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Category of components (end) Systems of weak isomorphisms (end)

Goal

Let C be a one-way category:

- Define a class Σ of morphisms of C so we can keep one representative in each class of
Σ-related objects without loss of information

- To do so, we are in search for a class that behaves much like the one of isomorphisms

- From now on C denotes a one-way category

2 / 51



Category of components (end) Systems of weak isomorphisms (end)

Potential weak isomorphisms
Let C is one-way

- For all morphisms σ and all objects z define

- the σ, z-precomposition as γ ∈ C(∂+σ, z) → γ◦σ ∈ C(∂-σ, z)
- the z, σ-postcomposition as δ ∈ C(z, ∂-σ) 7→ σ◦δ ∈ C(z, ∂+σ)

- One may have C(∂+σ, z) = ∅ or C(z, ∂-σ) = ∅
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are

bijective.

- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones)
when for all z if C(∂+σ, z) 6= ∅ (resp. C(z, ∂-σ) 6= ∅) then the precomposition
(resp. postcomposition) is bijective.

- Then σ is a potential weak isomorphism when it preserves both future cones and past
cones. Potential weak isomorphisms compose.

- If C(x , y) contains a potential weak isomorphism, then it is a singleton
Requires the assumption that C is one-way
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Category of components (end) Systems of weak isomorphisms (end)

An example
of potential weak isomorphism

z
∂+σ

σ

σ′

Due to the lower dipath, the σ, z-precomposition is not bijective; yet σ′ is a potential weak
isomorphism.
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Category of components (end) Systems of weak isomorphisms (end)

An unwanted example
of potential weak isomorphism

z

σ′′

Note that σ′′ is a potential weak isomorphism though there exists a morphism from ∂-σ′′ to z
but none from ∂+σ′′ to z.
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Category of components (end) Systems of weak isomorphisms (end)

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all σ ∈ Σ, for all
γ with ∂-γ = ∂-σ, the pushout of σ along γ exists and belongs to Σ

γ′ //

σ

OO

γ
//
σ′

OO

- A collection of morphisms Σ is said to be stable under pullback when for all σ ∈ Σ, for all
γ with ∂+γ = ∂+σ, the pullback of σ along γ exists and belongs to Σ

γ //

σ′

OO

γ′
//

σ

OO
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Category of components (end) Systems of weak isomorphisms (end)

Greatest inner collection
stable under pushout and pullback

- Any collection Σ of morphisms of a category C admits a greatest subcollection that is
stable under pushout and pullback

- Construction:

- Start with Σ0 = Σ
- For n ∈ N define Σn+1 as the collection of morphisms σ ∈ Σn s.t. the pushout and

the pullback of σ along with all morphisms exist (when sources or targets match)
and belong to Σn

Σ0 ⊇ · · ·Σ1 ⊇ · · · ⊇ Σn ⊇ Σn+1 ⊇ · · ·

- The expected subcollection is the decreasing intersection

Σ∞ :=
⋂
n∈N

↓
Σn

- The collection Σ∞ is stable under the action of Aut(C)
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Category of components (end) Systems of weak isomorphisms (end)

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback

- A system of weak isomorphisms is a collection of potential weak isomorphisms that is
stable under pushout and pullback

- The class of all isomorphisms of any category is a system of weak isomorphisms

- If Σ is a system of weak isomorphisms, then so is its closure under composition

- Hence we suppose the systems of weak isomorphisms are closed under composition
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Category of components (end) Systems of weak isomorphisms (end)

Examples
of systems of weak ismorphisms

- Given a partition P of R into intervals, the following collection is a system of weak
isomorphisms {

(x , y) | x 6 y ; ∃I ∈ P, [x , y ] ⊆ I
}

- In the preceding example, R can be replaced by any totally ordered set

- Let Σi ⊆ Ci be a family of collections of morphisms, then

∏
i Σi is a swi of

∏
i Ci iff each Σi is a swi of Ci

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an
equivalence of categories is a system of weak isomorphisms.
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Category of components (end) Systems of weak isomorphisms (end)

Pureness

- A collection Σ of morphisms is said to be pure when

γ ◦ δ ∈ Σ ⇒ γ, δ ∈ Σ

- Given a one-way category C we have:

All the systems of weak isomorphisms of C are pure
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Category of components (end) Systems of weak isomorphisms (end)

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

x ∧
(∨

i

yi

)
=
∨
i

(x ∧ yi )

- The collection ΩX open subsets of a topological space X form a locale and we have the

functor L : Top → Loc (that admits a left adjoint) defined by

- L(X ) = ΩX
- L(f )(W ) = f −1(W ) for all f : X → Y and W ∈ ΩY

- The collection of systems of weak isomorphisms of a category has a greatest element

- Given a one-way category C we have:

- The collection of systems of weak isomorphisms of C forms a locale

- The greatest swi is invariant under the action of Aut(C)
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Category of components (end) Systems of weak isomorphisms (end)

The filling square property
of a category C

- By definition, a filling square category C is such that for all commutative squares which
are both pushout and pullack (see below), if C(x , y) 6= ∅ then there exists α ∈ C(x , y)
that makes both triangles commute.

y //

//

OO

x

OO
α

__

- If C satisfies the filling square property, then any collection of morphisms of C that is
stable under pushout and pullback is a system of weak isomorphisms.

- A conjecture:

For all loop-free isothetic region X , −→π1X satisfies the square filling prop-
erty
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Category of components (end) Construction

Components
of a one-way category C

- From now on C is a one-way category and Σ is a system of weak isomorphisms on it

- Recall that is C(x , y) meets Σ, then C(x , y) is a singleton, a fact that we represent on

diagrams by: x
Σ // y

- Given two objects x and y of C t.f.a.e.:

- there exists a Σ-zigzag between x and y

- there exists z such that x z
Σoo Σ // y

- there exists z such that x
Σ // z y

Σoo

- When any of the following property is satisfied x and y are said to be Σ-connected

- Σ-connectedness is an equivalence relation on the objects of C
- The equivalence classes are called a Σ-components
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Category of components (end) Construction

Structure of the Σ-components
Σ system of weak isomorphisms of C one-way category

A prelattice is a preordered set in which x ∧ y and x ∨ y exist for all x and y .
However they are defined only up to isomorphism

Let K be a Σ-component of C and K be the full subcategory of C whose objects are the
elements of K . The following properties are satisfied:

- [1.] The category K is isomorphic with the preorder (K ,4) where x 4 y stands for
C[x , y ] 6= ∅. In particular, every diagram in K commutes.

- [2.] The preordered set (K ,4) is a prelattice.
- [3.] If d and u are respectively a greatest lower bound and a least upper bound of the pair
{x , y}, then Diagram 1 is both a pullback and a pushout in C, and all the arrows
apprearing on the diagram belong to Σ.

- [4.] C = K iff C is a prelattice, and Σ is the greatest system of weak isomorphisms of C
i.e. all the morphisms in this case.

u u

x

??

y

``

x y x

??

y

__

Diagram 1

d

__ ??

Diagram 2

d

__ ??

Diagram 3
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Category of components (end) Construction

Equivalent morphisms
with respect to Σ

- Let δ ∈ C(x , y) and δ′ ∈ C(x ′, y ′). Then write δ ∼ δ′ when

- x ∼ x ′ and y ∼ y ′, and
- the inner hexagon of the next diagram commutes

x
δ // y

Σ

))d

Σ

55

Σ
))

∼= x ∧ x ′
Σ

::

Σ

$$

y ∨ y ′
$$Σ

::
Σ

u∼=

x ′
δ′
// y ′

Σ

55

- Note that if d ∼= x ∧ x ′ and u ∼= y ∨ y ′ then the outter hexagon also commutes,
hence the relation ∼ is well defined.

- If γ ∼ δ then ∂-γ ∼ ∂-δ and ∂+γ ∼ ∂+δ
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Category of components (end) Construction

The relation ∼ is an equivalence

- The relation ∼ is:

- reflexive since Σ contains all identities
- symmetric by definition
- transitive

α //

Σ
��

commutes

Σ

??

Σ
��

Σ
��

pullback

Σ

??

Σ
��

β
//

Σ

??

Σ
��

pushout

commutes

Σ

??

Σ
��

Σ

??

γ
//

Σ

??
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Category of components (end) Construction

The relation ∼ fits with composition

- Suppose ∂-γ = ∂+δ, ∂-γ′ = ∂+δ′ and γ ∼ γ′ and δ ∼ δ′.
- Then we have γ ◦ δ ∼ γ′ ◦ δ′

x
δ // y

Σ
&&pushout

and

pullback

γ // z
Σ
&&

x ∧ x ′

Σ
88

Σ &&

δ′′ // y ∧ y ′

Σ
88

Σ &&

y ∨ y ′
γ′′ // z ∨ z ′

x ′
δ′

// y ′
Σ

88

γ′
// z ′

Σ

99
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Category of components (end) Construction

The category of components
denoted by C/Σ

- The quotient category C/Σ (obtained by turning each morphism of Σ into an identity)

can be defined as follows:

- The objects are the Σ-components
- The morphisms are the ∼-equivalence classes

- If ∂-γ ∼ ∂+δ then

- there exists γ′ and δ′ such that γ′ ∼ γ, δ′ ∼ δ, and ∂-γ′ = ∂+δ′

Σ // γ′ //
δ

??

δ′

77

Σ

OO

γ
//

Σ

OO

- so we define [γ] ◦ [δ] = [γ′ ◦ δ′]
- We have the quotient functor Q : C → C/Σ

- The category of components is C/Σ with Σ being the greatest swi of C
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Category of components (end) Construction

Characterizing the identities of C/Σ

For any morphism δ of C t.f.a.e.

- δ ∈ Σ

- [δ] ⊆ Σ

- [δ] is an identity of C/Σ

The quotient functor Q : C → C/Σ satisfies the following universal property:
XXfor all functor F : C → D s.t. F (Σ) ⊆ {isomorphisms of D}
XXthere exists a unique G : C/Σ→ D s.t. F = G ◦ Q

C/Σ

G

��
C

F
//

Q

>>

D
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Category of components (end) Construction

The fundamental properties of C/Σ
with Σ being a system of weak isomorphisms of a one-way category C

- The quotient functor Q : C → C/Σ is surjective on morphisms
- The quotient category C/Σ is loop-free
- If C(x , y) 6= ∅ then the following map is a bijection.

δ ∈ C(x , y) 7→ Q(δ) ∈ C/Σ
(
Q(x),Q(y)

)
- If C/Σ

(
Q(x),Q(y)

)
6= ∅ then there exist x ′ and y ′ such that Σ(x ′, x), Σ(y , y ′), C(x ′, y),

and C(x , y ′) are nonempty.

x // c Σ // y ′ = y ∨ c

x ∧ a

Σ

OO

Σ
// a

α
// b

Σ

OO

x ′ //
Σ

OO

b ∧ y
Σ

//
Σ

OO

y

Σ

OO

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/Σ
- C is a preorder iff C/Σ is a poset
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Category of components (end) Construction

Describing the localization of C by Σ
with Σ system of weak isomoprphisms of C

- The objects of C[Σ−1] are the objects of C

- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ)

with σ ∈ Σ,

- Two pairs (γ, σ) and (γ′, σ′) being equivalent when ∂-σ = ∂-σ′, ∂-γ = ∂-γ′, and
Q(γ) = Q(γ′)

- In the diagram below we have Q(γ′ ◦ γ′′) = Q(γ′) ◦ Q(γ′′) = Q(γ′) ◦ Q(γ) hence
the composite (γ′ ◦ γ′′, σ ◦ σ′′) neither depend on the choice of the pushout nor on
the representatives (γ, σ) and (γ′, σ′).

σ′′

��

γ′′

��
pushout

γ

��

σ

��

σ′

��

γ′

��
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Category of components (end) Construction

The canonical inclusion I : C → C[Σ−1]
with Σ system of weak isomoprphisms of C

- Define I by I (γ) := (γ, id∂-γ) and the identity on objects

- Given a functor F : C → D s.t. F (Σ) ⊆ {iomorphisms of D} define

- G(x) := F (x) for all objects x of C[Σ−1] and
- G(γ, σ) := F (γ) ◦ (F (σ))−1 for any representative (γ, σ) of a morphism of C[Σ−1]

- The functor I : C → C[Σ−1] then satisfies the universal property: for all functor
F : C → D there exists a unique G : C → C[Σ−1] s.t. F = G ◦ I

- In particular there is a unique functor P s.t. Q = P ◦ I with Q : C → C/Σ and we have

-

The functor P is an equivalence of categories

- The skeleton of C[Σ−1] is C/Σ and C[Σ−1] is one-way.

22 / 51



Category of components (end) Construction

Embeding C/Σ into C

- Let φ : Σ-components of C → Ob(C) such that

- for all Σ-components K ,K ′, if there exists x ∈ K and x ′ ∈ K ′ such that
C(x , x ′) 6= ∅, then C(φ(K), φ(K ′)) 6= ∅

- in this case C/Σ is isomorphic with the full subcategory of C whose set of objects is
im(φ).

- the mapping φ is called an admissible choice (of canonical objects)

- Write φ 4 φ′ when C(φ(K), φ′(K)) 6= ∅ for all Σ-components K

- The collection of admissible choice then forms a (pre)lattice
- If C/Σ is finite then there exists an admissible choice
- If C/Σ is infinite the existence of an admissible choice is a open question
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Category of components (end) Construction

Plane without a square
x = R2

+
\]0, 1[2

P(a)

P
(
a
)

V(a)

V
(
a
)

[0, 1]2

[2,+∞[2

]1,+∞[×[0, 1] ∪ [2,+∞[×[0, 2[A

D

B

C

Let x , y such that x 62 y , then −→π1X (x , y) only depends on which elements of the partition x
and y belong to

→ A B C D
A σ β γ β′ ◦ β

α′ ◦ α
B σ β′

C σ γ′

D σ
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Category of components (end) Construction

Two rectangles

A B C

D

E

F G
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Category of components (end) Construction

Swiss Flag

A B

C D

JI

HG

E

F

A B

C D

JI

HG

E

F
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Category of components (end) Construction

Achronal overlaping square

A B

C D

JI

HG

E

F

A B

C D

JI

HG

E

F
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Category of components (end) Construction

Diagonal overlaping squares

A B

C D
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Category of components (end) Construction

The floating cube
Non potential weak isomorphisms

x

y

z

f

f’

g

g’
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Category of components (end) Construction

The floating cube
A “vee” that does not extend to a pushout

x

y

z

f

f’

g

g’

g” f”
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Category of components (end) Construction

The floating cube
Some pushouts squares

x

y

z
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Category of components (end) Construction

The floating cube

x

y

z
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Category of components (end) Construction

The floating cube

- Since the pushout of f (resp. g) along g (resp. f ) does not exist, f , g 6∈ Σ

- The commutative square f , g , f ′, and g ′ is a pullback:

- Therefore f ′, g ′ 6∈ Σ (anyway they do not preserve the future cones)
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Category of components (end) Construction

The floating cube
boundaries of the components

x

y

z
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Finite connected loop-free categories

Commutative monoid
of nonempty finite connected loop-free categories

- The Cartesian product of categories A× B is non-empty iff so are A and B.

If A and B are indeed nonempty then we also have

- A× B finite iff so are A and B
- A× B connected iff so are A and B
- A× B loop-free iff so are A and B

- A ∼= A′ and B ∼= B′ implies A×A′ ∼= B × B′

- (A× B)× C ∼= A× (B × C)

- 1×A ∼= A ∼= A× 1

- A× B ∼= B ×A
- The collection of isomorphism classes of nonempty finite connected loop-free categories is

thus a commutative monoid M

The commutative monoidM is free.
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Finite connected loop-free categories

Criteria for primality

- The monoid M is graded by the following morphisms

- #Ob : C ∈ M 7→ card(Ob(C)) ∈ (N \ {0},×, 1)
- #Mo : C ∈ M 7→ card(Mo(C)) ∈ (N \ {0},×, 1)
- #Mo(C) > 2×#Ob(C)− 1, for all C ∈ M

- In particular if #Ob(C) or #Mo(C) is prime, then so is C.
The converse is false.

- Any element of M freely generated by a graph, is prime
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Finite connected loop-free categories

Comparing decompositions

- The mapping C ∈ M 7→ −→π0(C) ∈M is a morphism of monoids

- We would like to know which prime element of M are preserved by it

- We known that −→π0(C) is null iff C is a lattices (e.g. −→π0(0 < 1) = {0} though {0 < 1} is
prime in M)

- For all d-spaces X and Y , −→π1(X × Y ) ∼= −→π1X ×−→π1Y

- Hence N ′ := {X ∈ Hf �G� | −→π1X is nonempty, connected, and loop-free}
is a pure submonoid of Hf �G�

- Then N := {X ∈ N ′ | −→π0(−→π1X ) is finite} is a pure submonoid of N ′

- Therefore it is free commutative and we would like to know which prime elements are
preserved by X ∈ N 7→ −→π0(−→π1X ) ∈M

- Conjecture

If P ∈ N is prime and −→π1(P) is not a lattice, then −→π0(−→π1(P)) is prime
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Classical Homotopy Homotopy groups

Homotopy of maps

- Let f , g : X → Y be continuous maps that agree on A ⊆ X

- An A-homotopy from f to g is a mapping η : X × [0, r ]→ Y , for some r ∈ R+ , such that
η( , 0) = f , η( , r) = g , and t 7→ η( , t)|A is constant

- If X is exponentiable, then A-homotopies can be seen as a path on Y X

- If η is an A-homotopy from f to g then (x , t) 7→ η(x , r − t) is an A-homotopy from g to f
called the opposite of η

- If η′ : X × [0, r ′] is an A-homotopy from g to h then the concatenation

η′ · η : X × [0, r + r ′] → Y

(x , t) 7→
{

η(x , t) if t 6 r
η′(x , t − r) if r 6 t

is an A-homotopy from f to g

- Writting f ∼ g when there is an A-homotopy from f to g , we define an equivalence
relation over the mappings from X to Y .
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Classical Homotopy Homotopy groups

Homotopy groups of a space Y

The nth homotopy group of Y at point p ∈ Y , πn(Y , p), is defined as follows:

- The elements of the group are the ∂[0, 1]n-homotopy classes of maps from [0, 1]n to Y
that sends ∂[0, 1]n to p

- Define, for i ∈ {1, . . . , n}, f +i g(. . . , ti , . . .) by f (. . . , 2ti , . . .) if ti 6
1
2

;

f (. . . , 2ti − 1, . . .) if 1
2
6 ti

- One proves that

- [f +i g ] only depends on [f ] and [g ]
- [f +i g ] = [f +j g ] for all i , j
- [f ]−1 = [ti 7→ f (. . . , 1− ti , . . .)]
- for n > 2, the group πn(Y , p) is abelian
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Classical Homotopy Homotopy groups

Some elementary facts about homotopy groups

- If Y is path-connected, the homotopy groups do not depend on the base point

- for n = 0 the construction extends to a functor π0 : Top → Set (the path-connected
components)

- for n = 1 the fundamental group construction extends to a functor π1 : Top → Gr (in
general it is not abelian)

- for n > 2 the nth homotopy group construction extends to a functor πn : Top → Ab.
i.e. for n ≥ 2, the nth homotopy group of a space is commutative

40 / 51



Classical Homotopy Homotopy groups

Some advanced facts about homotopy groups

- Any group can be obtained as π1(X ) for some polyhedron

- πn(Sd ) ∼= {0} for 0 6 n < d

- for n > 1, πn(Sn) ∼= Z (Hurewicz)

- for n ∈ N, πn(Sd ) is finite for n > d except π4d−1(S2d ) ∼= Z⊕ Fd with Fd finite
Groupes d’homotopie et classes de groupes abliens. J.-P. Serre, Ann. of Math. 58 (1953). 258-294

- πd+k (Sd ) does not depend on d when d > k + 2 (stable homotopy)
cor. of the Freudenthal Suspension Theorem

- the function sending (n, d) to πn(Sd ) is computable
Finite Computability of Postnikov Complexes. E. H. Brown, Jr. Ann. of Math. 65(1). 1957
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Classical Homotopy Whitehead theorem

Attaching spaces

- Let A be a subspace of Y and f : A→ X be a continuous map.

- The resulting attaching space is the pushout of f and A ⊆ X i.e. the colimit of

Y X

A

f

??

⊆

__

- As a standard example we have Y = [0, 1]n, A the boundary of Y i.e.{
(x1, . . . , xn) ∈ [0, 1]n | ∃k ∈ {1, . . . , n}, xk ∈ {0, 1}

}

- The CW-complexes arises in this way.
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Classical Homotopy Whitehead theorem

CW-complexes
Combinatorial homotopy I & II, J.H.C. Whitehead (1949)

- a CW-complex is the colimit in CGH of a (possibly infinite) sequence

X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · ·

provided the spaces Xn are inductively defined as follows:

- Define X−1 as the empty space ∅
- The space Xn being given, let Yn+1 be a disjoint union of copies of [0, 1]n i.e.

Yn+1 = In+1 × [0, 1]n+1 ∼=
⊔

x∈In+1

{x} × [0, 1]n+1

Let An be the boundary of Yn and φn : An → Xn be an attaching map.
Then Xn+1 is the attaching space

Xn+1 = Xn

⊔
φn

Yn+1

The pushout of φn is denoted by Φn+1 and called the characterictic map.

- For x ∈ In, a n-cell is the image of {x} × [0, 1]n under Φn.

- For x ∈ In, an open n-cell is the image of {x}×]0, 1[n under Φn.
It is a homeomorphic image.
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Classical Homotopy Whitehead theorem

Some properties of the CW complexes

- All CW-complexes are compactly generated Hausdorff spaces

- A CW-complex is compact iff it has finitely many cells

- The realization of a (pre)cubical set is a CW-complex

- The product in CGH of two CW-complexes is a CW-complex

- The following product in Top is not a CW-complex

|R⇒ {0}| × |N⇒ {0}|
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Classical Homotopy Whitehead theorem

Homotopy equivalences

- If there exists f ′ : Y → X such that f ′ ◦ f ∼ idX and f ◦ f ′ ∼ idY , then f (and f ′) are
said to be homotopy equivalences. The spaces X and Y are said to be homotopic. A
space (resp. map) that is homotopic with {0} (resp. a constant map) is said to be null
homotopic

- Note the analogy with equivalences of category i.e. functors F : A� B : G such that
there exists natural isomorphisms η : id→ FG and ε : GF → id

- Given a functor F t.f.a.e:

- F is an equivalence of categories
- F has a left adjoint and the unit and counit are isomorphisms
- F is fully faithful and any object of its codomain is isomorphic with an object of its

image
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Classical Homotopy Whitehead theorem

Basic examples

- Any homeomorphism is a homotopy equivalence

- For all n ∈ N, Rn is null homotopic. Consider η(p, t) = t · p, p ∈ Rn, t ∈ [0, 1]

- In particular one has homotopy equivalences which are not homeomorphisms

- For all n > 1, Rn+1 \ {0} is homotopically equivalent to Sn
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Classical Homotopy Whitehead theorem

Whitehead theorem
Combinatorial homotopy I & II, J.H.C. Whitehead (1949)

- If X and Y are homotopic, then πn(X ) ∼= πn(Y ) for all n

- Whitehead theorem:

If X and Y are CW-complexes and f : X → Y induces isomorphisms of nth

homotopy groups for all n, then f is a homotopy equivalence

47 / 51



Classical Homotopy Whitehead theorem

The homotopy category
Localizing with respect to homotopy equivalences

- Given a collection W of morphisms of a category C

- Consider the category:

- whose objects are functors F defined on C s.t. F (W) ⊆ {isomorphisms of D}
- the morphisms from F to F ′ are the functors from cod(F ) to cod(F )′ s.t.

F ′ = G ◦ F

- The previous category has an initial object I : C → C[W−1] i.e.

- for all functors F sending all the elements of W to an isomorphism,
- there exists a unique functor G defined over C[W−1] s.t. F = G ◦ I

C[W−1]

G

��
C

I

<<

F
// D

- The homotopy category is defined as the localization of Top (or CGH etc) with respect to
the class of homotopy equivalences
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