0 : Top \to Set$ (the path-connected components)
- for n = 1 the fundamental group construction extends to a functor $\pi_1 : Top \to Gr$ (in general it is not abelian)
- for $n \ge 2$ the n^{th} homotopy group construction extends to a functor $\pi_n : \mathcal{T}op \to \mathcal{A}b$. i.e. for $n \ge 2$, the n^{th} homotopy group of a space is commutative

Some advanced facts about homotopy groups

- Any group can be obtained as $\pi_1(X)$ for some polyhedron
- $\pi_n(\mathbb{S}^d) \cong \{0\}$ for $0 \leqslant n < d$
- for $n \geqslant 1$, $\pi_n(\mathbb{S}^n) \cong \mathbb{Z}$ (Hurewicz)
- for $n \in \mathbb{N}$, $\pi_n(\mathbb{S}^d)$ is finite for n > d except $\pi_{4d-1}(\mathbb{S}^{2d}) \cong \mathbb{Z} \oplus F_d$ with F_d finite Groupes d'homotopie et classes de groupes abliens. J.-P. Serre, Ann. of Math. 58 (1953). 258-294
- $\pi_{d+k}(\mathbb{S}^d)$ does not depend on d when $d \ge k+2$ (stable homotopy) cor. of the Freudenthal Suspension Theorem
- the function sending (n, d) to $\pi_n(\mathbb{S}^d)$ is computable Finite Computability of Postnikov Complexes. E. H. Brown, Jr. Ann. of Math. 65(1). 1957

Attaching spaces

- Let A be a subspace of Y and $f : A \rightarrow X$ be a continuous map.
- The resulting attaching space is the pushout of f and $A \subseteq X$ i.e. the colimit of



- As a standard example we have $Y = [0, 1]^n$, A the boundary of Y i.e.

$$\{(x_1,\ldots,x_n)\in[0,1]^n\mid \exists k\in\{1,\ldots,n\},\ x_k\in\{0,1\}\}$$

- The CW-complexes arises in this way.

CW-complexes

Combinatorial homotopy I & II, J.H.C. Whitehead (1949)

a CW-complex is the colimit in \mathcal{CGH} of a (possibly infinite) sequence

$$X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n \subseteq X_{n+1} \subseteq \cdots$$

provided the spaces X_n are inductively defined as follows:

- Define X_{-1} as the empty space \emptyset
- The space X_n being given, let Y_{n+1} be a disjoint union of copies of $[0,1]^n$ i.e.

$$Y_{n+1} = \mathcal{I}_{n+1} \times [0,1]^{n+1} \cong \bigsqcup_{x \in \mathcal{I}_{n+1}} \{x\} \times [0,1]^{n+1}$$

Let A_n be the boundary of Y_n and $\phi_n : A_n \to X_n$ be an attaching map. Then X_{n+1} is the attaching space

$$X_{n+1} = X_n \bigsqcup_{\phi_n} Y_{n+1}$$

The pushout of ϕ_n is denoted by Φ_{n+1} and called the characterictic map.

- For $x \in \mathcal{I}_n$, a *n*-cell is the image of $\{x\} \times [0,1]^n$ under Φ_n .
- For $x \in \mathcal{I}_n$, an open *n*-cell is the image of $\{x\} \times]0, 1[^n$ under Φ_n . It is a homeomorphic image.

Some properties of the CW complexes

- All CW-complexes are compactly generated Hausdorff spaces
- A CW-complex is compact iff it has finitely many cells
- The realization of a (pre)cubical set is a CW-complex
- The product in \mathcal{CGH} of two CW-complexes is a CW-complex
- The following product in *Top* is not a CW-complex

 $|\mathbb{R} \rightrightarrows \{0\}| \times |\mathbb{N} \rightrightarrows \{0\}|$

Homotopy equivalences

- If there exists f': Y → X such that f' ∘ f ~ id_X and f ∘ f' ~ id_Y, then f (and f') are said to be homotopy equivalences. The spaces X and Y are said to be homotopic. A space (resp. map) that is homotopic with {0} (resp. a constant map) is said to be null homotopic
- Note the analogy with equivalences of category i.e. functors $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ such that there exists natural isomorphisms $\eta : id \to FG$ and $\varepsilon : GF \to id$
- Given a functor *F* t.f.a.e:
 - F is an equivalence of categories
 - F has a left adjoint and the unit and counit are isomorphisms
 - F is fully faithful and any object of its codomain is isomorphic with an object of its image

Basic examples

- Any homeomorphism is a homotopy equivalence
- For all $n \in \mathbb{N}$, \mathbb{R}^n is null homotopic. Consider $\eta(p, t) = t \cdot p$, $p \in \mathbb{R}^n$, $t \in [0, 1]$
- In particular one has homotopy equivalences which are not homeomorphisms
- For all $n \ge 1$, $\mathbb{R}^{n+1} \setminus \{0\}$ is homotopically equivalent to \mathbb{S}^n

Whitehead theorem

Combinatorial homotopy I & II, J.H.C. Whitehead (1949)

- If X and Y are homotopic, then $\pi_n(X) \cong \pi_n(Y)$ for all n
- Whitehead theorem:

If X and Y are CW-complexes and $f : X \to Y$ induces isomorphisms of n^{th} homotopy groups for all n, then f is a homotopy equivalence

The homotopy category

Localizing with respect to homotopy equivalences

- Given a collection ${\mathcal W}$ of morphisms of a category ${\mathcal C}$
- Consider the category:
 - whose objects are functors F defined on C s.t. $F(W) \subseteq \{\text{isomorphisms of } D\}$
 - the morphisms from F to F' are the functors from ${\rm cod}(F)$ to ${\rm cod}(F)'$ s.t. $F'=G\circ F$
- The previous category has an initial object $I : \mathcal{C} \to \mathcal{C}[\mathcal{W}^{-1}]$ i.e.
 - for all functors F sending all the elements of $\mathcal W$ to an isomorphism,
 - there exists a unique functor G defined over $\mathcal{C}[\mathcal{W}^{-1}]$ s.t. $F = G \circ I$

- The homotopy category is defined as the localization of Top (or CGH etc) with respect to the class of homotopy equivalences

Basic

- Revêtements et Groupe Fondamental, Michèle Audin, en ligne, 2004
- Categories and Groupoids, P. J. Higgins, Van Nostrand Reinhold, 1971
- Algebraic Topology, A. Hatcher, Cambridge Univ. Press, 2002
- Topology and Groupoids, R. Brown, BookSurge, 2006
- Introduction to Homotopy Theory, M. Arkowitz, Springer, 2011
- An introduction to Algebraic Topology, J. Rotman, Springer, 1988
- Lectures on Algebraic Topology, A. Dold, Springer, 1980

Bibliography

More advanced books

- Elements of Homotopy Theory, G. W. Whitehead, Springer, 1978
- Algebraic Topology: an Introduction, Massey, Springer, 1967
- Algebraic Topology: homotopy and homology, R. M. Switzer, 1975
- Algebraic Topology, E. H. Spanier, Springer, 1994
- Algebraic Topology, Tammo tom Dieck, EMS, 2008
- Nonabelian Algebraic Topology, R. Brown, P. J. Higgins, and R. Sivera, EMS, 2011
- Complex Cobordism and Stable Homotopy Groups of Spheres. D. C. Ravenel. AMS. 2003

About combinatorial homotopy and model categories

- Homotopical Algebra, D. G. Quillen, Springer, 1967
- Simplicial Objects in Algebraic Topology, P. J. May, Springer, 1967
- Calculus of Fractions and Homotopy Theory, P. Gabriel and M. Zisman, Springer, 1967
- Model Categories, M. Hovey, Amer. Math. Soc., 1999
- Model Categories and Their Localizations, P. S. Hirschhorn, Amer. Math. Soc., 2003
- Homotopy Limit Functors on Model Categories and Homotopical Categories, W.G. Dwyer, P.S. Hirschhorn, D.M. Kan, and J.H. Smith, Amer. Math. Soc., 2004