ISOTHETIC REGIONS
Boolean structure
One-dimensional regions

Let G be a finite graph, the collection R_1^G of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$. Moreover $R_1^G \cong \text{Pow}(V) \times (R_1^{[0,1[})$ cardA with A (resp. V) being the set of arrows (resp. vertices) of G, and $R_1^{[0,1[}$ being the Boolean algebra of finite unions of subintervals of $[0,1[$.

The elements of R_1^G are seen as one-dimensional blocks.

Proof: If X is a connected subset of $|G|$ then for all arrows $\alpha \in G$, $X \cap (\{\alpha}\times [0,1[)$ has at most two connected components.

The finiteness condition is not necessary e.g. Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.

Moreover

$$\mathcal{R}_1 G \cong \text{Pow}(V) \times (\mathcal{R}_1]0,1[)^{\text{card}A}$$

with A (resp. V) being the set of arrows (resp. vertices) of G, and $\mathcal{R}_1]0,1[$ being the Boolean algebra of finite unions of subintervals of $]0,1[$.

The elements of $\mathcal{R}_1 G$ are seen as one-dimensional blocks.

Proof: If X is a connected subset of $|G|$ then for all arrows $\alpha \in G$, $X \cap (\{\alpha\} \times]0,1[)$ has at most two connected components.

The finiteness condition is not necessary e.g.

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.

Moreover

$$\mathcal{R}_1 G \cong \text{Pow}(V) \times (\mathcal{R}_1]0, 1[)^{\text{card}A}$$

with A (resp. V) being the set of arrows (resp. vertices) of G, and $\mathcal{R}_1]0, 1[$ being the Boolean algebra of finite unions of subintervals of $]0, 1[$.

The elements of $\mathcal{R}_1 G$ are seen as one-dimensional blocks.
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.

Moreover

$$\mathcal{R}_1 G \cong \text{Pow}(V) \times (\mathcal{R}_1][0,1[)^{\text{card}A}$$

with A (resp. V) being the set of arrows (resp. vertices) of G, and $\mathcal{R}_1][0,1[$ being the Boolean algebra of finite unions of subintervals of $]0,1[.$

The elements of $\mathcal{R}_1 G$ are seen as one-dimensional blocks.

Proof: If X is a connected subset of $|G|$ then for all arrows $\alpha \in G$, $X \cap (\{\alpha\} \times]0,1[)$ has at most two connected components.
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.

Moreover

$$\mathcal{R}_1 G \cong \text{Pow}(V) \times (\mathcal{R}_1]0,1[)^{\text{card}A}$$

with A (resp. V) being the set of arrows (resp. vertices) of G, and $\mathcal{R}_1]0,1[\$ being the Boolean algebra of finite unions of subintervals of $]0,1[$.

The elements of $\mathcal{R}_1 G$ are seen as one-dimensional blocks.

Proof: If X is a connected subset of $|G|$ then for all arrows $\alpha \in G$, $X \cap (\{\alpha\} \times]0,1[)$ has at most two connected components.

The finiteness condition is not necessary e.g.

$$\cdots \rightarrow \cdot \rightarrow \cdots$$
One-dimensional regions

Let G be a finite graph, the collection $\mathcal{R}_1 G$ of all finite unions of connected subsets of $|G|$ forms a Boolean subalgebra of $\text{Pow}(|G|)$.

Moreover

$$\mathcal{R}_1 G \cong \text{Pow}(V) \times (\mathcal{R}_1]0, 1[)^{\text{card}A}$$

with A (resp. V) being the set of arrows (resp. vertices) of G, and $\mathcal{R}_1]0, 1[$ being the Boolean algebra of finite unions of subintervals of $]0, 1[$.

The elements of $\mathcal{R}_1 G$ are seen as one-dimensional blocks.

Proof: If X is a connected subset of $|G|$ then for all arrows $\alpha \in G$, $X \cap (\{\alpha\} \times]0, 1[)$ has at most two connected components.

The finiteness condition is not necessary e.g.

$$\cdots \rightarrow \cdot \rightarrow \cdots$$

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.
Higher dimensional blocks

- A block of dimension $n \in \mathbb{N}$, or n-block, is the product of n connected subsets of the metric graph $|G|$.
- A collection of blocks is called a block covering of $X \subseteq |G|$ when the union of its elements is X.
- The collection of n-dimensional block coverings is denoted by $\text{Cov}_n G$, it is preordered by $C \preceq C'$ if $\forall b \in C \exists b' \in C'$, $b \subseteq b'$.

Higher dimensional blocks

- A block of dimension $n \in \mathbb{N}$, or n-block, is the product of n connected subsets of the metric graph $|G|$.
Higher dimensional blocks

- A block of dimension $n \in \mathbb{N}$, or n-block, is the product of n connected subsets of the metric graph $|G|$.
- A collection of blocks is called a block covering of $X \subseteq |G|^n$ when the union of its elements is X.

Higher dimensional blocks

- A block of dimension \(n \in \mathbb{N} \), or \(n \)-block, is the product of \(n \) connected subsets of the metric graph \(|G|\).
- A collection of blocks is called a block covering of \(X \subseteq |G|^n \) when the union of its elements is \(X \).
- The collection of \(n \)-dimensional block coverings is denoted by \(\text{Cov}_n G \), it is preordered by

\[
C \preceq C' \iff \forall b \in C \exists b' \in C', \ b \subseteq b'
\]
Maximal blocks

- A block contained in \(X \) is said to be a block of \(X \). Such a block is said to be maximal when no block of \(X \) strictly contains it.

- The maximal connected block covering of \(X \subseteq |G| \) is the set of all its maximal connected blocks, it is denoted by \(\alpha_n(X) \).

- \(\alpha_n(X) = \emptyset \) if and only if \(X = \emptyset \).
Maximal blocks

- A block contained in X is said to be a block of X. Such a block is said to be maximal when no block of X strictly contains it.
Maximal blocks

- A block contained in X is said to be a block of X. Such a block is said to be maximal when no block of X strictly contains it.

- The maximal connected block covering of $X \subseteq |G|^n$ is the set of all its maximal connected blocks, it is denoted by $\alpha_n(X)$.
Maximal blocks

- A block contained in X is said to be a block of X. Such a block is said to be maximal when no block of X strictly contains it.
- The maximal connected block covering of $X \subseteq |G|^n$ is the set of all its maximal connected blocks, it is denoted by $\alpha_n(X)$.
- $\alpha_n(X) = \emptyset$ if and only if $X = \emptyset$.
A Galois connection
A Galois connection

We have a Galois connection \((\gamma_n, \alpha_n)\) between \(\text{Cov}_n G\) and \(\text{Pow}(|G|^n)\) with \(\gamma_n(D) = \bigcup D\) for all \(D \in \text{Cov}_n G\).

\[
\begin{array}{cc}
\text{Cov}_n G & \xrightarrow{\gamma_n} \text{Pow}(|G|^n) \\
\xleftarrow{\alpha_n} &
\end{array}
\]
A Galois connection

We have a Galois connection \((\gamma_n, \alpha_n)\) between \(\text{Cov}_n G\) and \(\text{Pow}(|G|^n)\) with \(\gamma_n(D) = \bigcup D\) for all \(D \in \text{Cov}_n G\).

\[
\begin{array}{ccc}
\text{Cov}_n G & \xrightarrow{\gamma_n} & \text{Pow}(|G|^n) \\
\xleftarrow{\alpha_n} & & \\
\end{array}
\]

In particular \(\gamma_n \circ \alpha_n = \text{id}\) and \(\text{id} \preceq \alpha_n \circ \gamma_n\).
A Galois connection

We have a Galois connection \((\gamma_n, \alpha_n)\) between \(\text{Cov}_n G\) and \(\text{Pow}(|G|^n)\) with \(\gamma_n(D) = \bigcup D\) for all \(D \in \text{Cov}_n G\).

\[
\text{Cov}_n G \xrightarrow{\gamma_n} \text{Pow}(|G|^n) \xleftarrow{\alpha_n}\]

In particular \(\gamma_n \circ \alpha_n = id\) and \(id \prec \alpha_n \circ \gamma_n\). That Galois connection induces an isomorphism of Boolean algebras between \(\text{Pow}(|G|^n)\) and the image of \(\alpha_n\) i.e. the collection of maximal connected block coverings.
A Galois connection

We have a Galois connection \((\gamma_n, \alpha_n)\) between \(\text{Cov}_n G\) and \(\text{Pow}(|G|^n)\) with \(\gamma_n(D) = \bigcup D\) for all \(D \in \text{Cov}_n G\).

\[
\begin{array}{c}
\text{Cov}_n G \xrightarrow{\gamma_n} \text{Pow}(|G|^n) \\
\text{Pow}(|G|^n) \xleftarrow{\alpha_n}
\end{array}
\]

In particular \(\gamma_n \circ \alpha_n = id\) and \(id \preceq \alpha_n \circ \gamma_n\). That Galois connection induces an isomorphism of Boolean algebras between \(\text{Pow}(|G|^n)\) and the image of \(\alpha_n\) i.e. the collection of maximal connected block coverings.

Proof: any connected block is contained in a maximal connected block (by the Hausdorff maximal principle).

\[
\bigcup_i \uparrow \left(B_1^{(i)} \times \cdots \times B_n^{(i)} \right) = \left(\bigcup_i \uparrow B_1^{(i)} \right) \times \cdots \times \left(\bigcup_i \uparrow B_n^{(i)} \right)
\]
Isothetic regions

- An isothetic region of dimension n is a subset of $|G|^n$ that admits a finite block covering.
- The geometric model of a conservative program is an isothetic region.
- The collection of isothetic regions of dimension n is denoted by R^n_G.
- The collection of finite block covering of dimension n is denoted by Cov$^{nf}_G$.
Isothetic regions

- An isothetic region of dimension n is a subset of $|G|^n$ that admits a finite block covering.
- An isothetic region of dimension n is a subset of $|G|^n$ that admits a finite block covering.
- The geometric model of a conservative program is an isothetic region.
- An isothetic region of dimension n is a subset of $|G|^n$ that admits a finite block covering.
- The geometric model of a conservative program is an isothetic region.
- The collection of isothetic regions of dimension n is denoted by $\mathcal{R}_n G$.
- An isothetic region of dimension n is a subset of $|G|^n$ that admits a finite block covering.
- The geometric model of a conservative program is an isothetic region.
- The collection of isothetic regions of dimension n is denoted by $\mathcal{R}_n G$.
- The collection of finite block covering of dimension n is denoted by $\text{Cov}_{nf} G$.
The previous Galois connection restricted to isothetic regions
The previous Galois connection restricted to isothetic regions

Suppose that the graph G is finite. The collection of n-dimensional isothetic regions $\mathcal{R}_n G$ forms a Boolean subalgebra of $\text{Pow}(|G|^n)$. A subset $X \subseteq |G|^n$ is an isothetic region iff the collection of maximal subblocks of X is finite and covers X.
The previous Galois connection
restricted to isothetic regions

Suppose that the graph G is finite. The collection of n-dimensional isothetic regions $\mathcal{R}_n G$ forms a Boolean subalgebra of $\text{Pow}(\vert G \vert^n)$ and the previous Galois connection restricts to a Galois connection between $\text{Cov}_{nf} G$ and $\mathcal{R}_n G$.

A subset $X \subseteq \vert G \vert^n$ is an isothetic region iff the collection of maximal subblocks of X is finite and covers X.

The previous Galois connection
restricted to isothetic regions

Suppose that the graph G is finite. The collection of n-dimensional isothetic regions \mathcal{R}_nG forms a Boolean subalgebra of $\text{Pow}(|G|^n)$ and the previous Galois connection restricts to a Galois connection between $\text{Cov}_{nf} G$ and \mathcal{R}_nG, which induces an isomorphism of Boolean algebras between \mathcal{R}_nG and the image of α_n i.e. the collection of finite maximal block coverings.

$$\text{Cov}_{nf} G \xrightarrow{\gamma_n} \mathcal{R}_nG \xleftarrow{\alpha_n}$$
The previous Galois connection
restricted to isothetic regions

Suppose that the graph G is finite. The collection of n-dimensional isothetic regions $\mathcal{R}_n G$ forms a Boolean subalgebra of $\text{Pow}(|G|^n)$ and the previous Galois connection restricts to a Galois connection between $\text{Cov}_{nf} G$ and $\mathcal{R}_n G$, which induces an isomorphism of Boolean algebras between $\mathcal{R}_n G$ and the image of α_n i.e. the collection of finite maximal block coverings.

$$\text{Cov}_{nf} G \xrightarrow{\gamma_n} \mathcal{R}_n G \xleftarrow{\alpha_n}$$

A subset $X \subseteq |G|^n$ is an isothetic region iff the collection of maximal subblocks of X is finite and covers X.
The complement of a block is an isothetic region
The complement of a block is an isothetic region

If X is 1-dimensional then its maximal blocks are its connected components.
The complement of a block is an isothetic region

If X is 1-dimensional then its maximal blocks are its connected components. The complement of a block $B = B_1 \times \cdots \times B_n$ can be written as

$$B^c = \bigcup_{k=1}^{n} |G| \times \cdots \times B_k^c \times \cdots \times |G|$$
The complement of a block is an isothetic region

If X is 1-dimensional then its maximal blocks are its connected components. The complement of a block $B = B_1 \times \cdots \times B_n$ can be written as

$$B^c = \bigcup_{k=1}^{n} |G| \times \cdots \times B_k^c \times \cdots \times |G|$$

Its maximal blocks are found among that of B^c therefore they have the form

$$D_1 \times \cdots \times D_{k-1} \times C_k \times D_{k+1} \times \cdots \times D_n$$

with $k \in \{1, \ldots, n\}$, C_k ranging through the connected components of B_k^c and D_j, for $j \neq k$, ranging through the connected components of $|G|$.
Intersection of two isothetic regions

The intersection of the blocks B and B' is given by

$$B \cap B' = (B_1 \cap B'_1) \times \cdots \times (B_n \cap B'_n)$$

The maximal blocks of $B \cap B'$ are therefore of the form $C_1 \times \cdots \times C_n$ with each C_k ranging through the connected components of $(B_k \cap B'_k)$.

It follows from De Morgan's laws that the intersection of two regions is still a region. Moreover if B and B' are block coverings of X and X' containing all their maximal blocks, then the union of the collections of maximal blocks of $B \cap B'$ for $B \in B$ and $B' \in B'$ is a block covering of $X \cap X'$ containing all its maximal blocks.
Intersection of two isothetic regions

The intersection of the blocks B and B' is given by

$$B \cap B' = (B_1 \cap B'_1) \times \cdots \times (B_n \cap B'_n)$$
Intersection of two isothetic regions

The intersection of the blocks B and B' is given by

$$B \cap B' = (B_1 \cap B_1') \times \cdots \times (B_n \cap B_n')$$

The maximal blocks of $B \cap B'$ are therefore of the form

$$C_1 \times \cdots \times C_n$$

with each C_k ranging through the connected components of $(B_k \cap B_k')$.
Intersection of two isothetic regions

The intersection of the blocks B and B' is given by

$$B \cap B' = (B_1 \cap B'_1) \times \cdots \times (B_n \cap B'_n)$$

The maximal blocks of $B \cap B'$ are therefore of the form

$$C_1 \times \cdots \times C_n$$

with each C_k ranging through the connected components of $(B_k \cap B'_k)$.

It follows from De Morgan’s laws that the intersection of two regions is still a region.
Intersection of two isothetic regions

The intersection of the blocks B and B' is given by

$$B \cap B' = (B_1 \cap B'_1) \times \cdots \times (B_n \cap B'_n)$$

The maximal blocks of $B \cap B'$ are therefore of the form

$$C_1 \times \cdots \times C_n$$

with each C_k ranging through the connected components of $(B_k \cap B'_k)$.

It follows from De Morgan’s laws that the intersection of two regions is still a region.

Moreover if B and B' are block coverings of X and X' containing all their maximal blocks, then the union of the collections of maximal blocks of $B \cap B'$ for $B \in B$ and $B' \in B'$ is a block covering of $X \cap X'$ containing all its maximal blocks.
Concluding the proof

If \(F \) is any finite block covering of \(X \), then \(X^c = \bigcap_{B \in F} B^c \). The collection of maximal blocks of \(B^c \) is finite and covers \(B^c \). The maximal blocks of \(X^c \) are obtained as certain finite intersection of the form \(\bigcap \{ M_B | B \in F \} \) where \(M_B \) is a maximal block of \(B^c \). The maximal blocks of \(X^c \) thus form a finite block covering of \(X^c \).
Concluding the proof

If F is any finite block covering of X, then

$$X^c = \bigcap_{B \in F} B^c$$
If \mathcal{F} is any finite block covering of X, then

$$X^c = \bigcap_{B \in \mathcal{F}} B^c$$

- The collection of maximal blocks of B^c is finite and covers B^c.
Concluding the proof

If \mathcal{F} is any finite block covering of X, then

$$X^c = \bigcap_{B \in \mathcal{F}} B^c$$

- The collection of maximal blocks of B^c is finite and covers B^c.
- The maximal blocks of X^c are obtained as certain finite intersection of the form

$$\bigcap\{M_B \mid B \in \mathcal{F}\}$$

where M_B is a maximal block of B^c.
Concluding the proof

If \mathcal{F} is any finite block covering of X, then

$$X^c = \bigcap_{B \in \mathcal{F}} B^c$$

- The collection of maximal blocks of B^c is finite and covers B^c.
- The maximal blocks of X^c are obtained as certain finite intersection of the form

$$\bigcap\{M_B \mid B \in \mathcal{F}\}$$

where M_B is a maximal block of B^c.
- The maximal blocks of X^c thus form a finite block covering of X^c.
A result from directed topology
A result from directed topology

For all directed paths γ on $|G|^n$ and all $X \in \mathcal{R}_n G$, the inverse image of X by γ has finitely many connected components.
Additional operators
Closure, interior, and boundary of an isothetic region

The closure operator preserves finite products, therefore it preserves blocks. The closure operator preserves finite unions hence it preserves isothetic regions. The boundary of a set is the intersection of its closure and the closure of its complement, hence it also preserves isothetic regions. The interior of a set is the difference between its closure and its boundary. It follows that the interior operator also preserves isothetic regions.
Closure, interior, and boundary of an isothetic region

The closure operator preserves finite products, therefore it preserves blocks.
The closure operator preserves finite products, therefore it preserves blocks.

The closure operator preserves finite unions hence it preserves isothetic regions.
Closure, interior, and boundary of an isothetic region

The closure operator preserves finite products, therefore it preserves blocks.

The closure operator preserves finite unions hence it preserves isothetic regions.

The boundary of a set is the intersection of its closure and the closure of its complement, hence it also preserves isothetic regions.
Closure, interior, and boundary of an isothetic region

The closure operator preserves finite products, therefore it preserves blocks.

The closure operator preserves finite unions hence it preserves isothetic regions.

The boundary of a set is the intersection of its closure and the closure of its complement, hence it also preserves isothetic regions.

The interior of a set is the difference between its closure and its boundary. It follows that the interior operator also preserves isothetic regions.
The forward and the backward operators

Let A, B be subsets of a local pospace X.

- The forward and the backward operators are defined as

 \[
 \text{frw}(A, B) = \{ \partial_+ \delta | \delta \text{ directed path on } X; \partial_+ \delta \in A; \text{im}(\delta) \subseteq A \cup B \}
 \]

 \[
 \text{bck}(A, B) = \{ \partial_- \delta | \delta \text{ directed path on } X; \partial_- \delta \in A; \text{im}(\delta) \subseteq A \cup B \}
 \]

- The future cone of A in X is cone $f^*_A := \text{frw}(A, X)$ and the past cone of A in X is cone $p^*_A := \text{bck}(A, X)$.

- The future closure of A in X is $A^*_f := \text{frw}(A, A)$ and the past closure of A in X is $A^*_p := \text{bck}(A, A)$.

Theorem: if A, B, and X are isothetic regions, then so are $\text{frw}(A, B)$, cone f^*_A, A^*_f, and their duals.
The forward and the backward operators

Let A, B be subsets of a local pospace X.
The forward and the backward operators

Let A, B be subsets of a local pospace X.

- The forward and the backward operators are defined as

$$\text{frw}(A, B) = \{ \partial^+ \delta \mid \delta \text{ directed path on } X; \partial^+ \delta \in A; \text{im}(\delta) \subseteq A \cup B\}$$

$$\text{bck}(A, B) = \{ \partial^- \delta \mid \delta \text{ directed path on } X; \partial^- \delta \in A; \text{im}(\delta) \subseteq A \cup B\}$$
The forward and the backward operators

Let A, B be subsets of a local pospace X.
- The forward and the backward operators are defined as

$$\text{frw}(A, B) = \{ \partial^+ \delta \mid \delta \text{ directed path on } X; \partial^- \delta \in A; \text{im}(\delta) \subseteq A \cup B\}$$

$$\text{bck}(A, B) = \{ \partial^- \delta \mid \delta \text{ directed path on } X; \partial^+ \delta \in A; \text{im}(\delta) \subseteq A \cup B\}$$

- The future cone of A in X is $\text{cone}^f A := \text{frw}(A, X)$ and the past cone of A in X is $\text{cone}^p A := \text{bck}(A, X)$.
Let A, B be subsets of a local pospace X.
- The forward and the backward operators are defined as

\[
\text{frw}(A, B) = \{ \partial^+ \delta \mid \delta \text{ directed path on } X; \; \partial^+ \delta \in A; \; \text{im}(\delta) \subseteq A \cup B \} \\
\text{bck}(A, B) = \{ \partial^- \delta \mid \delta \text{ directed path on } X; \; \partial^- \delta \in A; \; \text{im}(\delta) \subseteq A \cup B \}
\]

- The future cone of A in X is $\text{cone}^f A := \text{frw}(A, X)$ and the past cone of A in X is $\text{cone}^p A := \text{bck}(A, X)$.
- The future closure of A in X is $\overline{A}^f := \text{frw}(A, \overline{A})$ and the past closure of A in X is $\overline{A}^p := \text{bck}(A, \overline{A})$. The closure \overline{A} being understood in X.

Theorem: if A, B, X are isothetic regions, then so are $\text{frw}(A, B)$, $\text{cone}^f A$, \overline{A}^f, and their duals.
The forward and the backward operators

Let A, B be subsets of a local pospace X.

- The forward and the backward operators are defined as

$$\text{frw}(A, B) = \{ \partial^+ \delta \mid \delta \text{ directed path on } X; \partial^- \delta \in A; \text{ im}(\delta) \subseteq A \cup B \}$$

$$\text{bck}(A, B) = \{ \partial^- \delta \mid \delta \text{ directed path on } X; \partial^+ \delta \in A; \text{ im}(\delta) \subseteq A \cup B \}$$

- The future cone of A in X is $\text{cone}^f A := \text{frw}(A, X)$ and the past cone of A in X is $\text{cone}^p A := \text{bck}(A, X)$.

- The future closure of A in X is $\overline{A}^f := \text{frw}(A, \overline{A})$ and the past closure of A in X is $\overline{A}^p := \text{bck}(A, \overline{A})$.

The closure \overline{A} being understood in X.

Theorem: if $A, B,$ and X are isothetic regions, then so are $\text{frw}(A, B)$, $\text{cone}^f A$, \overline{A}^f, and their duals.
Future/past stable subsets of X
Future/past stable subsets of X

Let A be a subset of a local pospace X.
Future/past stable subsets of X

Let A be a subset of a local pospace X.

- $\text{cone}^f \text{cone}^f A = \text{cone}^f A$ and $\text{cone}^p \text{cone}^p A = \text{cone}^p A$
Future/past stable subsets of X

Let A be a subset of a local pospace X.

- $\text{cone}^f A \cap \text{cone}^f A = \text{cone}^f A$ and $\text{cone}^p A \cap \text{cone}^p A = \text{cone}^p A$

- A is said to be future (resp. past) stable (in X) when $\text{cone}^f A = A$ (resp. $\text{cone}^p A = A$)
Future/past stable subsets of X

let A be a subset of a local pospace X.

- $\text{cone}^f \text{cone}^f A = \text{cone}^f A$ and $\text{cone}^p \text{cone}^p A = \text{cone}^p A$
- A is said to be future (resp. past) stable (in X) when $\text{cone}^f A = A$ (resp. $\text{cone}^p A = A$)
- A is future stable iff $X \setminus A$ is past stable
Future/past stable subsets of X

Let A be a subset of a local pospace X.

- $\text{cone}^f \text{cone}^f A = \text{cone}^f A$ and $\text{cone}^p \text{cone}^p A = \text{cone}^p A$
- A is said to be future (resp. past) stable (in X) when $\text{cone}^f A = A$ (resp. $\text{cone}^p A = A$)
- A is future stable iff $X \setminus A$ is past stable
- The collection of future stable subsets of X is a complete lattice, the greatest lower (resp. least upper) bound of a family being given by its intersection (resp. union).
Future/past stable subsets of X

Let A be a subset of a local pospace X.

- $\text{cone}^f \text{cone}^f A = \text{cone}^f A$ and $\text{cone}^p \text{cone}^p A = \text{cone}^p A$

- A is said to be future (resp. past) stable (in X) when $\text{cone}^f A = A$ (resp. $\text{cone}^p A = A$)

- A is future stable iff $X \setminus A$ is past stable

- The collection of future stable subsets of X is a complete lattice, the greatest lower (resp. least upper) bound of a family being given by its intersection (resp. union).

- The same holds for past stable subsets.
Past/future attractors

Let A be a subset of a local pospace X.

$\text{cone}_p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = bck(A, X)$

$\text{escape } f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \} = (\text{cone}_p A)$

$\text{att } p A = \{ p \in X \text{ from which } A \text{ cannot be avoided} \} = \text{escape } f (\text{escape } f A)$
Past/future attractors

Let A be a subset of a local pospace X.
Past/future attractors

Let A be a subset of a local pospace X.

$$\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \cdots$$
Past/future attractors

Let \(A \) be a subset of a local pospace \(X \).

\[
\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \text{bck}(A, X)
\]
Past/future attractors

Let A be a subset of a local pospace X.

\[
\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \text{bck}(A, X)
\]

\[
\text{escape}^f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \}
\]

\[
\text{escape}^f A = \ldots
\]
Past/future attractors

Let A be a subset of a local pospace X.

$$\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \text{bck}(A, X)$$

$$\text{escape}^f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \}$$

$$\text{escape}^f A = (\text{cone}^p A)^c$$
Past/future attractors

Let A be a subset of a local pospace X.

$$\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \text{bck}(A, X)$$

$$\text{escape}^f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \}$$

$$\text{escape}^f A = (\text{cone}^p A)^c$$

$$\text{att}^p A = \{ p \in X \text{ from which } A \text{ cannot be avoided} \}$$
Past/future attractors

Let A be a subset of a local pospace X.

$$cone^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = bck(A, X)$$

$$escape^f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \}$$

$$escape^f A = (cone^p A)^c$$

$$att^p A = \{ p \in X \text{ from which } A \text{ cannot be avoided} \}$$

$$att^p A = \cdots$$
Past/future attractors

Let A be a subset of a local pospace X.

$$\text{cone}^p A = \{ p \in X \text{ from which } A \text{ can be reached} \} = \text{bck}(A, X)$$

$$\text{escape}^f A = \{ p \in X \text{ from which } A \text{ cannot be reached} \} = \left(\text{cone}^p A \right)^c$$

$$\text{att}^p A = \{ p \in X \text{ from which } A \text{ cannot be avoided} \}$$

$$\text{att}^p A = \text{escape}^f (\text{escape}^f A)$$
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P.

- The reachable space of J_P is the future cone of the initial point.
- A point $p \in \Uparrow G_i \Downarrow$ is said to be terminal when $J_\gamma K$ is empty for all directed paths on $\Uparrow G_i \Downarrow$ starting at p.
- A point $p \in J_P$ is said to be terminal when so are all its projections.
- The terminal points form a future stable isothetic region of J_P.
- A point $p \in J_P$ is said to be deadlock when its future cone neither contains directed loops (i.e., it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of J_P.
- The deadlock attractor of the program is the past attractor of its deadlock region.
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point
- A point $p \in \Gamma G_i$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on ΓG_i starting at p.
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P.
Let $\llbracket P \rrbracket$ be the geometric model of the program.
- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point
- A point $p \in \downarrow G_i \uparrow$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on $\downarrow G_i \uparrow$ starting at p.
- A point $p \in \llbracket P \rrbracket$ is said to be terminal when so are all its projections
- The terminal points form a future stable isothetic region of $\llbracket P \rrbracket$
- A point $p \in \llbracket P \rrbracket$ is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of $\llbracket P \rrbracket$
- The deadlock attractor of the program is the past attractor of its deadlock region.
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point.
- A point $p \in \downarrow G_i \uparrow$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on $\downarrow G_i \uparrow$ starting at p.
- A point $p \in \llbracket P \rrbracket$ is said to be terminal when so are all its projections.
- The terminal points form a...
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point
- A point $p \in \downarrow G_i \downarrow$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on $\downarrow G_i \downarrow$ starting at p.
- A point $p \in \llbracket P \rrbracket$ is said to be terminal when so are all its projections
- The terminal points form a future stable isothetic region of $\llbracket P \rrbracket$
- A point $p \in \llbracket P \rrbracket$ is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of $\llbracket P \rrbracket$
- The deadlock attractor of the program is the past attractor of its deadlock region.
The deadlock attractor of a conservative program

Let \(G_1, \ldots, G_n \) be the running processes of a conservative program \(P \).
Let \([P]\) be the geometric model of the program.

- The reachable space of \([P]\) is the future cone of the initial point
- A point \(p \in \downarrow G_i \) is said to be terminal when \([\gamma]\) is empty for all directed paths on \(\downarrow G_i \) starting at \(p \).
- A point \(p \in [P] \) is said to be terminal when so are all its projections
- The terminal points form a future stable isothetic region of \([P]\)
- A point \(p \in [P] \) is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point.
- A point $p \in \leftarrow G_i \rightarrow$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on $\leftarrow G_i \rightarrow$ starting at p.
- A point $p \in \llbracket P \rrbracket$ is said to be terminal when so are all its projections.
- The terminal points form a future stable isothetic region of $\llbracket P \rrbracket$.
- A point $p \in \llbracket P \rrbracket$ is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a . . .
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\lbrack P \rbrack$ be the geometric model of the program.

- The reachable space of $\lbrack P \rbrack$ is the future cone of the initial point
- A point $p \in \lbrack G_i \rbrack$ is said to be terminal when $\lbrack \gamma \rbrack$ is empty for all directed paths on $\lbrack G_i \rbrack$ starting at p.
- A point $p \in \lbrack P \rbrack$ is said to be terminal when so are all its projections
- The terminal points form a future stable isothetic region of $\lbrack P \rbrack$
- A point $p \in \lbrack P \rbrack$ is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of $\lbrack P \rbrack$
The deadlock attractor of a conservative program

Let \(G_1, \ldots, G_n \) be the running processes of a conservative program \(P \). Let \(\llbracket P \rrbracket \) be the geometric model of the program.

- The reachable space of \(\llbracket P \rrbracket \) is the future cone of the initial point
- A point \(p \in \downarrow G_i \downarrow \) is said to be terminal when \(\llbracket \gamma \rrbracket \) is empty for all directed paths on \(\downarrow G_i \downarrow \) starting at \(p \).
- A point \(p \in \llbracket P \rrbracket \) is said to be terminal when so are all its projections
- The terminal points form a future stable isothetic region of \(\llbracket P \rrbracket \)
- A point \(p \in \llbracket P \rrbracket \) is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of \(\llbracket P \rrbracket \)
- The deadlock attractor of the program is the \ldots
The deadlock attractor of a conservative program

Let G_1, \ldots, G_n be the running processes of a conservative program P. Let $\llbracket P \rrbracket$ be the geometric model of the program.

- The reachable space of $\llbracket P \rrbracket$ is the future cone of the initial point.
- A point $p \in \downarrow G_i \uparrow$ is said to be terminal when $\llbracket \gamma \rrbracket$ is empty for all directed paths on $\downarrow G_i \uparrow$ starting at p.
- A point $p \in \llbracket P \rrbracket$ is said to be terminal when so are all its projections.
- The terminal points form a future stable isothetic region of $\llbracket P \rrbracket$.
- A point $p \in \llbracket P \rrbracket$ is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor terminal points.
- The deadlock points form a future stable isothetic region of $\llbracket P \rrbracket$.
- The deadlock attractor of the program is the past attractor of its deadlock region.
Deadlock attractor of the Swiss Cross

sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init: p q
Deadlock attractor of the Swiss Cross

sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init: p q
Deadlock attractor of the Swiss Cross

sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init: p q
Deadlock attractor of the Swiss Cross

```
sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init:  p q
```
Deadlock attractor of the Swiss Cross

sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init: p q
Deadlock attractor of the Swiss Cross

sem 1 a b
proc:
q = P(b).P(a).V(a).V(b)
init: p q
Deadlock attractor of the Swiss Cross

\[
\text{sem 1 a b}
\]

\[
\text{proc:}
\]

\[
\]

\[
q = P(b).P(a).V(a).V(b)
\]

\[
\text{init: p q}
\]
Three dining philosophers
FACTORING ISOTHETIC REGIONS
Free commutative monoids
Commutative monoids
Commutative monoids

- \((M, \ast, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a\varepsilon\)
 - \(ab = ba\)
Commutative monoids

- \((M, \ast, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a \varepsilon\)
 - \(ab = ba\)
- For all set \(X\) the collection \(MX\) of multisets over \(X\)
 i.e. maps \(\phi : X \to \mathbb{N}\) s.t. \(\{x \in X | \phi(x) \neq 0\}\) is finite
 forms a commutative monoid with pointwise addition
Commutative monoids

- \((M, \ast, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a\varepsilon\)
 - \(ab = ba\)

- For all set \(X\) the collection \(MX\) of multisets over \(X\)
i.e. maps \(\phi : X \to \mathbb{N}\) s.t. \(\{x \in X \mid \phi(x) \neq 0\}\) is finite
 forms a commutative monoid with pointwise addition

- A commutative monoid is said to be free when
 it is isomorphic with some \(MX\)
Commutative monoids

- \((M, *, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a\varepsilon\)
 - \(ab = ba\)

- For all set \(X\) the collection \(MX\) of multisets over \(X\)
 i.e. maps \(\phi : X \rightarrow \mathbb{N}\) s.t. \(\{x \in X | \phi(x) \neq 0\}\) is finite
 forms a commutative monoid with pointwise addition

- A commutative monoid is said to be free when
 it is isomorphic with some \(MX\)

- Functor \(M : Set \rightarrow Cmon\)
Commutative monoids

- \((M, *, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a\varepsilon\)
 - \(ab = ba\)

- For all set \(X\) the collection \(MX\) of multisets over \(X\)
 i.e. maps \(\phi : X \to \mathbb{N}\) s.t. \(\{x \in X \mid \phi(x) \neq 0\}\) is finite
 forms a commutative monoid with pointwise addition

- A commutative monoid is said to be free when
 it is isomorphic with some \(MX\)

- Functor \(M : Set \to Cmon\)
 - A multiset \(\phi\) can be written as
 \[
 \sum_{x \in X} \phi(x)x
 \]
Commutative monoids

- \((M, \ast, \varepsilon)\) such that for all \(a, b, c \in M\),
 - \((ab)c = a(bc)\)
 - \(\varepsilon a = a = a\varepsilon\)
 - \(ab = ba\)

- For all set \(X\) the collection \(MX\) of multisets over \(X\)
 i.e. maps \(\phi : X \to \mathbb{N}\) s.t. \(\{x \in X \mid \phi(x) \neq 0\}\) is finite
 forms a commutative monoid with pointwise addition

- A commutative monoid is said to be free when
 it is isomorphic with some \(MX\)

- Functor \(M : \text{Set} \to \text{Cmon}\)
 - A multiset \(\phi\) can be written as
 \[\sum_{x \in X} \phi(x)x\]

 - In particular, if \(f : X \to Y\) is a set map, then
 \[M(f)(\phi) = \sum_{x \in X} \phi(x)f(x)\]
Prime vs irreducible
Prime vs irreducible

- d divides x, denoted by $d|x$, when there exists x' such that $x = dx'$
Prime vs irreducible

- \(d \) divides \(x \), denoted by \(d|x \), when there exists \(x' \) such that \(x = dx' \)

- \(u \) unit: exists \(u' \) s.t. \(uu' = \varepsilon \) then write \(x \sim y \) when \(y = ux \) for some unit \(u \)
Prime vs irreducible

- d divides x, denoted by $d|x$, when there exists x' such that $x = dx'$
- u unit: exists u' s.t. $uu' = \varepsilon$ then write $x \sim y$ when $y = ux$ for some unit u
- i irreducible: i nonunit and $x|i$ implies $x \sim i$ or x unit
Prime vs irreducible

- \(d \) divides \(x \), denoted by \(d | x \), when there exists \(x' \) such that \(x = dx' \)
- \(u \) unit: exists \(u' \) s.t. \(uu' = \varepsilon \) then write \(x \sim y \) when \(y = ux \) for some unit \(u \)
- \(i \) irreducible: \(i \) nonunit and \(x | i \) implies \(x \sim i \) or \(x \) unit
- \(p \) prime: \(p \) nonunit and \(p | ab \) implies \(p | a \) or \(p | b \)
Prime vs irreducible

- \(d \) divides \(x \), denoted by \(d \mid x \), when there exists \(x' \) such that \(x = dx' \)

- \(u \) unit: exists \(u' \) s.t. \(uu' = \varepsilon \) then write \(x \sim y \) when \(y = ux \) for some unit \(u \)

- \(i \) irreducible: \(i \) nonunit and \(x \mid i \) implies \(x \sim i \) or \(x \) unit

- \(p \) prime: \(p \) nonunit and \(p \mid ab \) implies \(p \mid a \) or \(p \mid b \)

- If \(M \) contains nontrivial units, then one can consider the quotient monoid \(M/\sim \) where \(x \sim y \) stands for: there exists a unit \(u \) s.t. \(y = ux \)
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>(\mathbb{R}, +, 0)</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>(\mathbb{Z}_6, \times, 1)</td>
<td>{2, 3, 4}</td>
<td>{1, 5}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{N} \setminus {0}, \times, 1$</td>
<td>{prime numbers}</td>
<td>${1}$</td>
<td></td>
</tr>
<tr>
<td>$\mathbb{N}, +, 0$</td>
<td></td>
<td>${1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{N} \setminus {0}, \times, \mathbf{1}$</td>
<td>{prime numbers}</td>
<td>${1}$</td>
<td></td>
</tr>
<tr>
<td>$\mathbb{N}, +, 0$</td>
<td></td>
<td>${1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$\mathbb{R}^+, +, 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td>{1}</td>
<td>{0}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}_+, +, 0)</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{0}</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td>{1}</td>
<td>{0}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}_+, +, 0)</td>
<td>{}</td>
<td>{0}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}_+, \lor, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td>{1}</td>
<td>{0}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}_+, +, 0)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{0}</td>
</tr>
<tr>
<td>(\mathbb{R}_+, \lor, 0)</td>
<td>(\emptyset)</td>
<td>(\mathbb{R}_+ \setminus {0})</td>
<td>{0}</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{N} \setminus {0}, \times, 1$</td>
<td>${$prime numbers$}$</td>
<td>${1}$</td>
<td>${1}$</td>
</tr>
<tr>
<td>$\mathbb{N}, +, 0$</td>
<td>${1}$</td>
<td></td>
<td>${0}$</td>
</tr>
<tr>
<td>$\mathbb{R}_+, +, 0$</td>
<td>\emptyset</td>
<td></td>
<td>${0}$</td>
</tr>
<tr>
<td>$\mathbb{R}_+, \lor, 0$</td>
<td>\emptyset</td>
<td>$\mathbb{R}_+ \setminus {0}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$\mathbb{Z}_6, \times, 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>monoid</th>
<th>irreducibles</th>
<th>primes</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N} \setminus {0}, \times, 1)</td>
<td>{prime numbers}</td>
<td>{1}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}, +, 0)</td>
<td>{1}</td>
<td>{0}</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{R}_+, +, 0)</td>
<td>(\emptyset)</td>
<td>(\mathbb{R}_+ \setminus {0})</td>
<td>{0}</td>
</tr>
<tr>
<td>(\mathbb{R}_+, \lor, 0)</td>
<td>(\emptyset)</td>
<td>(\mathbb{R}_+ \setminus {0})</td>
<td>{0}</td>
</tr>
<tr>
<td>(\mathbb{Z}_6, \times, 1)</td>
<td>(\emptyset)</td>
<td>{2, 3, 4}</td>
<td>{1, 5}</td>
</tr>
</tbody>
</table>
Graded commutative monoid
Graded commutative monoid

- \((M, \ast, \varepsilon)\) graded: there is a morphism \(g : (M, \ast, \varepsilon) \to (\mathbb{N}, +, 0)\) s.t. \(g^{-1}(\{0\}) = \{\text{units of } M\}\)
Graded commutative monoid

- \((M, *, \varepsilon)\) graded: there is a morphism \(g : (M, *, \varepsilon) \rightarrow (\mathbb{N}, +, 0)\)
s.t. \(g^{-1}(\{0\}) = \{\text{units of } M\}\)

- If \(M\) is graded then
Graded commutative monoid

- \((M, *, \varepsilon)\) graded: there is a morphism \(g : (M, *, \varepsilon) \rightarrow (\mathbb{N}, +, 0)\) s.t. \(g^{-1}(\{0\}) = \{\text{units of } M\}\)

- If \(M\) is graded then
 - \(\{\text{irreducibles of } M\}\) generates \(M\)
Graded commutative monoid

- \((M, \ast, \varepsilon)\) graded: there is a morphism \(g : (M, \ast, \varepsilon) \to (\mathbb{N}, +, 0)\) s.t. \(g^{-1}(\{0\}) = \{\text{units of } M\}\)

- If \(M\) is graded then
 - \{irreducibles of \(M\}\} generates \(M\)
 - \{primes of \(M\}\} \subseteq \{irreducibles of \(M\}\}
Irreducible that are not prime

$M = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}, \times, 1$
Irreducible that are not prime

\[M = (\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}, \times, 1) \]

- \(N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
Irreducible that are not prime

\[M = \left\{ a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0 \right\}, \times, 1 \]

- \(N : M \to (\mathbb{Z} \setminus \{0\}), \times, 1; \)
 \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
 \(N(uv) = N(u)N(v) \)

- \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}\{0\} is graded by the
 number of prime factors of \(N(u) \)
Irreducible that are not prime

\(M = (\{ a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0 \}, \times, 1) \)

- \(N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
 \(N(uv) = N(u)N(v) \)
 \(u \) unit iff \(N(u) \in \{ \pm 1 \} \) [hint: \(u^{-1} = N(u)\bar{u} \) with \(\bar{u} = a - b\sqrt{10} \) if \(u = a + b\sqrt{10} \)]
Irreducible that are not prime

\[M = \langle \{ a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0 \}, \times, 1 \rangle \]

- \(N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
 \(N(uv) = N(u)N(v) \)
 \(u \) unit iff \(N(u) \in \{\pm 1\} \) [hint: \(u^{-1} = N(u)\bar{u} \) with \(\bar{u} = a - b\sqrt{10} \) if \(u = a + b\sqrt{10} \)]
 \(N(a + b\sqrt{10}) \mod 10 \in \{0, 1, 4, 5, 6, 9\} \)
Irreducible that are not prime

$M = (\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}, \times, 1)$

- $N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \quad N(a + b\sqrt{10}) = a^2 - 10b^2$
 \[N(uv) = N(u)N(v) \]
 \[u \text{ unit iff } N(u) \in \{\pm 1\} \quad [\text{hint: } u^{-1} = N(u)\bar{u} \text{ with } \bar{u} = a - b\sqrt{10} \text{ if } u = a + b\sqrt{10}] \]
 \[N(a + b\sqrt{10}) \mod 10 \in \{0, 1, 4, 5, 6, 9\} \]
 therefore $N(a + b\sqrt{10}) \not\in \{\pm 2, \pm 3\}$
Irreducible that are not prime

\[M = (\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}, \times, 1) \]

- \(N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
 \(N(uv) = N(u)N(v) \)
 \(u \) unit iff \(N(u) \in \{\pm 1\} \) [hint: \(u^{-1} = N(u)\bar{u} \) with \(\bar{u} = a - b\sqrt{10} \) if \(u = a + b\sqrt{10} \)]
 \(N(a + b\sqrt{10}) \mod 10 \in \{0, 1, 4, 5, 6, 9\} \)
 therefore \(N(a + b\sqrt{10}) \not\in \{\pm 2, \pm 3\} \)

<table>
<thead>
<tr>
<th>uv</th>
<th>N(uv)</th>
<th>N(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>(\pm 1, \pm 2, \pm 4)</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>(\pm 1, \pm 3, \pm 9)</td>
</tr>
<tr>
<td>4 (\pm \sqrt{10})</td>
<td>6</td>
<td>(\pm 1, \pm 2, \pm 3, \pm 6)</td>
</tr>
</tbody>
</table>
Irreducible that are not prime

\(M = (\{ a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0 \}, \times, 1) \)

- \(N : M \rightarrow (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)

\[N(uv) = N(u)N(v) \]

\(u \) unit iff \(N(u) \in \{ \pm 1 \} \) [hint: \(u^{-1} = N(u)\bar{u} \) with \(\bar{u} = a - b\sqrt{10} \) if \(u = a + b\sqrt{10} \)]

\(N(a + b\sqrt{10}) \mod 10 \in \{ 0, 1, 4, 5, 6, 9 \} \)

therefore \(N(a + b\sqrt{10}) \not\in \{ \pm 2, \pm 3 \} \)

<table>
<thead>
<tr>
<th>(uv)</th>
<th>(N(uv))</th>
<th>(N(u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>(\pm 1, \pm 2, \pm 4)</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>(\pm 1, \pm 3, \pm 9)</td>
</tr>
<tr>
<td>4 (\pm \sqrt{10})</td>
<td>6</td>
<td>(\pm 1, \pm 2, \pm 3, \pm 6)</td>
</tr>
</tbody>
</table>

- 2, 3, and \(4 \pm \sqrt{10} \) are irreducible but not prime

since \(2 \cdot 3 = (4 + \sqrt{10}) \cdot (4 - \sqrt{10}) \)
Irreducible that are not prime

\[M = (\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}; a \neq 0 \text{ or } b \neq 0\}, \times, 1) \]

- \(N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1) \); \(N(a + b\sqrt{10}) = a^2 - 10b^2 \)
 \[N(uv) = N(u)N(v) \]
- \(u \) unit iff \(N(u) \in \{\pm 1\} \) [hint: \(u^{-1} = N(u)\bar{u} \) with \(\bar{u} = a - b\sqrt{10} \) if \(u = a + b\sqrt{10} \)]
- \(N(a + b\sqrt{10}) \mod 10 \in \{0, 1, 4, 5, 6, 9\} \)
- therefore \(N(a + b\sqrt{10}) \not\in \{\pm 2, \pm 3\} \)

<table>
<thead>
<tr>
<th>(uv)</th>
<th>(N(uv))</th>
<th>(N(u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>(\pm 1, \pm 2, \pm 4)</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>(\pm 1, \pm 3, \pm 9)</td>
</tr>
<tr>
<td>(4 \pm \sqrt{10})</td>
<td>6</td>
<td>(\pm 1, \pm 2, \pm 3, \pm 6)</td>
</tr>
</tbody>
</table>

- 2, 3, and \(4 \pm \sqrt{10} \) are irreducible but not prime
- since \(2 \cdot 3 = (4 + \sqrt{10}) \cdot (4 - \sqrt{10}) \)
- \(\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\} \setminus \{0\} \) is graded by the number of prime factors of \(N(u) \)
\[\mathbb{N}[X] \] polynomials with coefficients in \(\mathbb{N} \)

*On Direct Product Decomposition of Partially Ordered Sets. *Junji Hashimoto
Annals of Mathematics 2(54), pp 315-318 (1951)
Factoring isothetic regions

Free commutative monoids

\[\mathbb{N}[X] \text{ polynomials with coefficients in } \mathbb{N} \]

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto
Annals of Mathematics 2(54), pp 315-318 (1951)

\[X^5 + X^4 + X^3 + X^2 + X + 1 = \]

- therefore
- \[X^5 + X^2 + X + 1, \]
- \[X^4 + X + 1, \]
- \[X^3 + X + 1, \]
- and
- \[X^2 + X + 1 \]

are irreducible but not prime

- \[\mathbb{N}[X] \{ \} \]

is graded by the degree

\[\frac{23}{43} \]

23 / 43
\[\mathbb{N}[X] \] polynomials with coefficients in \(\mathbb{N} \)

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto
Annals of Mathematics 2(54), pp 315-318 (1951)

\[
X^5 + X^4 + X^3 + X^2 + X + 1 = \begin{cases}
(X + 1)(X^4 + X^2 + 1) \end{cases}
\]
\(\mathbb{N}[X] \) polynomials with coefficients in \(\mathbb{N} \)

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto

Annals of Mathematics 2(54), pp 315-318 (1951)

\[
X^5 + X^4 + X^3 + X^2 + X + 1 = \\
\left\{ \begin{array}{c}
(X + 1)(X^4 + X^2 + 1) = (X^3 + 1)(X^2 + X + 1) \\
\end{array} \right. \text{ in } \mathbb{N}[X]
\]
\(\mathbb{N}[X] \) polynomials with coefficients in \(\mathbb{N} \)

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto
Annals of Mathematics 2(54), pp 315-318 (1951)

\[X^5 + X^4 + X^3 + X^2 + X + 1 = \]

\[
\begin{align*}
(X + 1)(X^4 + X^2 + 1) &= (X^3 + 1)(X^2 + X + 1) \quad \text{in } \mathbb{N}[X] \\
(X + 1)(X^2 + X + 1)(X^2 - X + 1) &= \quad \text{in } \mathbb{Z}[X]
\end{align*}
\]
\[\mathbb{N}[X] \text{ polynomials with coefficients in } \mathbb{N} \]

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto

Annals of Mathematics 2(54), pp 315-318 (1951)

\[
X^5 + X^4 + X^3 + X^2 + X + 1 =
\]

\[
\begin{cases}
(X + 1)(X^4 + X^2 + 1) = (X^3 + 1)(X^2 + X + 1) & \text{in } \mathbb{N}[X] \\
(X + 1)(X^2 + X + 1)(X^2 - X + 1) & \text{in } \mathbb{Z}[X]
\end{cases}
\]

- therefore \(X + 1, X^2 + X + 1, X^3 + 1, \) and \(X^4 + X^2 + 1 \)

 are irreducible but not prime
\[\mathbb{N}[X] \] polynomials with coefficients in \(\mathbb{N} \)

On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto
Annals of Mathematics 2(54), pp 315-318 (1951)

\[
X^5 + X^4 + X^3 + X^2 + X + 1 =
\]

\[
\left\{
\begin{array}{l}
(X + 1)(X^4 + X^2 + 1) = (X^3 + 1)(X^2 + X + 1) \quad \text{in } \mathbb{N}[X] \\
(X + 1)(X^2 + X + 1)(X^2 - X + 1) \quad \text{in } \mathbb{Z}[X]
\end{array}
\right.
\]

- therefore \(X + 1, X^2 + X + 1, X^3 + 1, \) and \(X^4 + X^2 + 1 \) are irreducible but not prime.
- \(\mathbb{N}[X] \setminus \{0\} \) is graded by the degree.
Characterization of the free commutative monoids

Unique factorization
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:

 - The free commutative monoid M is free commutative
 - Any element of M can be written as a product of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

Standard examples:

- $(\mathbb{N}\{0\}, \times, 1)$
- $(\mathbb{N}, +, 0)$ and its finite products in the category of commutative monoids. Indeed $(\mathbb{N}, +, 0)_n \sim = M(\{1, \ldots, n\})$
- $(\mathbb{Z}[X]\{0\}, \times, 1)$ (if F is a factorial ring, then so is $F[X]$)

- Note that two free commutative monoids are isomorphic in Cmon iff their set of prime elements have the same cardinality. For example, $(\mathbb{N}\{0\}, \times, 1) \sim = (\mathbb{Z}[X]\{0\}, \times, 1)$ in Cmon.
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product of irreducibles in a unique way up to reordering
Factoring isothetic regions

Free commutative monoids

Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

- Standard examples:
 - $(\mathbb{N}\{0\}, \times, 1)$
 - $(\mathbb{N}, +, 0)$ and its finite products in the category of commutative monoids.
 - $(\mathbb{Z}[X]\{0\}, \times, 1)$ (if F is a factorial ring, then so is $F[X]$)

- Note that two free commutative monoids are isomorphic in Cmon iff their set of prime elements have the same cardinality e.g. $(\mathbb{N}\{0\}, \times, 1) \sim = (\mathbb{Z}[X]\{0\}, \times, 1)$ in Cmon
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

- Standard examples:

Note that two free commutative monoids are isomorphic in C_{mon} if their set of prime elements have the same cardinality e.g. $(\mathbb{N}\{0\}, \times, 1) \sim = (\mathbb{Z}[X]\{0\}, \times, 1)$ in C_{mon}
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 1. M is free commutative
 2. any element of M can be written as a product of irreducibles in a unique way up to reordering
 3. \{primes of M\} = \{irreducibles of M\} and generates M
 4. M is graded and \{irreducibles of M\} \subseteq \{primes of M\}

- Standard examples:
 1. $(\mathbb{N} \setminus \{0\}, \times, 1)$
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product
 of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

- Standard examples:
 - $(\mathbb{N} \setminus \{0\}, \times, 1)$
 - $(\mathbb{N}, +, 0)$ and its finite products in the category of commutative monoids.
 Indeed $(\mathbb{N}, +, 0)^n \cong M(\{1, \ldots, n\})$
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product
 of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

- Standard examples:
 - $(\mathbb{N} \setminus \{0\}, \times, 1)$
 - $(\mathbb{N}, +, 0)$ and its finite products in the category of commutative monoids.
 Indeed $(\mathbb{N}, +, 0)^n \cong M(\{1, \ldots, n\})$
 - $(\mathbb{Z}[X] \setminus \{0\}, \times, 1)$ (if F is a factorial ring, then so is $F[X]$) Algebra, Serge Lang. Springer (2002)
Characterization of the free commutative monoids

Unique factorization

- The following are equivalent:
 - M is free commutative
 - any element of M can be written as a product of irreducibles in a unique way up to reordering
 - $\{\text{primes of } M\} = \{\text{irreducibles of } M\}$ and generates M
 - M is graded and $\{\text{irreducibles of } M\} \subseteq \{\text{primes of } M\}$

- Standard examples:
 - $(\mathbb{N} \setminus \{0\}, \times, 1)$
 - $(\mathbb{N}, +, 0)$ and its finite products in the category of commutative monoids.
 Indeed $(\mathbb{N}, +, 0)^n \cong M(\{1, \ldots, n\})$
 - $(\mathbb{Z}[X] \setminus \{0\}, \times, 1)$ (if F is a factorial ring, then so is $F[X]$) *Algebra*, Serge Lang. Springer (2002)
 - Note that two free commutative monoids are isomorphic in \mathcal{Cmon} iff their set of prime elements have the same cardinality
 e.g. $(\mathbb{N} \setminus \{0\}, \times, 1) \cong (\mathbb{Z}[X] \setminus \{0\}, \times, 1)$ in \mathcal{Cmon}
Connected sum of manifolds

A less common example
Connected sum of manifolds
A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped with the connected sum $\#$ form a commutative monoid \mathcal{M}_n whose neutral element is the n-sphere.

Connected sum of manifolds

A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped with the connected sum $\#$ form a commutative monoid \mathcal{M}_n whose neutral element is the n-sphere.

\mathcal{M}_2 is freely generated by the torus T^2.

Connected sum of manifolds

A less common example

In differential geometry, the compact, connected, oriented, smooth \(n \)-dimensional manifolds without boundary equipped with the connected sum \(\# \) form a commutative monoid \(\mathcal{M}_n \) whose neutral element is the \(n \)-sphere.

\(\mathcal{M}_2 \) is freely generated by the torus \(T^2 \).

\(\mathcal{M}_3 \) is freely generated by countably many elements.

Connected sum of manifolds

A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped with the connected sum $\#$ form a commutative monoid \mathcal{M}_n whose neutral element is the n-sphere.

\mathcal{M}_2 is freely generated by the torus T^2.

\mathcal{M}_3 is freely generated by countably many elements.

- existence of the decomposition is due to Hellmuth Kneser (1929)

Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

Connected sum of manifolds

A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped with the connected sum $\#$ form a commutative monoid \mathcal{M}_n whose neutral element is the n-sphere.

\mathcal{M}_2 is freely generated by the torus T^2.

\mathcal{M}_3 is freely generated by countably many elements.

- existence of the decomposition is due to Hellmuth Kneser (1929)
 Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

- uniqueness of the decomposition is due to John W. Milnor (1962)
 Milnor, J. A Unique Decomposition Theorem for 3-Manifolds.
Connected sum of manifolds
A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped with the connected sum $\#$ form a commutative monoid \mathcal{M}_n whose neutral element is the n-sphere.

\mathcal{M}_2 is freely generated by the torus T^2.

\mathcal{M}_3 is freely generated by countably many elements.

- existence of the decomposition is due to Hellmuth Kneser (1929)
 Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

- uniqueness of the decomposition is due to John W. Milnor (1962)
 Milnor, J. A Unique Decomposition Theorem for 3-Manifolds.

In particular $\mathcal{M}_2 \cong (\mathbb{N}, +, 0)$ and $\mathcal{M}_3 \cong (\mathbb{N} \setminus \{0\}, \times, 1)$
Monoids of homogeneous languages
Factoring isothetic regions
Monoids of homogeneous languages
Factoring isothetic regions

Monoids of homogeneous languages
Factoring Isothetic Regions

Monoids of Homogeneous Languages

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26 / 43
The noncommutative monoid of languages

Let ε denote the empty word. A language is a set of words on A. Let D and D' be languages.

- Define $D \cdot D' := \{w \cdot w' | w \in D; w' \in D'\}$
- One has $\emptyset \cdot D = D \cdot \emptyset = \emptyset$ and $\{\varepsilon\} \cdot D = D \cdot \{\varepsilon\} = D$
- The monoid of nonempty languages is $D(A)$.

$D(A)$ is commutative iff $\text{Card}(A) \leq 1$. Note that $D(\emptyset) \cong \{\{\varepsilon\}\}$, but $D(\{a\})$ is not freely commutative.
The noncommutative monoid of languages

- \(A^* \) (non commutative) monoid of words on the alphabet \(A \).
 Let \(\varepsilon \) denotes the empty word
The noncommutative monoid of languages

- A^* (non commutative) monoid of words on the alphabet A.
 Let ε denotes the empty word

- A language is a set of words on A. Let D and D' be languages
The noncommutative monoid of languages

- A^* (non commutative) monoid of words on the alphabet A. Let ε denotes the empty word

- A language is a set of words on A. Let D and D' be languages
 - define $D \cdot D' := \{ w \cdot w' \mid w \in D; w' \in D' \}$
The noncommutative monoid of languages

- \mathbb{A}^* (non commutative) monoid of words on the alphabet \mathbb{A}. Let ε denotes the empty word

- A language is a set of words on \mathbb{A}. Let D and D' be languages
 - define $D \cdot D' := \{ w \cdot w' \mid w \in D; w' \in D' \}$
 - one has $\emptyset \cdot D = D \cdot \emptyset = \emptyset$ and $\{ \varepsilon \} \cdot D = D = D \cdot \{ \varepsilon \} = D$
The noncommutative monoid of languages

- \mathbb{A}^* (non commutative) monoid of words on the alphabet \mathbb{A}. Let ε denotes the empty word

- A language is a set of words on \mathbb{A}. Let D and D' be languages
 - define $D \cdot D' := \{w \cdot w' \mid w \in D; w' \in D'\}$
 - one has $\emptyset \cdot D = D \cdot \emptyset = \emptyset$ and $\{\varepsilon\} \cdot D = D \cdot \{\varepsilon\} = D$
 - The monoid of nonempty languages is $\mathcal{D}(\mathbb{A})$
The noncommutative monoid of languages

- \(A^* \) (non commutative) monoid of words on the alphabet \(A \).
 Let \(\varepsilon \) denotes the empty word

- A language is a set of words on \(A \). Let \(D \) and \(D' \) be languages
 - define \(D \cdot D' := \{ w \cdot w' | w \in D; w' \in D' \} \)
 - one has \(\emptyset \cdot D = D \cdot \emptyset = \emptyset \) and \(\{\varepsilon\} \cdot D = D \cdot \{\varepsilon\} = D \)
 - The monoid of nonempty languages is \(D(A) \)
 - \(D(A) \) is commutative iff \(\text{Card}(A) \leq 1 \). Note that \(D(\emptyset) \cong \{\varepsilon\} \)
The noncommutative monoid of languages

- \(\mathbb{A}^* \) (non commutative) monoid of words on the alphabet \(\mathbb{A} \).
 Let \(\varepsilon \) denotes the empty word

- A language is a set of words on \(\mathbb{A} \). Let \(D \) and \(D' \) be languages
 - define \(D \cdot D' := \{ w \cdot w' \mid w \in D; w' \in D' \} \)
 - one has \(\emptyset \cdot D = D \cdot \emptyset = \emptyset \) and \(\{\varepsilon\} \cdot D = D \cdot \{\varepsilon\} = D \)
 - The monoid of nonempty languages is \(\mathcal{D}(\mathbb{A}) \)
 - \(\mathcal{D}(\mathbb{A}) \) is commutative iff \(\text{Card}(\mathbb{A}) \leq 1 \). Note that \(\mathcal{D}(\emptyset) \cong \{\varepsilon\} \)
 - however \(\mathcal{D}(\{a\}) \) is not freely commutative
The noncommutative monoid of homogeneous languages

- Define \(\dim(H) \) as the length common to all the words of \(H \).
- \(H \cdot H' = \{ w \cdot w' | w \in H; w' \in H' \} \) is homogeneous iff so are \(H \) and \(H' \).
- \(D_{h}(A) \subseteq D(A) \) the pure submonoid of homogeneous languages.
- \(H \in D_{h}(A) \mapsto \dim(H) \in (\mathbb{N},+,0) \) is a morphism of monoid.
- \(\dim(H) = 0 \) iff \(H = \{ \varepsilon \} \).
- \(D_{h}(\{a\}) \sim = (\mathbb{N},+,0) \)
The noncommutative monoid of homogeneous languages

- $H \in \mathcal{D}(\mathbb{A})$ is homogeneous when all the words in H have the same length
The noncommutative monoid of homogeneous languages

- $H \in D(\mathbb{A})$ is homogeneous when all the words in H have the same length.
- Define $\text{dim}(H)$ as the length common to all the words of H.
 It is well defined since H is nonempty.
The noncommutative monoid of homogeneous languages

- $H \in D(A)$ is homogeneous when all the words in H have the same length.
- Define $\dim(H)$ as the length common to all the words of H.
 It is well defined since H is nonempty.
- $H \cdot H' = \{w \cdot w' \mid w \in H; w' \in H'\}$ is homogeneous iff . . .
- \(H \in \mathcal{D}(A) \) is homogeneous when all the words in \(H \) have the same length.
- Define \(\text{dim}(H) \) as the length common to all the words of \(H \).
 It is well defined since \(H \) is nonempty.
- \(H \cdot H' = \{ w \cdot w' \mid w \in H ; \ w' \in H' \} \) is homogeneous iff so are \(H \) and \(H' \).
The noncommutative monoid of homogeneous languages

- \(H \in \mathcal{D}(\mathbb{A}) \) is homogeneous when all the words in \(H \) have the same length.
- Define \(\dim(H) \) as the length common to all the words of \(H \).
 It is well defined since \(H \) is nonempty.
- \(H \cdot H' = \{ w \cdot w' \mid w \in H ; \ w' \in H' \} \) is homogeneous iff so are \(H \) and \(H' \).
- \(\mathcal{D}_h(\mathbb{A}) \subseteq \mathcal{D}(\mathbb{A}) \) the pure submonoid of homogeneous languages.
The noncommutative monoid of homogeneous languages

- $H \in \mathcal{D}(A)$ is homogeneous when all the words in H have the same length.
- Define $\dim(H)$ as the length common to all the words of H. It is well defined since H is nonempty.
- $H \cdot H' = \{ w \cdot w' \mid w \in H; w' \in H' \}$ is homogeneous iff so are H and H'.
- $\mathcal{D}_h(A) \subseteq \mathcal{D}(A)$ the pure submonoid of homogeneous languages.
- $H \in \mathcal{D}_h(A) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$ is ...
The noncommutative monoid of homogeneous languages

- \(H \in \mathcal{D}(\mathbb{A}) \) is homogeneous when all the words in \(H \) have the same length.
- Define \(\dim(H) \) as the length common to all the words of \(H \). It is well defined since \(H \) is nonempty.
- \(H \cdot H' = \{ w \cdot w' \mid w \in H ; w' \in H' \} \) is homogeneous iff so are \(H \) and \(H' \).
- \(\mathcal{D}_h(\mathbb{A}) \subseteq \mathcal{D}(\mathbb{A}) \) the pure submonoid of homogeneous languages.
- \(H \in \mathcal{D}_h(\mathbb{A}) \mapsto \dim(H) \in (\mathbb{N}, +, 0) \) is a morphism of monoid.
The noncommutative monoid of homogeneous languages

- \(H \in \mathcal{D}(A) \) is homogeneous when all the words in \(H \) have the same length
- Define \(\text{dim}(H) \) as the length common to all the words of \(H \).
 It is well defined since \(H \) is nonempty.
- \(H \cdot H' = \{ w \cdot w' \mid w \in H ; w' \in H' \} \) is homogeneous iff so are \(H \) and \(H' \)
- \(\mathcal{D}_h(A) \subseteq \mathcal{D}(A) \) the pure submonoid of homogeneous languages.
- \(H \in \mathcal{D}_h(A) \mapsto \text{dim}(H) \in (\mathbb{N}, +, 0) \) is a morphism of monoid
- \(\text{dim}(H) = 0 \) iff \(H = \{ \varepsilon \} \)
The noncommutative monoid of homogeneous languages

- $H \in \mathcal{D}(\mathbb{A})$ is homogeneous when all the words in H have the same length
- Define $\dim(H)$ as the length common to all the words of H. It is well defined since H is nonempty.
- $H \cdot H' = \{w \cdot w' \mid w \in H; \ w' \in H'\}$ is homogeneous iff so are H and H'
- $\mathcal{D}_h(\mathbb{A}) \subseteq \mathcal{D}(\mathbb{A})$ the pure submonoid of homogeneous languages.
- $H \in \mathcal{D}_h(\mathbb{A}) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$ is a morphism of monoid
- $\dim(H) = 0$ iff $H = \{\varepsilon\}$
- $\mathcal{D}_h(\mathbb{A})$ is commutative iff $\text{Card}(\mathbb{A}) \leq 1$
The noncommutative monoid of homogeneous languages

- $H \in \mathcal{D}(\mathbb{A})$ is homogeneous when all the words in H have the same length
- Define $\dim(H)$ as the length common to all the words of H. It is well defined since H is nonempty.
- $H \cdot H' = \{w \cdot w' | w \in H; w' \in H'\}$ is homogeneous iff so are H and H'
- $\mathcal{D}_h(\mathbb{A}) \subseteq \mathcal{D}(\mathbb{A})$ the pure submonoid of homogeneous languages.
- $H \in \mathcal{D}_h(\mathbb{A}) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$ is a morphism of monoid
- $\dim(H) = 0$ iff $H = \{\varepsilon\}$
- $\mathcal{D}_h(\mathbb{A})$ is commutative iff $\text{Card}(\mathbb{A}) \leq 1$
- $\mathcal{D}_h(\{a\}) \cong \ldots$
The noncommutative monoid of homogeneous languages

- $H \in \mathcal{D}(A)$ is homogeneous when all the words in H have the same length
- Define $\text{dim}(H)$ as the length common to all the words of H.
 It is well defined since H is nonempty.
- $H \cdot H' = \{w \cdot w' \mid w \in H; \ w' \in H'\}$ is homogeneous iff so are H and H'
- $\mathcal{D}_h(A) \subseteq \mathcal{D}(A)$ the pure submonoid of homogeneous languages.
- $H \in \mathcal{D}_h(A) \mapsto \text{dim}(H) \in (\mathbb{N}, +, 0)$ is a morphism of monoid
- $\text{dim}(H) = 0$ iff $H = \{\varepsilon\}$
- $\mathcal{D}_h(A)$ is commutative iff $\text{Card}(A) \leq 1$
- $\mathcal{D}_h(\{a\}) \cong (\mathbb{N}, +, 0)$
Action of the symmetric groups
on the left of the homogeneous languages
Action of the symmetric groups
on the left of the homogeneous languages

- The n^{th} symmetric group \mathfrak{S}_n acts on the left of the set of words of length n
i.e. mappings from $\{1, \ldots, n\}$ to \mathcal{A}, by $\sigma \cdot \omega := \omega \circ \sigma^{-1}$
Action of the symmetric groups
on the left of the homogeneous languages

- The n^{th} symmetric group \mathcal{S}_n acts on the left of the set of words of length n
i.e. mappings from $\{1, \ldots, n\}$ to \mathcal{A}, by $\sigma \cdot \omega := \omega \circ \sigma^{-1}$
- Then \mathcal{S}_n acts on the left of the homogeneous languages of dimension n
Action of the symmetric groups
on the left of the homogeneous languages

- The n^{th} symmetric group \mathfrak{S}_n acts on the left of the set of words of length n
i.e. mappings from $\{1, \ldots, n\}$ to A, by $\sigma \cdot \omega := \omega \circ \sigma^{-1}$
- Then \mathfrak{S}_n acts on the left of the homogeneous languages of dimension n
- Write $H \sim H'$ when $\dim(H) = \dim(H')$ and $H' = \sigma \cdot H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$
Action of the symmetric groups
on the left of the homogeneous languages

- The n^{th} symmetric group \mathfrak{S}_n acts on the left of the set of words of length n
i.e. mappings from $\{1, \ldots, n\}$ to \mathfrak{A}, by $\sigma \cdot \omega := \omega \circ \sigma^{-1}$
- Then \mathfrak{S}_n acts on the left of the homogeneous languages of dimension n
- Write $H \sim H'$ when $\dim(H) = \dim(H')$ and $H' = \sigma \cdot H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$
- If $\sigma \in \mathfrak{S}_n$ and $\sigma' \in \mathfrak{S}_{n'}$ then define $\sigma \otimes \sigma' \in \mathfrak{S}_{n+n'}$ as:

$$\sigma \otimes \sigma'(k) := \begin{cases}
\sigma(k) & \text{if } 1 \leq k \leq n \\
(\sigma'(k - n)) + n & \text{if } n + 1 \leq k \leq n + n'
\end{cases}$$
Action of the symmetric groups
on the left of the homogeneous languages

- The n^{th} symmetric group \mathfrak{S}_n acts on the left of the set of words of length n
 i.e. mappings from $\{1, \ldots, n\}$ to A, by $\sigma \cdot \omega := \omega \circ \sigma^{-1}$
- Then \mathfrak{S}_n acts on the left of the homogeneous languages of dimension n
- Write $H \sim H'$ when $\dim(H) = \dim(H')$ and $H' = \sigma \cdot H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$
- If $\sigma \in \mathfrak{S}_n$ and $\sigma' \in \mathfrak{S}_{n'}$ then define $\sigma \otimes \sigma' \in \mathfrak{S}_{n+n'}$ as:

$$\sigma \otimes \sigma'(k) := \begin{cases}
\sigma(k) & \text{if } 1 \leq k \leq n \\
(\sigma'(k-n)) + n & \text{if } n+1 \leq k \leq n+n'
\end{cases}$$

- A Godement exchange law is satisfied, which ensures that \sim is actually a congruence:

$$(\sigma \cdot H) \cdot (\sigma' \cdot H') = (\sigma \otimes \sigma') \cdot (H \cdot H')$$

i.e. $H \sim K$ and $H' \sim K'$ implies $HH' \sim KK'$
The commutative monoid of homogeneous languages
The commutative monoid of homogeneous languages

- The commutative monoid of homogeneous languages is $\mathcal{H}(\mathbb{A}) = (D_h(\mathbb{A}), \cdot, \{\varepsilon\})/\sim$
The commutative monoid of homogeneous languages

- The commutative monoid of homogeneous languages is $\mathcal{H}(A) = (D_{h}(A), \cdot, \{\varepsilon\}) / \sim$
- The monoid $\mathcal{H}(A)$ is graded by $H \in \mathcal{H}(A) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$
The commutative monoid of homogeneous languages

- The commutative monoid of homogeneous languages is $\mathcal{H}(A) = (D_h(A), \cdot, \{\varepsilon\})/ \sim$
- The monoid $\mathcal{H}(A)$ is graded by $H \in \mathcal{H}(A) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$

The commutative monoid $\mathcal{H}(A)$ is free
The commutative monoid of homogeneous languages

- The commutative monoid of homogeneous languages is $\mathcal{H}(A) = (\mathcal{D}_h(A), \cdot, \{\varepsilon\})/\sim$
- The monoid $\mathcal{H}(A)$ is graded by $H \in \mathcal{H}(A) \mapsto \dim(H) \in (\mathbb{N}, +, 0)$

This monoid $\mathcal{H}(A)$ is free

- For any homogeneous language H and $\sigma \in \mathbb{S}_{\dim(H)}$, $\text{card}(H) = \text{card}(\sigma \cdot H)$ so we can define the cardinality of any element of $\mathcal{H}(A)$
The commutative monoid of finite homogeneous languages

- A pure submonoid of a free commutative monoid is free.
- The submonoid $H \subseteq H(A)$ of finite languages is pure, therefore it is free.
- $H \mapsto \text{Card}(H) \in (\mathbb{N}\{0\}, \times, 1)$ is a morphism of monoid.
- The primality of H does not imply that of $\text{Card}(H)$.
- E.g. $H = \{ab, ac\} = \{a\} \cdot \{b, c\}$ though $\text{card}(H) = 2$.
- The primality of H does not imply that of $\text{Card}(H)$.
- E.g. $H = \{a, b, c, d\}$ is prime though $\text{card}(H) = 4$.
The commutative monoid of finite homogeneous languages

- $M' \subseteq M$ is said to be **pure** when for all $x, y \in M$, $xy \in M'$ implies $x, y \in M'$
The commutative monoid of finite homogeneous languages

- \(M' \subseteq M \) is said to be pure when for all \(x, y \in M \), \(xy \in M' \) implies \(x, y \in M' \)
- A pure submonoid of a free commutative monoid is free
The commutative monoid of finite homogeneous languages

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$
- A pure submonoid of a free commutative monoid is free
- The submonoid $\mathcal{H}_f(A) \subseteq \mathcal{H}(A)$ of finite languages is pure, therefore it is free
The commutative monoid of finite homogeneous languages

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y \in M'$
- A pure submonoid of a free commutative monoid is free
- The submonoid $\mathcal{H}_f(A) \subseteq \mathcal{H}(A)$ of finite languages is pure, therefore it is free
- $H \in \mathcal{H}_f(A) \mapsto \text{Card}(H) \in (\mathbb{N} \setminus \{0\}, \times, 1)$ is a morphism of monoid
The commutative monoid of finite homogeneous languages

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y \in M'$
- A pure submonoid of a free commutative monoid is free
- The submonoid $\mathcal{H}_f(A) \subseteq \mathcal{H}(A)$ of finite languages is pure, therefore it is free
- $H \in \mathcal{H}_f(A) \mapsto \text{Card}(H) \in (\mathbb{N} \setminus \{0\}, \times, 1)$ is a morphism of monoid
- The primality of $\text{Card}(H)$ does not imply that of H
 e.g. $H = \{ab, ac\} = \{a\} \cdot \{b, c\}$ though $\text{card}(H) = 2$
The commutative monoid of finite homogeneous languages

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y \in M'$
- A pure submonoid of a free commutative monoid is free
- The submonoid $\mathcal{H}_f(A) \subseteq \mathcal{H}(A)$ of finite languages is pure, therefore it is free
- $H \in \mathcal{H}_f(A) \mapsto \text{Card}(H) \in (\mathbb{N} \setminus \{0\}, \times, 1)$ is a morphism of monoid
- The primality of $\text{Card}(H)$ does not imply that of H
 e.g. $H = \{ab, ac\} = \{a\} \cdot \{b, c\}$ though $\text{card}(H) = 2$
- The primality of H does not imply that of $\text{Card}(H)$
 e.g. $H = \{a, b, c, d\}$ is prime though $\text{card}(H) = 4$
The brute force algorithm for factoring in $\mathcal{H}_f(A)$

Theory
The brute force algorithm for factoring in $\mathcal{H}_f(A)$

Theory

Given $w \in A^n$ and $I \subseteq \{1, \ldots, n\}$, we write $w_{|I}$ for the subword of w consisting of letters with indices in I.
The brute force algorithm for factoring in $\mathcal{H}_f(\mathbb{A})$

Theory

Given $w \in \mathbb{A}^n$ and $I \subseteq \{1, \ldots, n\}$, we write $w_{|I}$ for the subword of w consisting of letters with indices in I.

Given a homogeneous language H of dimension n, we write

$$H_{|I} = \{ w_{|I} \mid w \in H \}$$
The brute force algorithm for factoring in $\mathcal{H}_f(\mathbb{A})$

Theory

Given $w \in \mathbb{A}^n$ and $I \subseteq \{1, \ldots, n\}$, we write $w_{|I}$ for the subword of w consisting of letters with indices in I.

Given a homogeneous language H of dimension n, we write

$$H_{|I} = \{ w_{|I} \mid w \in H \}$$

Denoting I^c for $\{1, \ldots, n\} \setminus I$, we have

$$[H] = [H_{|I}] \cdot [H_{|I^c}]$$

in $\mathcal{H}_f(\mathbb{A})$ if and only if for all words $u, v \in H$ there exists a word $w \in H$ such that

$$w_{|I} = u_{|I} \quad \text{and} \quad w_{|I^c} = v_{|I^c}$$
The brute force algorithm for factoring in $\mathcal{H}_f(A)$
The brute force algorithm for factoring in $\mathcal{H}_f(\mathbb{A})$

Practice

For $I \subseteq \{1, \ldots, n\}$ let π_I be the “projection” that sends $w \in H$ to $w|_I \in \mathbb{A}^{\text{card}(I)}$.
The brute force algorithm for factoring in $\mathcal{H}_f(\mathcal{A})$

Practice

For $I \subseteq \{1, \ldots, n\}$ let $\pi_{|I}$ be the “projection” that sends $w \in H$ to $w_{|I} \in \mathcal{A}^{\text{card}(I)}$.

1. choose $I \subseteq \{1, \ldots, n\}$ of cardinality $k \leq n/2$
The brute force algorithm for factoring in $\mathcal{H}_f(\mathbb{A})$

Practice

For $I \subseteq \{1, \ldots, n\}$ let $\pi_{|I}$ be the “projection” that sends $w \in H$ to $w_{|I} \in \mathbb{A}^{\text{card}(I)}$.

1. Choose $I \subseteq \{1, \ldots, n\}$ of cardinality $k \leq n/2$
2. If $\pi_{|I^c}(\pi_{|I}^{-1}(u))$ does not depend on $u \in H_{|I}$, then we have the factorization

$$[H] = [H_{|I}] \cdot [H_{|I^c}]$$

and we are done.
The brute force algorithm for factoring in $H_f(A)$

Practice

For $I \subseteq \{1, \ldots, n\}$ let π_I be the “projection” that sends $w \in H$ to $w|_I \in A^{\text{card}(I)}$.

1. choose $I \subseteq \{1, \ldots, n\}$ of cardinality $k \leq n/2$
2. if $\pi_I (\pi^{-1}_I(u))$ does not depend on $u \in H|_I$, then we have the factorization

$$[H] = [H|_I] \cdot [H|_{I^c}]$$

and we are done

3. otherwise check whether there are still subsets of $\{1, \ldots, n\}$ to check:
 3.1. yes: go to step 1
 3.2. no: $[H]$ is prime
Homogeneous languages and isothetic regions
Factoring a program

sem: 1 a b
sem: 2 c

proc:
 p = P(a); P(c); V(c); V(a)

 q = P(b); P(c); V(c); V(b)

init: p q p q
Factoring the space of states

brute force

\[
\begin{array}{cccc}
[0,1] & [0,1] & [0,+\infty] & [0,+\infty] \\
[0,1] & [4,+\infty] & [0,+\infty] & [0,+\infty] \\
[0,1] & [0,+\infty] & [0,+\infty] & [0,1] \\
[0,1] & [0,+\infty] & [0,+\infty] & [4,+\infty] \\
[4,+\infty] & [0,1] & [0,+\infty] & [0,+\infty] \\
[4,+\infty] & [4,+\infty] & [0,+\infty] & [0,+\infty] \\
[4,+\infty] & [0,+\infty] & [0,+\infty] & [0,1] \\
[4,+\infty] & [0,+\infty] & [0,+\infty] & [4,+\infty] \\
[0,+\infty] & [0,1] & [0,+\infty] & [0,+\infty] \\
[0,+\infty] & [0,1] & [4,+\infty] & [0,+\infty] \\
[0,+\infty] & [4,+\infty] & [0,1] & [0,+\infty] \\
[0,+\infty] & [4,+\infty] & [4,+\infty] & [0,+\infty] \\
[0,+\infty] & [0,+\infty] & [0,1] & [0,1] \\
[0,+\infty] & [0,+\infty] & [0,1] & [4,+\infty] \\
[0,+\infty] & [0,+\infty] & [4,+\infty] & [0,1] \\
[0,+\infty] & [0,+\infty] & [4,+\infty] & [4,+\infty]
\end{array}
\]
Factoring the space of states

brute force
Factoring isothetic regions

Homogeneous languages and isothetic regions

Factoring the space of states

brute force
Factoring isothetic regions

Homogeneous languages and isothetic regions

Factoring the space of states

brute force
Factoring isothetic regions

Homogeneous languages and isothetic regions

Factoring the space of states

brute force

<table>
<thead>
<tr>
<th>Stars</th>
<th>Pentagons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Factoring the space of states

brute force
Factoring a program

sem: 1 a b
sem: 2 c

proc:
 p = P(a);P(c);V(c);V(a)

 q = P(b);P(c);V(c);V(b)

init: p q p q
Factoring a program

sem: 1 a b

sem: 2 c

proc:
 p = P(a);P(c);V(c);V(a)

 q = P(b);P(c);V(c);V(b)

init: p p q q
Factoring a program

<table>
<thead>
<tr>
<th>sem: 1 a b</th>
<th>sem: 1 a b</th>
</tr>
</thead>
<tbody>
<tr>
<td>sem: 2 c</td>
<td>sem: 2 c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>proc:</th>
<th>proc:</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = P(a);P(c);V(c);V(a)</td>
<td>q = P(b);P(c);V(c);V(b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>init: 2p</th>
<th>init: 2q</th>
</tr>
</thead>
</table>
Factoring a program

<table>
<thead>
<tr>
<th>sem: 1 a</th>
<th>sem: 1 b</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc:</td>
<td>proc:</td>
</tr>
<tr>
<td>p = P(a);V(a)</td>
<td>q = P(b);V(b)</td>
</tr>
<tr>
<td>init: 2p</td>
<td>init: 2q</td>
</tr>
</tbody>
</table>
The preorder \preceq over $\mathcal{H}(\mathcal{A})$

inherited from a preorder \preceq over \mathcal{A}
The preorder \(\preceq \) over \(\mathcal{H}(A) \)

inherited from a preorder \(\preceq \) over \(A \)

- Let \(\preceq^n \) by the product preorder on the words of length \(n \)
The preorder \preceq over $\mathcal{H}(\mathbb{A})$

inherited from a preorder \preceq over \mathbb{A}

- Let \preceq^n by the product preorder on the words of length n
- Given $H, H' \in \mathcal{D}_h(\mathbb{A})$ of the same dimension n, write $H \preceq H'$ when for all $\omega \in H$ there exists $\omega' \in H'$ such that $\omega \preceq^n \omega'$
The preorder \preceq over $\mathcal{H}(\mathbb{A})$

inherited from a preorder \preceq over \mathbb{A}

- Let \preceq^n by the product preorder on the words of length n
- Given $H, H' \in \mathcal{D}_h(\mathbb{A})$ of the same dimension n, write $H \preceq H'$ when for all $\omega \in H$ there exists $\omega' \in H'$ such that $\omega \preceq^n \omega'$
- Given $X, Y \in \mathcal{H}(\mathbb{A})$ of the same dimension n write $X \preceq Y$ when there exist $H \in X$ and $K \in Y$ such that $H \preceq K$
The preorder \preceq over $\mathcal{H}(\mathbb{A})$

inherited from a preorder \preceq over \mathbb{A}

- Let \preceq^n by the product preorder on the words of length n
- Given $H, H' \in \mathcal{D}_h(\mathbb{A})$ of the same dimension n, write $H \preceq H'$ when for all $\omega \in H$ there exists $\omega' \in H'$ such that $\omega \preceq^n \omega'$
- Given $X, Y \in \mathcal{H}(\mathbb{A})$ of the same dimension n write $X \preceq Y$ when there exist $H \in X$ and $K \in Y$ such that $H \preceq K$
- $X \preceq Y$ and $X' \preceq Y'$ implies $X \cdot X' \preceq Y \cdot Y'$
 i.e. $(\mathcal{H}(\mathbb{A}), \preceq)$ is a preordered commutative monoid
The preorder \preceq over $\mathcal{H}(\mathbb{A})$

inherited from a preorder \preceq over \mathbb{A}

- Let \preceq^n by the product preorder on the words of length n
- Given $H, H' \in \mathcal{D}_h(\mathbb{A})$ of the same dimension n, write $H \preceq H'$ when for all $\omega \in H$ there exists $\omega' \in H'$ such that $\omega \preceq^n \omega'$
- Given $X, Y \in \mathcal{H}(\mathbb{A})$ of the same dimension n write $X \preceq Y$ when there exist $H \in X$ and $K \in Y$ such that $H \preceq K$
- $X \preceq Y$ and $X' \preceq Y'$ implies $X \cdot X' \preceq Y \cdot Y'$
 i.e. $(\mathcal{H}(\mathbb{A}), \preceq)$ is a preordered commutative monoid
- If \preceq is actually a partial order on \mathbb{A}, then so is \preceq on $\mathcal{H}(\mathbb{A})$
The preorder \(\preceq \) over \(\mathcal{H}(A) \)

inherited from a preorder \(\preceq \) over \(A \)

- Let \(\preceq^n \) by the product preorder on the words of length \(n \)
- Given \(H, H' \in \mathcal{D}_h(A) \) of the same dimension \(n \), write \(H \preceq H' \) when for all \(\omega \in H \) there exists \(\omega' \in H' \) such that \(\omega \preceq^n \omega' \)
- Given \(X, Y \in \mathcal{H}(A) \) of the same dimension \(n \) write \(X \preceq Y \) when there exist \(H \in X \) and \(K \in Y \) such that \(H \preceq K \)
- \(X \preceq Y \) and \(X' \preceq Y' \) implies \(X \cdot X' \preceq Y \cdot Y' \)
 i.e. \((\mathcal{H}(A), \preceq) \) is a preordered commutative monoid
- If \(\preceq \) is actually a partial order on \(A \), then so is \(\preceq \) on \(\mathcal{H}(A) \)
- If \(\preceq \) is the equality relation, then \(X \preceq Y \) amounts to \(H_X \subseteq H_Y \) for some representatives \(H_X \) and \(H_Y \) of \(X \) and \(Y \).
Homogeneous languages

over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph
Homogeneous languages

over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $A = |G|$ is the geometric realization of a finite graph:
Homogeneous languages
over the alphabets \mathcal{G} and $\mathcal{R}_1 \mathcal{G} \setminus \{\emptyset\}$ with \mathcal{G} being a finite graph

- $\mathcal{A} = \mathcal{G}$ is the geometric realization of a finite graph:
 - a point of \mathcal{G}^n can be seen as a word of length n on \mathcal{A}
Homogeneous languages

over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $\mathbb{A} = |G|$ is the geometric realization of a finite graph:
 - a point of $|G|^n$ can be seen as a word of length n on \mathbb{A}
 - a nonempty subset of $|G|^n$ is thus a homogeneous language on \mathbb{A}
Homogeneous languages

over the alphabets \(|G|\) and \(\mathcal{R}_1 G \setminus \{\emptyset\}\) with \(G\) being a finite graph

- \(A = |G|\) is the geometric realization of a finite graph:
 - a point of \(|G|^n\) can be seen as a word of length \(n\) on \(A\)
 - a nonempty subset of \(|G|^n\) is thus a homogeneous language on \(A\)
 - the product of the monoid \(\mathcal{D}_h(A)\) corresponds to the cartesian product of isothetic regions
Homogeneous languages

over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $A = |G|$ is the geometric realization of a finite graph:
 - a point of $|G|^n$ can be seen as a word of length n on A
 - a nonempty subset of $|G|^n$ is thus a homogeneous language on A
 - the product of the monoid $D_h(A)$ corresponds to the cartesian product of isothetic regions

- $A = \mathcal{R}_1 G \setminus \{\emptyset\}$ is the collection of nonempty finite unions of connected subsets of $|G|$:
Homogeneous languages
over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $\mathbb{A} = |G|$ is the geometric realization of a finite graph:
 - a point of $|G|^n$ can be seen as a word of length n on \mathbb{A}
 - a nonempty subset of $|G|^n$ is thus a homogeneous language on \mathbb{A}
 - the product of the monoid $D_h(\mathbb{A})$ corresponds to the cartesian product of isothetic regions

- $\mathbb{A} = \mathcal{R}_1 G \setminus \{\emptyset\}$ is the collection of nonempty finite unions of connected subsets of $|G|$:
 - an n-block is an n-fold product of nonempty elements of $\mathcal{R}_1 G$
 i.e. a word of length n on \mathbb{A}
Homogeneous languages
over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $\mathbb{A} = |G|$ is the geometric realization of a finite graph:
 - a point of $|G|^n$ can be seen as a word of length n on \mathbb{A}
 - a nonempty subset of $|G|^n$ is thus a homogeneous language on \mathbb{A}
 - the product of the monoid $D_h(\mathbb{A})$ corresponds to the cartesian product of isothetic regions

- $\mathbb{A} = \mathcal{R}_1 G \setminus \{\emptyset\}$ is the collection of nonempty finite unions of connected subsets of $|G|$:
 - an n-block is an n-fold product of nonempty elements of $\mathcal{R}_1 G$
 i.e. a word of length n on \mathbb{A}
 - a nonempty family of n-blocks is thus an homogeneous language on \mathbb{A} (of dimension n)
Homogeneous languages

over the alphabets $|G|$ and $\mathcal{R}_1 G \setminus \{\emptyset\}$ with G being a finite graph

- $A = |G|$ is the geometric realization of a finite graph:
 - a point of $|G|^n$ can be seen as a word of length n on A
 - a nonempty subset of $|G|^n$ is thus a homogeneous language on A
 - the product of the monoid $D_h(A)$ corresponds to the cartesian product of isothetic regions

- $A = \mathcal{R}_1 G \setminus \{\emptyset\}$ is the collection of nonempty finite unions of connected subsets of $|G|$:
 - an n-block is an n-fold product of nonempty elements of $\mathcal{R}_1 G$
 i.e. a word of length n on A
 - a nonempty family of n-blocks is thus an homogeneous language on A (of dimension n)
 - the concatenation of words on A corresponds to the cartesian product of blocks
The canonical morphism of monoids $\gamma : \mathcal{H}(R_1 G \setminus \{\emptyset\}) \to \mathcal{H}(\nabla G \nabla)$
The canonical morphism of monoids $\gamma : \mathcal{H}(R_1 G \setminus \{\emptyset\}) \to \mathcal{H}(\downarrow G \uparrow)$

- Let γ be the map sending an homogeneous language on $R_1 G \setminus \{\emptyset\}$ to the union of its elements.
The canonical morphism of monoids \(\gamma : \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\}) \to \mathcal{H}(\mathcal{G}) \)

- Let \(\gamma \) be the map sending an homogeneous language on \(\mathcal{R}_1 G \setminus \{\emptyset\} \) to the union of its elements
- \(\gamma \) is a morphism of monoids from \(\mathcal{D}_h(\mathcal{R}_1 G \setminus \{\emptyset\}) \) to \(\mathcal{D}_h(\mathcal{G}) \)
The canonical morphism of monoids $\gamma : \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\}) \to \mathcal{H}(1 \mathcal{G})$.

- Let γ be the map sending an homogeneous language on $\mathcal{R}_1 G \setminus \{\emptyset\}$ to the union of its elements.
- γ is a morphism of monoids from $\mathcal{D}_h(\mathcal{R}_1 G \setminus \{\emptyset\})$ to $\mathcal{D}_h(1 \mathcal{G})$.
- γ is compatible with the action of the symmetric groups in the sense that $H' = \sigma \cdot H \Rightarrow \bigcup H' = \sigma \cdot (\bigcup H)$.
The canonical morphism of monoids $\gamma : \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\}) \to \mathcal{H}(\mathcal{U} G \downarrow)$

- Let γ be the map sending an homogeneous language on $\mathcal{R}_1 G \setminus \{\emptyset\}$ to the union of its elements
 - γ is a morphism of monoids from $\mathcal{D}_h(\mathcal{R}_1 G \setminus \{\emptyset\})$ to $\mathcal{D}_h(\mathcal{U} G \downarrow)$
 - γ is compatible with the action of the symmetric groups in the sense that $H' = \sigma \cdot H \Rightarrow \bigcup H' = \sigma \cdot (\bigcup H)$
 - γ induces a morphism of monoids from $\mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$ to $\mathcal{H}(\mathcal{U} G \downarrow)$
The canonical morphism of monoids $\gamma : \mathcal{H}(R_1 G \setminus \{\emptyset\}) \to \mathcal{H}(\mathrm{normal closure} G)$

- Let γ be the map sending an homogeneous language on $R_1 G \setminus \{\emptyset\}$ to the union of its elements
 - γ is a morphism of monoids from $\mathcal{D}_h(R_1 G \setminus \{\emptyset\})$ to $\mathcal{D}_h(\mathrm{normal closure} G)$
 - γ is compatible with the action of the symmetric groups in the sense that $H' = \sigma \cdot H \Rightarrow \bigcup H' = \sigma \cdot (\bigcup H)$
 - γ induces a morphism of monoids from $\mathcal{H}(R_1 G \setminus \{\emptyset\})$ to $\mathcal{H}(\mathrm{normal closure} G)$

- The induced morphism γ does not preserve the prime elements e.g. consider a covering of $[0,1]^2$ with 3 distinct rectangular regions
The canonical morphism of monoids $\alpha : \mathcal{H}(|G|) \rightarrow \mathcal{H}(R_1 G \setminus \{\emptyset\})$
The canonical morphism of monoids $\alpha : \mathcal{H}(\downarrow G \uparrow) \to \mathcal{H}(R_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
The canonical morphism of monoids $\alpha : \mathcal{H}(\uparrow G \downarrow) \rightarrow \mathcal{H}(R_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \uparrow G \uparrow^n$ and $Y \subseteq \uparrow G \downarrow^m$, the collection of maximal blocks of $X \times Y$ is $
\{ C \times D \mid C \text{ and } D \text{ are maximal blocks of } X \text{ and } Y \}$
The canonical morphism of monoids $\alpha : \mathcal{H}(\nabla G) \to \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \nabla G^n$ and $Y \subseteq \nabla G^m$, the collection of maximal blocks of $X \times Y$ is
 $\{C \times D \mid C$ and D are maximal blocks of X and $Y\}$
 - the unique maximal block of the unique nonempty subset of ∇G^0 is ε
The canonical morphism of monoids $\alpha : \mathcal{H}(\mathbb{1}G) \to \mathcal{H}(R_1G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \mathbb{1}G^n$ and $Y \subseteq \mathbb{1}G^m$, the collection of maximal blocks of $X \times Y$ is
 \[\{ C \times D \mid C \text{ and } D \text{ are maximal blocks of } X \text{ and } Y \} \]
 - the unique maximal block of the unique nonempty subset of $\mathbb{1}G^0$ is ε
 - α is a morphism of monoids from $\mathcal{D}_h(\mathbb{1}G)$ to $\mathcal{D}_h(R_1G \setminus \{\emptyset\})$
The canonical morphism of monoids $\alpha : \mathcal{H}(|G|) \to \mathcal{H}(R_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq |G|^n$ and $Y \subseteq |G|^m$, the collection of maximal blocks of $X \times Y$ is
 $\{ C \times D \mid C$ and D are maximal blocks of X and $Y \}$
 - the unique maximal block of the unique nonempty subset of $|G|^0$ is ε
 - α is a morphism of monoids from $\mathcal{D}_h(|G|)$ to $\mathcal{D}_h(R_1 G \setminus \{\emptyset\})$
 - if C is a maximal block of $X \subseteq |G|^n$ then $\sigma \cdot C$ is a maximal block of $\sigma \cdot X$.

The canonical morphism of monoids $\alpha : \mathcal{H}(\langle G \rangle) \rightarrow \mathcal{H}(R_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \langle G \rangle^n$ and $Y \subseteq \langle G \rangle^m$, the collection of maximal blocks of $X \times Y$ is $\{C \times D \mid C$ and D are maximal blocks of X and $Y\}$
 - the unique maximal block of the unique nonempty subset of $\langle G \rangle^0$ is ε
- α is a morphism of monoids from $D_h(\langle G \rangle)$ to $D_h(R_1 G \setminus \{\emptyset\})$
- if C is a maximal block of $X \subseteq \langle G \rangle^n$ then $\sigma \cdot C$ is a maximal block of $\sigma \cdot X$.
- α induces a morphism of monoids from $\mathcal{H}(\langle G \rangle)$ to $\mathcal{H}(R_1 G \setminus \{\emptyset\})$
The canonical morphism of monoids $\alpha : \mathcal{H}(\|G\|) \rightarrow \mathcal{H}(\mathcal{R}_1G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \|G\|^n$ and $Y \subseteq \|G\|^m$, the collection of maximal blocks of $X \times Y$ is $
 \{ C \times D \mid C$ and D are maximal blocks of X and $Y \}$
 - the unique maximal block of the unique nonempty subset of $\|G\|^0$ is ε
 - α is a morphism of monoids from $\mathcal{D}_h(\|G\|)$ to $\mathcal{D}_h(\mathcal{R}_1G \setminus \{\emptyset\})$
 - if C is a maximal block of $X \subseteq \|G\|^n$ then $\sigma \cdot C$ is a maximal block of $\sigma \cdot X$.
 - α induces a morphism of monoids from $\mathcal{H}(\|G\|)$ to $\mathcal{H}(\mathcal{R}_1G \setminus \{\emptyset\})$
 - $\text{im}(\alpha)$ is a submonoid of $\mathcal{H}(\mathcal{R}_1G \setminus \{\emptyset\})$
The canonical morphism of monoids $\alpha : \mathcal{H}(|G|) \to \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq |G|^n$ and $Y \subseteq |G|^m$, the collection of maximal blocks of $X \times Y$ is
 \[\{C \times D \mid C \text{ and } D \text{ are maximal blocks of } X \text{ and } Y\} \]
 - the unique maximal block of the unique nonempty subset of $|G|^0$ is ε
 - α is a morphism of monoids from $\mathcal{D}_h(|G|)$ to $\mathcal{D}_h(\mathcal{R}_1 G \setminus \{\emptyset\})$
 - if C is a maximal block of $X \subseteq |G|^n$ then $\sigma \cdot C$ is a maximal block of $\sigma \cdot X$.
- α induces a morphism of monoids from $\mathcal{H}(|G|)$ to $\mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$
- $\text{im}(\alpha)$ is a submonoid of $\mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$

- the morphisms γ and α induce isomorphisms of ordered monoids between $\text{im}(\alpha)$ and $\mathcal{H}(|G|)$, the order relation being inherited from inclusion over $\mathcal{R}_1 G \setminus \{\emptyset\}$ and equality over $|G|$.
The canonical morphism of monoids $\alpha : \mathcal{H}(\lvert G \rvert) \rightarrow \mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$

- Define $\alpha(X)$ as the collection of maximal blocks of X:
 - given $X \subseteq \lvert G \rvert^n$ and $Y \subseteq \lvert G \rvert^m$, the collection of maximal blocks of $X \times Y$ is $\{ C \times D \mid C$ and D are maximal blocks of X and $Y \}$
 - the unique maximal block of the unique nonempty subset of $\lvert G \rvert^0$ is ε
 - α is a morphism of monoids from $\mathcal{D}_h(\lvert G \rvert)$ to $\mathcal{D}_h(\mathcal{R}_1 G \setminus \{\emptyset\})$
 - if C is a maximal block of $X \subseteq \lvert G \rvert^n$ then $\sigma \cdot C$ is a maximal block of $\sigma \cdot X$.
 - α induces a morphism of monoids from $\mathcal{H}(\lvert G \rvert)$ to $\mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$
 - $\text{im}(\alpha)$ is a submonoid of $\mathcal{H}(\mathcal{R}_1 G \setminus \{\emptyset\})$

- the morphisms γ and α induce isomorphisms of ordered monoids between $\text{im}(\alpha)$ and $\mathcal{H}(\lvert G \rvert)$, the order relation being inherited from inclusion over $\mathcal{R}_1 G \setminus \{\emptyset\}$ and equality over $\lvert G \rvert$.
- therefore $\text{im}(\alpha)$ is commutative free
The free commutative monoids of isothetic regions
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of $X \subseteq \uparrow G|^n$.
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of $X \subseteq \downarrow G \uparrow^n$.
- We have seen that an isothetic region has finitely many maximal blocks.
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of $X \subseteq \mathcal{H}(\mathcal{G})^n$.
- We have seen that an isothetic region has finitely many maximal blocks.
- For $X, Y \in \mathcal{H}(\mathcal{G})$, $\alpha(X \cdot Y)$ is finite iff $\alpha(X)$ and $\alpha(Y)$ are so:
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of \(X \subseteq \mathcal{G}^n \).
- We have seen that an isothetic region has finitely many maximal blocks.
- For \(X, Y \in \mathcal{H}(\mathcal{G}) \), \(\alpha(X \cdot Y) \) is finite iff \(\alpha(X) \) and \(\alpha(Y) \) are so:
 - then \(\{ X \in \text{im}(\alpha) \mid \text{card}(X) \text{ is finite} \} \) is a pure submonoid of \(\text{im}(\alpha) \)
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of $X \subseteq \mathcal{H}(\mathcal{G})^n$.
- We have seen that an isothetic region has finitely many maximal blocks.
- For $X, Y \in \mathcal{H}(\mathcal{G})$, $\alpha(X \cdot Y)$ is finite iff $\alpha(X)$ and $\alpha(Y)$ are so:
 - then $\{X \in \text{im}(\alpha) \mid \text{card}(X) \text{ is finite}\}$ is a pure submonoid of $\text{im}(\alpha)$
 - this commutative monoid is thus free and isomorphic to the monoid of isothetic regions, the latter being defined as

 $\gamma(\{X \in \text{im}(\alpha) \mid \text{card}(X) \text{ is finite}\})$
The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of $X \subseteq \mathcal{H}(G)^n$.
- We have seen that an isothetic region has finitely many maximal blocks.
- For $X, Y \in \mathcal{H}(\mathcal{H}(G))$, $\alpha(X \cdot Y)$ is finite iff $\alpha(X)$ and $\alpha(Y)$ are so:
 - then $\{X \in \text{im}(\alpha) \mid \text{card}(X) \text{ is finite}\}$ is a pure submonoid of $\text{im}(\alpha)$
 - this commutative monoid is thus free and isomorphic to the monoid of isothetic regions, the latter being defined as

$$\gamma(\{X \in \text{im}(\alpha) \mid \text{card}(X) \text{ is finite}\})$$

- The monoid of isothetic regions is thus free commutative.
Factoring isothetic regions

A better factoring algorithm

by Nicolas Ninin
Let $X \subseteq |G|^n$ be an isothetic region and \mathcal{F} be a finite block covering of X^c.
A better factoring algorithm
by Nicolas Ninin

Let $X \subseteq |G|^n$ be an isothetic region and \mathcal{F} be a finite block covering of X^c

- For each block $(\omega_1, \ldots, \omega_n)$ that belongs to \mathcal{F} define the subset

$$B_\omega = \{ k \in \{1, \ldots, n\} \mid \omega_k \neq |G| \}$$
A better factoring algorithm
by Nicolas Ninin

Let $\mathcal{X} \subseteq |G|^n$ be an isothetic region and \mathcal{F} be a finite block covering of \mathcal{X}^c

- For each block $(\omega_1, \ldots, \omega_n)$ that belongs to \mathcal{F} define the subset

$$B_\omega = \{ k \in \{1, \ldots, n\} \mid \omega_k \neq |G| \}$$

- The finest partition of $\{1, \ldots, n\}$ that is coarser than the collection

$$\{ B_\omega \mid \omega \in \mathcal{F} \}$$

induces a factorization of \mathcal{X}.
Let $X \subseteq |G|^n$ be an isothetic region and \mathcal{F} be a finite block covering of X^c

- For each block $(\omega_1, \ldots, \omega_n)$ that belongs to \mathcal{F} define the subset

$$B_\omega = \{ k \in \{1, \ldots, n\} \mid \omega_k \neq |G| \}$$

- The finest partition of $\{1, \ldots, n\}$ that is coarser than the collection

$$\{B_\omega \mid \omega \in \mathcal{F}\}$$

induces a factorization of X.

If $\mathcal{F} = \alpha(X^c)$ then we obtain the prime factorization of X.
Factoring a program

\[
\text{sem: 1 } a \ b
\]
\[
\text{sem: 2 } c
\]

\[
\text{proc:}
\]
\[
p = P(a); P(c); V(c); V(a)
\]
\[
q = P(b); P(c); V(c); V(b)
\]

\[
\text{init: } p \ q \ p \ q
\]
Factoring the space of states

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[0, +∞]</td>
</tr>
<tr>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[0, +∞]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>[1,4]</td>
<td>[0, +∞]</td>
<td>[1,4]</td>
<td>[0, +∞]</td>
</tr>
<tr>
<td>[2,3]</td>
<td>[0, +∞]</td>
<td>[2,3]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>[0, +∞]</td>
<td>[1,4]</td>
<td>[0, +∞]</td>
<td>[1,4]</td>
</tr>
<tr>
<td>[0, +∞]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
</tr>
</tbody>
</table>
Factoring the space of states

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[0, +∞]</td>
</tr>
<tr>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[0, +∞]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>[1,4]</td>
<td>[0, +∞]</td>
<td>[1,4]</td>
<td>[0, +∞]</td>
</tr>
<tr>
<td>[2,3]</td>
<td>[0, +∞]</td>
<td>[2,3]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>[0, +∞]</td>
<td>[1,4]</td>
<td>[0, +∞]</td>
<td>[1,4]</td>
</tr>
<tr>
<td>[0, +∞]</td>
<td>[2,3]</td>
<td>[2,3]</td>
<td>[2,3]</td>
</tr>
</tbody>
</table>
Factoring the space of states

subtle

\[
\begin{array}{cccc}
[1,4] & [0,\infty[& [1,4] & [0,\infty[\\
[0,\infty[& [1,4] & [0,\infty[& [1,4] \\
\end{array}
\]
Factoring the space of states

subtle