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Category of components (end) Systems of weak isomorphisms (end)

Let C be a one-way category:
- Define a class X of morphisms of C so we can keep one representative in each class of
Y -related objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms

- From now on C denotes a one-way category
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Category of components (end) Systems of weak isomorphisms (end)

Potential weak isomorphisms

Let C is one-way

- For all morphisms ¢ and all objects z define
- the o, z-precomposition as v € C(0%0,z) — ~oo € C(0 0, 2)
- the z, o-postcomposition as 6§ € C(z,00) — ood € C(z,0%0)
- One may have C(0%0,z) =0 or C(z,00) =0
- Note that o is an isomorphism iff for all z both precomposition and postcomposition are
bijective.
- The latter condition is weakened: o is said to preserve the future cones (resp. past cones)
when for all z if C(8*0,z) # 0 (resp. C(z, 0 c) # 0) then the precomposition
(resp. postcomposition) is bijective.
- Then o is a potential weak isomorphism when it preserves both future cones and past
cones. Potential weak isomorphisms compose.
- If C(x,y) contains a potential weak isomorphism, then it is a singleton

Requires the assumption that C is one-way



Category of components (end) Systems of weak isomorphisms (end)

An example

of potential weak isomorphism

Due to the lower dipath, the o, z-precomposition is not bijective; yet o’ is a potential weak
isomorphism.
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Category of components (end) Systems of weak isomorphisms (end)

An unwanted example

of potential weak isomorphism

Note that ¢’ is a potential weak isomorphism though there exists a morphism from 8¢’ to z
but none from 8+’ to z.
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S5 ETHC U e T ()
Stability under pushout and pullback

- A collection of morphisms X is said to be stable under pushout when for all o € ¥, for all
~ with &y = d 0o, the pushout of o along y exists and belongs to X

- A collection of morphisms X is said to be stable under pullback when for all o € X, for all
~ with 07y = 0%, the pullback of o along 7 exists and belongs to X



Category of components (end) Systems of weak isomorphisms (end)

Greatest inner collection
stable under pushout and pullback

- Any collection ¥ of morphisms of a category C admits a greatest subcollection that is
stable under pushout and pullback

- Construction:

- Start with g =X
- For n € N define X1 as the collection of morphisms o € ¥, s.t. the pushout and
the pullback of o along with all morphisms exist (when sources or targets match)
and belong to X,
Y02 X1 2 2Ep D pp1 2

- The expected subcollection is the decreasing intersection

Yoo 1= ﬂ izn
neN

- The collection ¥ is stable under the action of Aut(C)



Category of components (end) Systems of weak isomorphisms (end)

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback

- A system of weak isomorphisms is a collection of potential weak isomorphisms that is
stable under pushout and pullback

- The class of all isomorphisms of any category is a system of weak isomorphisms
- If X is a system of weak isomorphisms, then so is its closure under composition

- Hence we suppose the systems of weak isomorphisms are closed under composition
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Category of components (end) Systems of weak isomorphisms (end)

Examples

of systems of weak ismorphisms

- Given a partition P of R into intervals, the following collection is a system of weak
isomorphisms
{(x.y) |x<y; P, [x,y] C 1}

- In the preceding example, R can be replaced by any totally ordered set

- Let X; C C; be a family of collections of morphisms, then

II; % is a swi of [];C; iff each X; is a swi of C;

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an
equivalence of categories is a system of weak isomorphisms.
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Category of components (end) Systems of weak isomorphisms (end)

Pureness

- A collection X of morphisms is said to be pure when

yodEX = v,6€XL

- Given a one-way category C we have:

All the systems of weak isomorphisms of C are pure

10/51



Category of components (end) Systems of weak isomorphisms (end)

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

XN (\/)ﬁ') :\/(X/\YI)

i

- The collection QX open subsets of a topological space X form a locale and we have the
functor L : Top — Loc (that admits a left adjoint) defined by
- LX) =X
- L(A(W)=f"Y (W) forall f: X = Y and W € QY

- The collection of systems of weak isomorphisms of a category has a greatest element

- Given a one-way category C we have:

- | The collection of systems of weak isomorphisms of C forms a locale

- | The greatest swi is invariant under the action of Aut(C)
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S5 ETHC U e T ()
The filling square property

of a category C

- By definition, a filling square category C is such that for all commutative squares which
are both pushout and pullack (see below), if C(x,y) # 0 then there exists a € C(x, y)
that makes both triangles commute.

- If C satisfies the filling square property, then any collection of morphisms of C that is
stable under pushout and pullback is a system of weak isomorphisms.

- A conjecture:

For all loop-free isothetic region X, 7 X satisfies the square filling prop-
erty
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Category of components (end) Construction

Components

of a one-way category C

- From now on C is a one-way category and X is a system of weak isomorphisms on it

- Recall that is C(x, y) meets X, then C(x, y) is a singleton, a fact that we represent on
. b
diagrams by: x ——y

- Given two objects x and y of C t.f.a.e.:
- there exists a X-zigzag between x and y

. x P
- there exists z such that x <——z ——=y

. ¥ b
- there exists z such that x ——=z<——y

- When any of the following property is satisfied x and y are said to be ¥-connected
- X-connectedness is an equivalence relation on the objects of C

- The equivalence classes are called a X-components

13/51



Category of components (end) Construction

Structure of the X-components

> system of weak isomorphisms of C one-way category

A prelattice is a preordered set in which x A y and x V y exist for all x and y.
However they are defined only up to isomorphism

Let K be a X-component of C and K be the full subcategory of C whose objects are the
elements of K. The following properties are satisfied:

- [1.] The category K is isomorphic with the preorder (K, <) where x < y stands for
C[x,y] # 0. In particular, every diagram in K commutes.
- [2.] The preordered set (K, <) is a prelattice.

- [3.] If d and u are respectively a greatest lower bound and a least upper bound of the pair
{x,y}, then Diagram 1 is both a pullback and a pushout in C, and all the arrows
apprearing on the diagram belong to .

- [4] C =K iff C is a prelattice, and X is the greatest system of weak isomorphisms of C
i.e. all the morphisms in this case.

u
VAN 7N
X Yy X y x y
A N A
d d
Diagram 1 Diagram 2 Diagram 3
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Category of components (end) Construction

Equivalent morphisms
with respect to ¥

- Let § € C(x,y) and &’ € C(x’,y’). Then write § ~ &’ when
- x~x"and y ~y’, and
- the inner hexagon of the next diagram commutes

- Note that if d =2 x A x’ and u = y V y’ then the outter hexagon also commutes,
hence the relation ~ is well defined.

- Ify~§then Oy~ 96 and 0Ty ~ 970
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Category of components (end) Construction

The relation ~ is an equivalence

- The relation ~ is:

- reflexive since X contains all identities
- symmetric by definition
- transitive

@

—

h
Wl

- commutes
P \x /27‘ b
B e
_ pullback e pushout 2
X X
o E

commute:

A
s

—
5
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Category of components (end) Construction

The relation ~ fits with composition

- Suppose &y =0%5, 3y =078 and y ~ ' and § ~ §’.
- Then we have yo§ ~ v 0§’

5 Y
2 AN NI
5" pushout ’Y”
XAX ——>y Ay and yVy —— > 2zVv 7
pullback /
Z\A , z\; , %g b
’ y ’Y'

X /

z

8
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Category of components (end) Construction

The category of components
denoted by C/%

- The quotient category C/X (obtained by turning each morphism of X into an identity)
can be defined as follows:

- The objects are the X-components
- The morphisms are the ~-equivalence classes

- If Oy ~ 074 then
- there exists 7/ and ¢’ such that 4/ ~ v, §’ ~ §, and 0y = 9*¢’

b ¥
— s
//7T LT
b3 bx
6,
—_—
p”

- so we define [y] o [6] = [/ 0 &’]
- We have the quotient functor Q : C — C/X
- The category of components is C/X with ¥ being the greatest swi of C
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Constuction
Characterizing the identities of C/%

For any morphism ¢ of C t.f.a.e.
-dex
S plcs
- [6] is an identity of C/X

The quotient functor Q : C — C/X satisfies the following universal property:
for all functor F : C — D s.t. F(X) C {isomorphisms of D}
there exists a unique G : C/X - Dst. F=GoQ

c/x

Sk
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5 etz
The fundamental properties of C /X

with X being a system of weak isomorphisms of a one-way category C
- The quotient functor Q : C — C/X is surjective on morphisms

- The quotient category C/X is loop-free
- If C(x,y) # 0 then the following map is a bijection.

5 €C(xy) = Q) € C/X(Q(x), Q(y))

- 1fC/Z(Q(x), Q(y)) # 0 then there exist x” and y’ such that £(x’,x), Z(y,y’), C(x',y),
and C(x, y') are nonempty.

% c = y =yVc

I y

p b
XA a a b h

b «@
oA b
1
!
X bAy s y

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/X
- C is a preorder iff C/X is a poset
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Describing the localization of C by ¥

with ¥ system of weak isomoprphisms of C

- The objects of C[Z71] are the objects of C

- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (v, o)

with o € I,
- Two pairs (v,0) and (v, 0’) being equivalent when 80 = 8¢’, v =8+, and
QR(Y) = ()

- In the diagram below we have Q(7' o+") = Q(v¥') o Q(v"") = Q(v') o Q(v) hence
the composite (7' 0"/, o 0 ¢’’) neither depend on the choice of the pushout nor on
the representatives (v, o) and (v/,0').

pushout
/ \ % X

21/51



Category of components (end) Construction

The canonical inclusion [ : C — C[Zfl]

with ¥ system of weak isomoprphisms of C

- Define I by I(v) := (7,idg-) and the identity on objects

- Given a functor F : C — D s.t. F(X) C {iomorphisms of D} define
- G(x) := F(x) for all objects x of C[X~!] and
- G(v,0) := F(y) o (F(c))~? for any representative (v, o) of a morphism of C[X 1]
- The functor | : C — C[Z 1] then satisfies the universal property: for all functor
F : C — D there exists a unique G : C — C[X '] st. F=Gol

- In particular there is a unique functor P s.t. Q = P o/ with Q : C — C/X and we have

‘ The functor P is an equivalence of categories ‘

- The skeleton of C[£~!] is C/¥ and C[£ 7] is one-way.



Constuction
Embeding C/X into C

- Let ¢ : X-components of C — Ob(C) such that
- for all X-components K, K’, if there exists x € K and x’ € K’ such that
C(x,x") # 0, then C($(K), p(K")) # 0
- in this case C/X is isomorphic with the full subcategory of C whose set of objects is
im(g).
- the mapping ¢ is called an admissible choice (of canonical objects)
- Write ¢ < ¢’ when C(¢(K), ¢'(K)) # @ for all £-components K
- The collection of admissible choice then forms a (pre)lattice
- If C/X is finite then there exists an admissible choice
- If C/X is infinite the existence of an admissible choice is a open question
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Category of components (end) Construction

Plane without a square
x =R2\]0, 1[?

,+<>o[2
V(a)

P(a)

sob{ B)1] U [2, +oc[x[0, 2]

P(a)
V(a)q

Let x, y such that x <? y, then 7r_)1X(x,y) only depends on which elements of the partition x
and y belong to

— | A| B|C D
Alo | B |~ |BoB
o’ oa
B o B8’
C o ~
D o

24
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Category of components (end) Construction

Two rectangles
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Category of components (end) Construction
Swiss Flag

o
o

5

e
i
©
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Category of components (end) Construction

Achronal overlaping square

®

omo
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Category of components (end) Construction

Diagonal overlaping squares

©
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e
The floating cube

Non potential weak isomorphisms
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e
The floating cube

A ‘“vee" that does not extend to a pushout
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e
The floating cube

Some pushouts squares
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e
The floating cube

32/51



e
The floating cube

- Since the pushout of f (resp. g) along g (resp. f) does not exist, f,g ¢ ¥

- The commutative square f, g, f/, and g’ is a pullback:
- Therefore f', g’ ¢ ¥ (anyway they do not preserve the future cones)

33/51



e
The floating cube

boundaries of the components
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Finite connected loop-free categories

Commutative monoid

of nonempty finite connected loop-free categories

- The Cartesian product of categories A X B is non-empty iff so are A and B.
If A and B are indeed nonempty then we also have

- A x B finite iff so are A and B
- A x B connected iff so are A and B
- A x B loop-free iff so are A and B

- A= A" and B2 B’ implies A x A’ =2 B x B’
- (AXB)xC=2Ax(BxC)

S 1lx A2 A2 AX]

- AxB2Bx A

- The collection of isomorphism classes of nonempty finite connected loop-free categories is
thus a commutative monoid M

The commutative monoid M is free.
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Finite connected loop-free categories

Criteria for primality

- The monoid M is graded by the following morphisms
- #0b:C e M card(Ob(C)) € (N\ {0}, x,1)
- #Mo : C € M~ card(Mo(C)) € (N\ {0}, x,1)
- #Mo(C) > 2 x #0b(C) — 1, for all C € M
- In particular if #0b(C) or #Mo(C) is prime, then so is C.
The converse is false.

- Any element of M freely generated by a graph, is prime

36 /51



Finite connected loop-free categories

Comparing decompositions

- The mapping C € M — 7r_>0(C) € M is a morphism of monoids

- We would like to know which prime element of M are preserved by it

- We known that 73(C) is null iff C is a lattices (e.g. (0 < 1) = {0} though {0 < 1} is
prime in M)

- For all d-spaces X and Y, 7T>1(X xY) mX xmY

- Hence N’ := {X € Hf|G| | T X is nonempty, connected, and loop-free}
is a pure submonoid of Hr|G|

- Then N :={X € N’ | T (7 X) is finite} is a pure submonoid of N’

- Therefore it is free commutative and we would like to know which prime elements are
preserved by X € N — (T X) € M

- Conjecture

If P € N is prime and 71 (P) is not a lattice, then (i (P)) is prime
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Classical Homotopy Homotopy groups

Homotopy of maps

- Let f,g: X — Y be continuous maps that agree on A C X

- An A-homotopy from f to g is a mapping 1 : X X [0,r] — Y, for some r € R, such that

1n(-,0)=1f, n(-,r) =g, and t — n(_, t)|a is constant

- If X is exponentiable, then A-homotopies can be seen as a path on YX

- If n is an A-homotopy from f to g then (x,t) — n(x,r — t) is an A-homotopy from g to f

called the opposite of n
- If ' : X x [0, r'] is an A-homotopy from g to h then the concatenation

n-n:Xx[0,r+r] — Y

n(x, t) ift<r
(1) = {n’(x,t—r) ifr<t

is an A-homotopy from f to g

- Writting f ~ g when there is an A-homotopy from f to g, we define an equivalence
relation over the mappings from X to Y.

38

51



e T
Homotopy groups of a space Y

The nt" homotopy group of Y at point p € Y, m,(Y, p), is defined as follows:

- The elements of the group are the 90, 1]"-homotopy classes of maps from [0,1]” to Y
that sends 9[0, 1]" to p

- Define, for i € {1,...,n}, f+;g(...,ti,...) by f(...,2¢t;,...) if t; <
flo.2—1,..)ifL <y

1.
5
- One proves that

- [f +i g] only depends on [f] and [g]

- [f+igl=1[f+,g] foralli,j

ST =t 1= t,00)]

- for n > 2, the group my(Y, p) is abelian
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Classical Homotopy Homotopy groups

Some elementary facts about homotopy groups

- If Y is path-connected, the homotopy groups do not depend on the base point
- for n = 0 the construction extends to a functor mg : Zop — Set (the path-connected
components)

- for n =1 the fundamental group construction extends to a functor 71 : Top — Gr (in
general it is not abelian)
- for n > 2 the n'" homotopy group construction extends to a functor 7, : Top — 6.

i.e. for n > 2, the n'" homotopy group of a space is commutative
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Classical Homotopy Homotopy groups

Some advanced facts about homotopy groups

- Any group can be obtained as 71(X) for some polyhedron
- m(S9) = {0} for0< n< d
- for n>1, mp(S") = Z (Hurewicz)

- for n €N, m,(S9) is finite for n > d except maq_1(S??) = Z @ Fy with Fy finite
Groupes d’homotopie et classes de groupes abliens. J.-P. Serre, Ann. of Math. 58 (1953). 258-294

- Ty k(S) does not depend on d when d > k + 2 (stable homotopy)

cor. of the Freudenthal Suspension Theorem

- the function sending (n, d) to 7,(S?) is computable
Finite Computability of Postnikov Complexes. E. H. Brown, Jr. Ann. of Math. 65(1). 1957
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Classical Homotopy Whitehead theorem

Attaching spaces

- Let A be a subspace of Y and f : A — X be a continuous map.
- The resulting attaching space is the pushout of f and A C X i.e. the colimit of

BNy

A

- As a standard example we have Y = [0,1]", A the boundary of Y i.e.

{(x1,...,xn) €[0,1]" | 3k € {1,...,n}, x € {0,1}}

- The CW-complexes arises in this way.
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Classical Homotopy Whitehead theorem

CW-complexes
Combinatorial homotopy | & I, J.H.C. Whitehead (1949)

- a CW-complex is the colimit in CG# of a (possibly infinite) sequence

XoCX1C--CXp CXpp1 €0

provided the spaces X, are inductively defined as follows:
- Define X_1 as the empty space
- The space X, being given, let Y11 be a disjoint union of copies of [0, 1]" i.e.

Vo1 =Tos1 x [0,1]" 2 | | {x} x [0,1]""
Xx€Lnt1

Let A, be the boundary of Y, and ¢, : A, — X, be an attaching map.
Then X,41 is the attaching space

Xot1 = Xo|_| Yor1
¢n

The pushout of ¢, is denoted by ®,.1 and called the characterictic map.
- For x € Z,, a n-cell is the image of {x} X [0,1]" under ®,.
- For x € Z,, an open n-cell is the image of {x}x]0,1[" under ®,.
It is a homeomorphic image.



Classical Homotopy Whitehead theorem

Some properties of the CW complexes

- All CW-complexes are compactly generated Hausdorff spaces
- A CW-complex is compact iff it has finitely many cells

- The realization of a (pre)cubical set is a CW-complex

- The product in CGH of two CW-complexes is a CW-complex
- The following product in Zop is not a CW-complex

IR = {0}] x [N = {0}
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Classical Homotopy Whitehead theorem

Homotopy equivalences

- If there exists f' : Y — X such that f' o f ~idx and f o f’ ~ idy, then f (and f’) are
said to be homotopy equivalences. The spaces X and Y are said to be homotopic. A
space (resp. map) that is homotopic with {0} (resp. a constant map) is said to be null
homotopic

- Note the analogy with equivalences of category i.e. functors F : A = B : G such that
there exists natural isomorphisms 7 : id — FG and € : GF — id
- Given a functor F t.fa.e:

- F is an equivalence of categories

- F has a left adjoint and the unit and counit are isomorphisms

- F is fully faithful and any object of its codomain is isomorphic with an object of its
image
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ey
Basic examples

- Any homeomorphism is a homotopy equivalence
- For all n € N, R” is null homotopic. Consider n(p,t) =t-p, p€R", t € [0,1]
- In particular one has homotopy equivalences which are not homeomorphisms

- For all n> 1, R"1!\ {0} is homotopically equivalent to S"
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Classical Homotopy Whitehead theorem

Whitehead theorem
Combinatorial homotopy | & II, J.H.C. Whitehead (1949)

- If X and Y are homotopic, then m,(X) = 7,(Y) for all n
- Whitehead theorem:

If X and Y are CW-complexes and f : X — Y induces isomorphisms of nt"
homotopy groups for all n, then f is a homotopy equivalence
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TR
The homotopy category

Localizing with respect to homotopy equivalences

- Given a collection W of morphisms of a category C

- Consider the category:
- whose objects are functors F defined on C s.t. F(W) C {isomorphisms of D}
- the morphisms from F to F’ are the functors from cod(F) to cod(F)’ s.t.
F'=GoF
- The previous category has an initial object / : C — C[W™!] i.e.

- for all functors F sending all the elements of W to an isomorphism,
- there exists a unique functor G defined over C[W~!]st. F=Gol

ciw1]
/ \L
G
C——>1D
F

- The homotopy category is defined as the localization of Top (or CGH etc) with respect to
the class of homotopy equivalences
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Classical Homotopy Bibliography
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Classical Homotopy Bibliography
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Classical Homotopy Bibliography
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