GEOMETRIC MODELS
Cartesian product
Cartesian product in Set

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

There exist two mappings $\pi_A : A \times B \to A$ and $\pi_B : A \times B \to B$ such that for all sets X the following map is a bijection:

$$Set\left[\left\{X, A \times B\right\}\right] \to Set\left[\left\{X, A\right\}\right] \times Set\left[\left\{X, B\right\}\right]$$

where $h \mapsto (\pi_A \circ h, \pi_B \circ h)$.

Cartesian product in \textit{Set}

$$A \times B := \{(a, b) \mid a \in A \text{ and } b \in B\}$$
Cartesian product in Set

\[A \times B := \{(a, b) \mid a \in A \text{ and } b \in B\} \]

There exist two mappings π_A and π_B

\[
\begin{align*}
\pi_A : & \quad A \times B \longrightarrow A \\
(a, b) & \longmapsto a
\end{align*}
\]

\[
\begin{align*}
\pi_B : & \quad A \times B \longrightarrow B \\
(a, b) & \longmapsto b
\end{align*}
\]
Cartesian product in Set

$$A \times B := \{ (a, b) \mid a \in A \text{ and } b \in B \}$$

There exist two mappings π_A and π_B

$$\begin{align*}
\pi_A : A \times B & \longrightarrow A \\
(a, b) & \longmapsto a
\end{align*}$$

$$\begin{align*}
\pi_B : A \times B & \longrightarrow B \\
(a, b) & \longmapsto b
\end{align*}$$

such that for all sets X the following map is a bijection

$$\begin{align*}
\text{Set}[X, A \times B] & \longrightarrow \text{Set}[X, A] \times \text{Set}[X, B] \\
h & \longmapsto (\pi_A \circ h, \pi_B \circ h)
\end{align*}$$
The object c is the **Cartesian product** (in \mathcal{C}) of a and b when there exist two morphisms $\pi_a : c \to a$ and $\pi_b : c \to b$ such that for all objects x of \mathcal{C} the following map is a bijection

$$C[x, c] \to C[x, a] \times C[x, b]$$

$$h \mapsto (\pi_a \circ h, \pi_b \circ h)$$

When such an object c exists we write $c = a \times b$
Cartesian product in the category of graphs (\mathcal{Grph})
Cartesian product in the category of graphs ($Grph$)

\[
\left(\begin{array}{c}
A \\
t \\
V
\end{array} \right) \times \left(\begin{array}{c}
A' \\
t' \\
V'
\end{array} \right) \cong \left(\begin{array}{c}
A \times A' \\
t \times t' \\
V \times V'
\end{array} \right)
\]
Cartesian product in the category of graphs (\mathcal{Grph})

\[
\left(\begin{array}{c}
A \\
t \\
V
\end{array} \right) \times \left(\begin{array}{c}
A' \\
t' \\
V'
\end{array} \right) \cong \left(\begin{array}{c}
A \times A' \\
t \times t' \\
V \times V'
\end{array} \right)
\]

The Cartesian product in \mathcal{Grph} is deduced from the Cartesian product in \mathcal{Set}.
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \preceq_X)\) and \((Y, \preceq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\preceq\) defined by \((x, y) \preceq (x', y')\) when \(x \preceq_X x'\) and \(y \preceq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \preceq_X)\) and \((Y, \preceq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\preceq_X \times \preceq_Y\).

- The product of \((X, \sim_U)\) and \((Y, \sim_V)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in U\) and \(V \in V\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}^{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}^{\text{ctr}}\) is given by \(X \times Y\) together with \(d((x, y), (x', y')) = \max\{d_X((x, x')), d_Y((y, y')) \}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}^{\text{top}}\) can also be given by \(X \times Y\) together with the Euclidean product \(d((x, y), (x', y')) = q d_X^2((x, x')) + d_Y^2((y, y'))\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \subseteq_X)\) and \((Y, \subseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\subseteq\) defined by \((x, y) \subseteq (x', y')\) when \(x \subseteq_X x'\) and \(y \subseteq_Y y'\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\mathbb{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\mathbb{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\mathbb{PoSp}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projections are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).

- The product of \((X, \sim_U)\) and \((Y, \sim_V)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in U\) and \(V \in V\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.
- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.
- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).
- The product of \((X, [U]_\sim)\) and \((Y, [V]_\sim)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in U\) and \(V \in V\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \leq_X)\) and \((Y, \leq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\leq\) defined by \((x, y) \leq (x', y')\) when \(x \leq_X x'\) and \(y \leq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \leq_X)\) and \((Y, \leq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\leq_X \times \leq_Y\).

- The product of \((X, \sim_U)\) and \((Y, \sim_V)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).

- The product of \((X, [U]_\sim)\) and \((Y, [V]_\sim)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in U\) and \(V \in V\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).

- The product of \((X, [U]_{\sim})\) and \((Y, [V]_{\sim})\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{ctr}}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).

- The product of \((X, [U]_{\sim})\) and \((Y, [V]_{\sim})\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{ctr}}\) is given by \(X \times Y\) together with \(d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}\).
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\sqsubseteq\) defined by \((x, y) \sqsubseteq (x', y')\) when \(x \sqsubseteq_X x'\) and \(y \sqsubseteq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \sqsubseteq_X)\) and \((Y, \sqsubseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\sqsubseteq_X \times \sqsubseteq_Y\).

- The product of \((X, [U]_\sim)\) and \((Y, [V]_\sim)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{ctr}}\) is given by \(X \times Y\) together with \(d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{top}}\)
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \subset_X)\) and \((Y, \subset_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\subseteq\) defined by \((x, y) \subseteq (x', y')\) when \(x \subseteq_X x'\) and \(y \subseteq_Y y'\). It is the greatest partial order such that the projections are poset morphisms.

- The product of \((X, \subseteq_X)\) and \((Y, \subseteq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\subseteq_{X \times Y}\).

- The product of \((X, [\cup]_{\sim})\) and \((Y, [\mathcal{V}])\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{ctr}}\) is given by \(X \times Y\) together with \(d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{top}}\) can also be given by \(X \times Y\) together with the Euclidean product

\[
d((x, y), (x', y')) = \sqrt{d_X^2(x, x') + d_Y^2(y, y')}
\]
Examples of Cartesian products

- The product of \((X, \Omega_X)\) and \((Y, \Omega_Y)\) in \(\text{Top}\) is given by \(X \times Y\) together with unions of subsets of the form \(U \times V\) with \(U \in \Omega_X\) and \(V \in \Omega_Y\). It is the least topology making the projections continuous.

- The product of \((X, \preceq_X)\) and \((Y, \preceq_Y)\) in \(\text{Pos}\) is given by \(X \times Y\) and the partial order \(\preceq\) defined by \((x, y) \preceq (x', y')\) when \(x \preceq_X x'\) and \(y \preceq_Y y'\). It is the greatest partial order such that the projection are poset morphisms.

- The product of \((X, \preceq_X)\) and \((Y, \preceq_Y)\) in \(\text{PoSp}\) is given by \(X \times Y\) and the product order \(\preceq_X \times \preceq_Y\).

- The product of \((X, [\mathcal{U}]\sim)\) and \((Y, [\mathcal{V}]\sim)\) in \(\text{Lpo}\) is given by \(X \times Y\) together with the collection of ordered charts \(U \times V\) with \(U \in \mathcal{U}\) and \(V \in \mathcal{V}\).

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{emb}}\) does not exist.

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{ctr}}\) is given by \(X \times Y\) together with

\[
d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}.
\]

- The product of \((X, d_X)\) and \((Y, d_Y)\) in \(\text{Met}_{\text{top}}\) can also be given by \(X \times Y\) together with the Euclidean product

\[
d((x, y), (x', y')) = \sqrt{d_X^2(x, x') + d_Y^2(y, y')}
\]

- Categories of models of algebraic theories.
The product of a family \((A_i)_{i \in I}\) of objects of a category \(C\), when it exists, is an object \(Y\) together with projections \(\pi_{A_j}: Q_i A_i \to A_j\) such that the next mapping is a bijection.

\[C(X, Q_i A_i) \cong C(X, A_i) \] via \(\pi_{A_i} \circ h\).
Infinite Cartesian product

The product of a family \((A_i)_{i \in I}\) of objects of a category \(C\), when it exists, is an object

\[
\prod_{i} A_i
\]
Infinite Cartesian product

The product of a family \((A_i)_{i \in I}\) of objects of a category \(C\), when it exists, is an object

\[
\prod_i A_i
\]

together with projections

\[
\pi_{A_j} : \prod_i A_i \longrightarrow A_j
\]
Infinite Cartesian product

The product of a family \((A_i)_{i \in I}\) of objects of a category \(C\), when it exists, is an object

\[
\prod_i A_i
\]

together with projections

\[
\pi_{A_j} : \prod_i A_i \to A_j
\]

such that the next mapping is a bijection.

\[
C(X, \prod_i A_i) \to \prod_i C(X, A_i)
\]

\[
h \mapsto (\pi_{A_i} \circ h)
\]
Infinite Cartesian product

The product of a family \((A_i)_{i \in \mathcal{I}}\) of objects of a category \(C\), when it exists, is an object

\[\prod_{i} A_i \]

together with projections

\[\pi_{A_j} : \prod_{i} A_i \to A_j \]

such that the next mapping is a bijection.

\[C(X, \prod_{i} A_i) \to \prod_{i} C(X, A_i) \]

\[h \mapsto (\pi_{A_i} \circ h) \]

Infinite products of directed circle does not exist in \(Lpo\).
Turning discrete models into geometric ones
Canonical partition

\[
G_{\partial +} = V \uparrow G \downarrow = V \cup A \times [0,1] \uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow = (V_1 \cup A_1 \times [0,1]) \times \cdots \times (V_n \cup A_n \times [0,1])
\]

The collection of canonical blocks forms the canonical partition of \(\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow \).
Canonical partition

\[G : A \xrightarrow{\partial^+} V \xleftarrow{\partial^-} \]

The collection of canonical blocks forms the canonical partition of \(\uparrow G \downarrow \times \cdots \times \uparrow G \downarrow = (V_1 \sqcup A_1 \times \lbrack 0, 1 \rbrack) \times \cdots \times (V_n \sqcup A_n \times \lbrack 0, 1 \rbrack). \]
Canonical partition

\[G : A \xrightarrow{\partial^+} V \]
\[|G| = V \sqcup A \times]0,1[\]
Canonical partition

\[G : A \xrightarrow{\partial^+} V \quad \downarrow G \downarrow = V \sqcup A \times]0, 1[\]

\[\downarrow G_1 \downarrow \times \cdots \times \downarrow G_n \downarrow = (V_1 \sqcup A_1 \times]0, 1[) \times \cdots \times (V_n \sqcup A_n \times]0, 1[) \]
Canonical partition

\[
G : A \xrightarrow{\partial^+} V \quad \downarrow |G| = V \sqcup A \times]0,1[
\]

\[
|G_1| \times \cdots \times |G_n| = (V_1 \sqcup A_1 \times]0,1[) \times \cdots \times (V_n \sqcup A_n \times]0,1[)
\]

\[
|G_1| \times \cdots \times |G_n| = \bigsqcup_{\text{points } p \text{ of } G_1, \ldots, G_n} \{p\} \times]0,1[^{\dim(p_1, \ldots, p_n)}
\]

where \(p = (p_1, \ldots, p_n), \ p_i \in V_i \sqcup A_i, \) and \(\dim p = \# \{ i \in \{1, \ldots, n\} \mid p_i \in A_i \} \)
Canonical partition

\[G : A \xrightarrow{\partial^+} V \quad \downarrow G = \downarrow V \sqcup A \times]0, 1[\]

\[\downarrow G_1 \times \cdots \times \downarrow G_n = (\downarrow V_1 \sqcup A_1 \times]0, 1[) \times \cdots \times (\downarrow V_n \sqcup A_n \times]0, 1[) \]

\[\downarrow G_1 \times \cdots \times \downarrow G_n = \bigsqcup_{\text{points } p \text{ of } G_1, \ldots, G_n} \{ p \} \times]0, 1[^{\dim(p_1, \ldots, p_n)} \]

where \(p = (p_1, \ldots, p_n), \ p_i \in \downarrow V_i \sqcup A_i, \) and \(\dim p = \# \{ i \in \{ 1, \ldots, n \} \mid p_i \in A_i \} \)

\(B_p = \{ p \} \times]0, 1[^{\dim(p_1, \ldots, p_n)} \) is called a canonical block
Canonical partition

\[G : A \xrightarrow{\partial^+} V \quad \uparrow G \downarrow = V \sqcup A \times]0, 1[\]

\[|G_1| \times \cdots \times |G_n| = (V_1 \sqcup A_1 \times]0, 1[) \times \cdots \times (V_n \sqcup A_n \times]0, 1[) \]

\[|G_1| \times \cdots \times |G_n| = \bigsqcup \{ p \} \times]0, 1[^{\dim(p_1, \ldots, p_n)} \]

where \(p = (p_1, \ldots, p_n), \ p_i \in V_i \sqcup A_i, \) and \(\dim p = \# \{ i \in \{1, \ldots, n\} \mid p_i \in A_i \} \)

\(B_p = \{ p \} \times]0, 1[^{\dim(p_1, \ldots, p_n)} \) is called a canonical block

The collection of canonical blocks forms the canonical partition of \(|G_1| \times \cdots \times |G_n|. \)
The geometric model of a conservative program

The geometric model of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks G for p of (G_1, \ldots, G_n).

The geometric model of Π is the locally ordered metric space $\mathcal{A} G_1 \mathcal{H} \times \cdots \times \mathcal{A} G_n \mathcal{H} \{\text{forbidden region}\}$, the distance being given by $d(p, p') = \max_{i \in \{1, \ldots, n\}} d(\mathcal{A} G_i \mathcal{H}, \mathcal{A} G_i \mathcal{H})(p_i, p'_i)$ in accordance with the fact that the execution time of the simultaneous execution of many processes is the longest execution time among that of the processes considered individually.
The geometric model of a conservative program

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

$$\bigsqcup B_p$$

forbidden points p
of (G_1, \ldots, G_n)
The geometric model of a conservative program

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

$$\bigsqcup B_p$$

forbidden points p
of (G_1, \ldots, G_n)

The geometric model of Π is the locally ordered metric space

$$|G_1| \times \cdots \times |G_n| \setminus \text{forbidden region}$$
The geometric model of a conservative program

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

$$\bigcup_{p} B_p$$

forbidden points p of (G_1, \ldots, G_n)

The geometric model of Π is the locally ordered metric space

$$|G_1| \times \cdots \times |G_n| \setminus \{\text{forbidden region}\}$$

the distance being given by

$$d(p, p') = \max \{ d_{|G_i|}(p_i, p'_i) \mid i \in \{1, \ldots, n\} \}$$

in accordance with the fact that the execution time of the simultaneous execution of many processes is the longest execution time among that of the processes considered individually.
Gallery of examples
From discrete to continuous

sem: 1 a sync: 1 b

\[z := 1 \]

\[W(b) \]

\[P(a) \]

\[x := y \]

\[V(a) \]
From discrete to continuous

sem: 1 a sync: 1 b
From discrete to continuous

gallery of examples

From discrete to continuous

sem: 1 a sync: 1 b

\(x := y\)

\(z := 1\)

\(W(b) \rightarrow V(a)\)

\(P(a) \rightarrow W(b)\)

\(V(a) \rightarrow x := z\)
From discrete to continuous

sem: 1 a sync: 1 b

\[
\begin{aligned}
V(a) \\
\vdots y \\
P(a) \\
W(b) \\
z := 1
\end{aligned}
\]

\[
\begin{aligned}
x := y \\
W(b) \\
P(a) \\
\vdots x \\
V(a)
\end{aligned}
\]

\[
\begin{aligned}
\otimes \\
0 \\
(b) \\
\vdots \\
\vdots
\end{aligned}
\]
From discrete to continuous

sem: 1a sync: 1b

V(a) W(b) P(a) x:=y z:=1
From discrete to continuous

sem: 1 a sync: 1 b
From discrete to continuous

sem: 1 a sync: 1 b
From discrete to continuous

sem: 1a sync: 1b

\[x := y \]

\[W(b) \]

\[P(a) \]

\[z := 1 \]

\[\otimes \]

\[\times \]

\[y := 0 \]

\[V(a) \]

\[W(b) \]

\[P(a) \]

\[z := x \]

\[V(a) \]
From discrete to continuous

sem: 1 a sync: 1 b
Square
Square

sem 1 a
proc: \(p = P(a); V(a) \)
init: \(2p \)
Square

sem 1 a
proc: p = P(a); V(a)
init: 2p
Square

sem 1 a
proc: \(p = P(a); V(a) \)
init: \(2p \)
Square

sem 1 a
proc: p = P(a); V(a)
init: 2p
Square

sem 1 a
proc: p = P(a); V(a)
init: 2p
Square

sem 1 a
proc: p = P(a); V(a)
init: 2p
Swiss Cross
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a); P(b); V(b); V(a)
q = P(b); P(a); V(a); V(b)
init: p q
Swiss Cross

sem 1 a b
proc:
p = P(a); P(b); V(b); V(a)
q = P(b); P(a); V(a); V(b)
init: p q
Binary synchronization
Binary synchronization

sync 1 a
proc: p = W(a)
init: 2p
Binary synchronization

sync 1 a
proc: p = W(a)
init: 2p
Binary synchronization

sync 1 a
proc: \[p = W(a) \]
init: \[2p \]
Binary synchronization

sync 1 a
proc: p = W(a)
init: 2p
Binary synchronization

sync 1 a
proc: \(p = W(a) \)
init: 2p
Binary synchronization

code:

\text{sync 1 a}
\text{proc: } p = W(a)
\text{init: } 2p
Binary synchronization

sync 1 a
proc: p = W(a)
init: 2p
Producer/Consumer

nonlooping
Producer/Consumer

nonlooping

code:

\[
\begin{align*}
\text{proc:} & \\
& \quad p = x:=x+1 \ ; \ W(a) \\
& \quad c = W(a) \ ; \ x:=x-1 \\
\text{init:} & \quad p \ c
\end{align*}
\]
Producer/Consumer
nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer
nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

nonlooping

sync 1 a
proc:
 p = x:=x+1 ; W(a)
 c = W(a) ; x:=x-1
init: p c
Producer/Consumer

looping

```
 Producer/Consumer
 Gallery of examples
 Geometric models
```
Producer/Consumer

looping

code:

```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init:  p c
```
Producer/Consumer
looping

`sync 1 a b`

`proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)`

`init: p c`
Producer/Consumer
looping

sync 1 a b
proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
Producer/Consumer

looping

sync 1 a b
proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
Producer/Consumer

looping

sync 1 a b
proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
Producer/Consumer

looping

```
sync 1 a b
proc:
p = x:=x+1 ; W(a) ; W(b) ; J(p)
c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```
Producer/Consumer

looping

sync 1 a b
proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
Producer/Consumer
looping

sync 1 a b
proc:
p = x:=x+1 ; W(a) ; W(b) ; J(p)
c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
Producer/Consumer
looping

sync 1 a b
proc:
 p = x:=x+1 ; W(a) ; W(b) ; J(p)
 c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
3D Swiss Cross (tetrahemihexacron) and floating cube
The Lipski algorithm

sem 1: u v w x y z

proc:
 p = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)
 q = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)
 r = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r
Geometric vs Discrete
Justifying the definition of discrete directed paths
Justifying the definition of discrete directed paths

Let B_p and B'_p be canonical blocks.
Justifying the definition of discrete directed paths

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_p, ending in $B_{p'}$, and whose image is contained in $B_p \cup B_{p'}$ then one of the following facts is satisfied:
Justifying the definition of discrete directed paths

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_p, ending in $B_{p'}$, and whose image is contained in $B_p \cup B_{p'}$ then one of the following facts is satisfied:

- for all $i \in \{1, \ldots, n\}$, $p_i = p_i'$ or p_i is the source of the arrow p_i',
Justifying the definition of discrete directed paths

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_p, ending in $B_{p'}$, and whose image is contained in $B_p \cup B_{p'}$ then one of the following facts is satisfied:

- for all $i \in \{1, \ldots, n\}$, $p_i = p'_i$ or p_i is the source of the arrow p'_i, or
- for all $i \in \{1, \ldots, n\}$, $p_i = p'_i$ or p'_i is the target of the arrow p_i.
Discretization and lifting

- Given a directed path γ on the local pospace $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ we have a finite partition $I_0 < \cdots < I_N$ of $\text{dom}(\gamma)$ such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p_k such that $\gamma(I_k) \subseteq B_{p_k}$.

- The sequence p_0, \ldots, p_N is a directed path on (G_1, \ldots, G_n), it is called the discretization of γ and denoted by $D(\gamma)$.

- Given a directed path δ on (G_1, \ldots, G_n) there exists a directed path γ on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ whose discretization is δ, such a directed path γ is said to be a lifting of δ.
Discretization and lifting

- Given a directed path γ on the local pospace $|G_1| \times \cdots \times |G_n|$ we have a finite partition $I_0 < \cdots < I_N$ of $\text{dom}(\gamma)$ such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p_k}$.
Discretization and lifting

- Given a directed path γ on the local pospace $\uparrow G_1 \times \cdots \times \uparrow G_n$ we have a finite partition $I_0 < \cdots < I_N$ of $\text{dom}(\gamma)$ such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p^k}$.

- The sequence p^0, \ldots, p^N is a directed path on (G_1, \ldots, G_n), it is called the discretization of γ and denoted by $D(\gamma)$.
Discretization and lifting

- Given a directed path γ on the local pospace $\uparrow G_1 \times \cdots \times \uparrow G_n$, we have a finite partition $I_0 < \cdots < I_N$ of $\text{dom}(\gamma)$ such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p^k}$.

- The sequence p^0, \ldots, p^N is a directed path on (G_1, \ldots, G_n), it is called the discretization of γ and denoted by $D(\gamma)$.

- Given a directed path δ on (G_1, \ldots, G_n) there exists a directed path γ on $\uparrow G_1 \times \cdots \times \uparrow G_n$ whose discretization is δ, such a directed path γ is said to be a lifting of δ.
Example of discretization
Admissible directed paths and execution traces
on $\mathcal{G}_1 \times \cdots \times \mathcal{G}_n$
Admissible directed paths and execution traces

on $\Gamma G_1 \times \cdots \times \Gamma G_n$.

The sequence of multi-instructions of a directed path γ on $\Gamma G_1 \times \cdots \times \Gamma G_n$ is that of its discretization of $D(\gamma)$.
Admissible directed paths and execution traces
on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$

The sequence of multi-instructions of a directed path γ on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ is that of its discretization of $D(\gamma)$.

A directed path on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ is admissible (resp. an execution trace) iff so is its discretization.
Admissible directed paths and execution traces on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$

The sequence of multi-instructions of a directed path γ on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ is that of its discretization of $D(\gamma)$.

A directed path on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ is admissible (resp. an execution trace) iff so is its discretization.

The action of a directed path γ on $\uparrow G_1 \downarrow \times \cdots \times \uparrow G_n \downarrow$ on the right of a state σ is that of its discretization of $D(\gamma)$.
Example

```plaintext
var x = 0
var y = 0
var z = 0
sync 1 b
sem 1 a

proc p = y:=0 ; W(b) ; P(a) ; x:=z ; V(a)
proc q = z:=1 ; W(b) ; P(a) ; x:=y ; V(a)

init p q
```
Discretization of an execution trace

\[\text{sem: 1 a sync: 1 b} \]
Discretization of an execution trace

sem: 1 a sync: 1 b
Discretization of an execution trace

\[\text{sem: 1 a sync: 1 b} \]
Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function F:

$$F : |G_1| \times \cdots \times |G_n| \times S \to \{\text{multisets over }\{1, \ldots, n\}\}$$

The function F is constant on each canonical block B_p, its value is given by $\tilde{F}(p)$ where \tilde{F} denotes the "discrete" potential function.
Potential function on $|G_1| \times \cdots \times |G_n|$}

If the program under consideration is conservative, then we have the potential function

$$F : |G_1| \times \cdots \times |G_n| \times S \to \{\text{multisets over } \{1, \ldots, n\}\}$$
Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function

$$F : |G_1| \times \cdots \times |G_n| \times S \to \{\text{multisets over } \{1, \ldots, n\}\}$$

The function F is constant on each canonical block B_p.
Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function

$$F : |G_1| \times \cdots \times |G_n| \times S \to \{\text{multisets over } \{1, \ldots, n\}\}$$

The function F is constant on each canonical block B_p, its value is given by $\tilde{F}(p)$ where \tilde{F} denotes the “discrete” potential function.
Geometric models are sound and complete
Geometric models are sound and complete

- Any directed path on a *continuous* model is admissible.
Geometric models are sound and complete

- Any directed path on a *continuous* model is admissible.
- Conversely, for each admissible path on a *continuous* model which meets a forbidden point, there exists a directed path which avoids them and such that both directed paths induce the same sequence of multi-instructions.
Directed paths on the geometric model are admissible

sem: 1 a sync: 1 b
Directed paths on the geometric model are admissible

sem: 1 a sync: 1 b
Continuous replacement

sem: 1a sync: 1b
Continuous replacement

sem: 1 a sync: 1 b
Continuous replacement

sem: 1 a sync: 1 b
Continuous replacement

sem: 1 a sync: 1 b
Continuous replacement

sem: 1 a sync: 1 b

\[x := 1 \]
The motivating theorem
Trade off

More mathematics for more properties?
Trade off
More mathematics for more properties?

- Both discrete and geometric models are sound and complete.
Trade off
More mathematics for more properties?

- Both discrete and geometric models are sound and complete.
- The continuous models satisfy extra properties that are “naturally” expressed in terms of metrics.
Uniform distance between directed paths
Given a compact Hausdorff space K and a metric space (X, d_X), the set of continuous maps from K to X can be equipped with the uniform distance

$$d(f, g) = \max\{d_X(f(k), g(k)) \mid k \in K\}.$$
Uniform distance between directed paths

Given a compact Hausdorff space K and a metric space (X, d_X), the set of continuous maps from K to X can be equipped with the uniform distance

$$d(f, g) = \max\{d_X(f(k), g(k)) \mid k \in K\}.$$

We consider the case where $K = [0, r]$ is the domain of definition of a directed path and (X, d_X) is the geometric model of a conservative program.
The main theorem
The main theorem

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.
The main theorem

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_p, B_{p'})$ be the set of directed paths on X whose sources and targets lie in B_p and $B_{p'}$ respectively.
The main theorem

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_p, B_{p'})$ be the set of directed paths on X whose sources and targets lie in B_p and $B_{p'}$ respectively.

Let γ be an element of $dX^{[0,r]}(B_p, B_{p'})$.

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_p, B_{p'})$ be the set of directed paths on X whose sources and targets lie in B_p and $B_{p'}$ respectively.

Let γ be an element of $dX^{[0,r]}(B_p, B_{p'})$.

There exists an open ball Ω of $dX^{[0,r]}(B_p, B_{p'})$, centred in γ, such that all the elements of Ω induce the same action on valuations. Moreover, if γ is an execution trace, then so are all the elements of Ω.
Illustration

$$P_2$$

$$y := 2$$

$$\gamma_2$$

$$\gamma_3$$

$$\gamma_1$$

$$x := 1$$

$$P_1$$

$$P_2$$

$$P_1$$

$$P_2$$

$$P_1$$

$$P_2$$
HOMOTOPY OF PATHS
The undirected case
Homotopy of paths

Let γ and δ be two paths on X defined over the segment $[0, r]$. A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that:

- The mappings $h(0, -)$: $[0, q] \rightarrow X$ and $h(r, -)$: $[0, q] \rightarrow X$ are constant.
- The mappings $h(-, 0)$: $[0, r] \rightarrow X$ and $h(-, q)$: $[0, r] \rightarrow X$ are γ and δ.

As a consequence we have $\gamma(0) = \delta(0)$ and $\gamma(r) = \delta(r)$.

Homotopy of paths

Let γ and δ be two paths on X defined over the segment $[0, r]$. A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that:

1. The mappings $h(0, -) : [0, q] \to X$ and $h(r, -) : [0, q] \to X$ are constant.
2. The mappings $h(-, 0) : [0, r] \to X$ and $h(-, q) : [0, r] \to X$ are γ and δ.

As a consequence we have $\gamma(0) = \delta(0)$ and $\gamma(r) = \delta(r)$.
Let γ and δ be two paths on X defined over the segment $[0, r]$. A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that

- The mappings $h(0, t): [0, q] \to X$ and $h(r, t): [0, q] \to X$ are constant.
- The mappings $h(t, 0): [0, r] \to X$ and $h(t, q): [0, r] \to X$ are γ and δ, respectively.

As a consequence, we have $\gamma(0) = \delta(0)$ and $\gamma(r) = \delta(r)$.
Let \(\gamma \) and \(\delta \) be two paths on \(X \) defined over the segment \([0, r]\)

A homotopy from \(\gamma \) to \(\delta \) is a continuous map \(h \) from \([0, r] \times [0, q]\) to \(X \) such that

- The mappings \(h(0, -) : [0, q] \to X \) and \(h(r, -) : [0, q] \to X \) are constant
Homotopy of paths

Let γ and δ be two paths on X defined over the segment $[0, r]$

A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that

- The mappings $h(0, -) : [0, q] \rightarrow X$ and $h(r, -) : [0, q] \rightarrow X$ are constant

- The mappings $h(-, 0) : [0, r] \rightarrow X$ and $h(-, q) : [0, r] \rightarrow X$ are γ and δ
Homotopy of paths

Let γ and δ be two paths on X defined over the segment $[0, r]$

A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that

- The mappings $h(0, -) : [0, q] \rightarrow X$ and $h(r, -) : [0, q] \rightarrow X$ are constant
- The mappings $h(-, 0) : [0, r] \rightarrow X$ and $h(-, q) : [0, r] \rightarrow X$ are γ and δ

As a consequence we have $\gamma(0) = \delta(0)$ and $\gamma(r) = \delta(r)$.
Uniform distance and Curryfication
Uniform distance and Curryfication

Suppose that X is a metric space.
Suppose that X is a metric space.

For all compact Hausdorff space K, the homset $\text{Top}(K, X)$ with the (topology induced by the) uniform distance is denoted by X^K.
Uniform distance and Curryfication

Suppose that X is a metric space.

For all compact Hausdorff space K, the homset $\text{Top}(K, X)$ with the (topology induced by the) uniform distance is denoted by X^K.

The Curryfication $\hat{\cdot}$ induces a homeomorphism from $X^{[0, r] \times [0, q]}$ to $(X^{[0, r]})^{[0, q]}$.

$$(h : [0, r] \times [0, q] \to X) \to (\hat{h} : [0, q] \to X^{[0, r]})$$
The two faces of homotopies
The two faces of homotopies

h is a continuous map from $[0, r] \times [0, q]$ to X i.e. $h \in \text{Top}([0, r] \times [0, q], X)$
but is also a path from γ to δ in the space $X^{[0,r]}$ i.e. $h \in \text{Top}[[0, q], X^{[0,r]}]$
The two faces of homotopies

\(h \) is a continuous map from \([0, r] \times [0, q] \) to \(X \) i.e. \(h \in \text{Top}[[0, r] \times [0, q], X] \)

but is also a path from \(\gamma \) to \(\delta \) in the space \(X[0,r] \) i.e. \(h \in \text{Top}[[0, q], X[0,r]] \)

We introduce the following notation
Concatenation of homotopies

vertical composition

Let $g: [0, r] \times [0, q'] \to X$ and $h: [0, r] \times [0, q] \to X$ be homotopies from γ to ξ and from ξ to δ. The mapping $h \ast g: [0, r] \times [0, q+q'] \to X$ defined by $h \ast g(t, s) = g(t, s)$ if $0 \leq s \leq q$, $h(t, s-q)$ if $q \leq s \leq q+q'$ is a homotopy from γ to δ.

\[\text{vertical composition} \]
Concatenation of homotopies

vertical composition

Let \(g : [0, r] \times [0, q'] \to X \) and \(h : [0, r] \times [0, q] \to X \) be homotopies from \(\gamma \) to \(\xi \) and from \(\xi \) to \(\delta \).
Concatenation of homotopies

vertical composition

Let $g : [0, r] \times [0, q'] \to X$ and $h : [0, r] \times [0, q] \to X$ be homotopies from γ to ξ and from ξ to δ.

The mapping $h \ast g : [0, r] \times [0, q + q'] \to X$ defined by

$$h \ast g(t, s) = \begin{cases} g(t, s) & \text{if } 0 \leq s \leq q \\ h(t, s - q) & \text{if } q \leq s \leq q + q' \end{cases}$$

is a homotopy from γ to δ.
Concatenation of homotopies

vertical composition

Let $g : [0, r] \times [0, q'] \to X$ and $h : [0, r] \times [0, q] \to X$ be homotopies from γ to ξ and from ξ to δ.

The mapping $h \ast g : [0, r] \times [0, q + q'] \to X$ defined by

$$h \ast g(t, s) = \begin{cases} g(t, s) & \text{if } 0 \leq s \leq q \\ h(t, s - q) & \text{if } q \leq s \leq q + q' \end{cases}$$

is a homotopy from γ to δ.

![Diagram showing concatenation of homotopies](image)
The directed case
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in \text{Lpo}(\[0,r\], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : \[0,r\] \times \[0,q\] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : \[0,r\] \times \[0,q\] \to X$ such that $(t, s) \mapsto h(t, q-s)$ is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths $h : \[0,r\] \times \[0,q\] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.

- A weakly directed homotopy from γ to δ is a homotopy of paths $h : \[0,r\] \times \[0,q\] \to X$ whose intermediate paths $h(t, s)$, for $s \in \[0,q\]$, are directed.

- Any elementary homotopy is a weakly directed homotopy. The converse is false.

- Each of the preceding class of homotopies is stable under concatenation.
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^{-}\gamma = \partial^{-}\delta$ and $\partial^{+}\gamma = \partial^{+}\delta$.
Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ such that $(t, s) \mapsto h(t, q - s)$ is a directed homotopy from δ to γ.
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ such that $(t, s) \mapsto h(t, q - s)$ is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ such that $(t, s) \mapsto h(t, q - s)$ is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.

- A weakly directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ whose intermediate paths $h(_, s)$, for $s \in [0, q]$, are directed.
Directed homotopy on a locally ordered space

Let $\gamma, \delta \in \mathbb{Lpo}([0, r], X)$ such that $\partial^- \gamma = \partial^+ \delta$ and $\partial^+ \gamma = \partial^- \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ such that $(t, s) \mapsto h(t, q - s)$ is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.

- A weakly directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ whose intermediate paths $h(\cdot, s)$, for $s \in [0, q]$, are directed.

- Any elementary homotopy is a weakly directed homotopy. The converse is false.
Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^- \gamma = \partial^- \delta$ and $\partial^+ \gamma = \partial^+ \delta$.

- A directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ that induces a local pospace morphism.

- An anti-directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ such that $(t, s) \mapsto h(t, q - s)$ is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.

- A weakly directed homotopy from γ to δ is a homotopy of paths $h : [0, r] \times [0, q] \to X$ whose intermediate paths $h(\cdot, s)$, for $s \in [0, q]$, are directed.

- Any elementary homotopy is a weakly directed homotopy. The converse is false.

- Each of the preceding class of homotopies is stable under concatenation.
Homotopy and dihomotopy relations

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them. We have the equivalence relation \sim_d between directed paths on a locally ordered space.

They are said to be weakly dihomotopic when there exists a weakly directed homotopy between them. We have the equivalence relation \sim_w between directed paths on a locally ordered space.
Two paths γ and γ' are said to be **homotopic** when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.
Homotopy and dihomotopy relations

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them. We have the equivalence relation \sim_d between directed paths on a locally ordered space.
Homotopy and dihomotopy relations

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them. We have the equivalence relation \sim_d between directed paths on a locally ordered space.

They are said to be weakly dihomotopic when there exists a weakly directed homotopy between them. We have the equivalence relation \sim_w between directed paths on a locally ordered space.
Reparametrization

An increasing and surjective map $\theta : [0, r] \rightarrow [0, r]$ is called a reparametrization. The mapping $h : (t, s) \in [0, r] \times [0, 1] \rightarrow \theta(t) + s \cdot (\max(t, \theta(t)) - \theta(t)) \in [0, r]$ is a directed homotopy from θ to $\max(id_{[0, r]}, \theta)$. If $\gamma : [0, r] \rightarrow X$ is a directed path on the local pospace X, then $\gamma \circ h$ is a directed homotopy from $\gamma \circ \theta$ to $\gamma \circ \max(id_{[0, r]}, \theta)$. Therefore γ and $\gamma \circ \theta$ are dihomotopic.
Reparametrization

An increasing and surjective map \(\theta : [0, r] \to [0, r] \) is called a reparametrization.
An increasing and surjective map $\theta : [0, r] \rightarrow [0, r]$ is called a reparametrization. The mapping

$$h : (t, s) \in [0, r] \times [0, 1] \mapsto \theta(t) + s \cdot (\max(t, \theta(t)) - \theta(t)) \in [0, r]$$

is a directed homotopy from θ to $\max(\text{id}_{[0, r]}, \theta)$.
Reparametrization

An increasing and surjective map $\theta : [0, r] \rightarrow [0, r]$ is called a reparametrization.

The mapping

$$h : (t, s) \in [0, r] \times [0, 1] \mapsto \theta(t) + s \cdot (\max(t, \theta(t)) - \theta(t)) \in [0, r]$$

is a directed homotopy from θ to $\max(\text{id}_{[0, r]}, \theta)$.

If $\gamma : [0, r] \rightarrow X$ is a directed path on the local pospace X, then $\gamma \circ h$ is a directed homotopy from $\gamma \circ \theta$ to $\gamma \circ \max(\text{id}_{[0, r]}, \theta)$.
Reparametrization

An increasing and surjective map $\theta : [0, r] \rightarrow [0, r]$ is called a reparametrization. The mapping

$$h : (t, s) \in [0, r] \times [0, 1] \mapsto \theta(t) + s \cdot (\max(t, \theta(t)) - \theta(t)) \in [0, r]$$

is a directed homotopy from θ to $\max(\text{id}_{[0, r]}, \theta)$. If $\gamma : [0, r] \rightarrow X$ is a directed path on the local pospace X, then $\gamma \circ h$ is a directed homotopy from $\gamma \circ \theta$ to $\gamma \circ \max(\text{id}_{[0, r]}, \theta)$.

Therefore γ and $\gamma \circ \theta$ are dihomotopic.
The directed case

Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

Proof:

Suppose that $\text{im}(\gamma) = \text{im}(\gamma')$.

$\varphi: [0, r] \rightarrow \text{im}(\gamma)$ a pospace isomorphism.

$\varphi^{-1} \circ \gamma$ and $\varphi^{-1} \circ \gamma'$ are reparametrization.

We have $\varphi \circ h$ is an elementary homotopy from $\varphi^{-1} \circ \gamma$ to $\varphi^{-1} \circ \gamma'$.

Hence $\varphi \circ h$ is an elementary homotopy from γ and γ'.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

proof:

Suppose that $\text{im} (\gamma) = \text{im} (\gamma')$.

Let $\phi: [0, r] \rightarrow \text{im} (\gamma)$ be a pospace isomorphism.

Then $\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization.

We have an elementary homotopy from $\phi^{-1} \circ \gamma$ to $\phi^{-1} \circ \gamma'$.

Hence $\phi \circ h$ is an elementary homotopy from γ to γ'.

Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to \([0, 1]\).

Corollary

Two directed paths on a pospace having the same image are dihomotopic.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to \([0, 1]\).

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

proof:
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof:

Suppose that $\text{im}(\gamma) = \text{im}(\gamma')$.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

proof:

Suppose that $\text{im}(\gamma) = \text{im}(\gamma')$.

$\phi : [0, r] \rightarrow \text{im}(\gamma)$ a pospace isomorphism.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

proof:

Suppose that $\text{im}(\gamma) = \text{im}(\gamma')$.

$\phi : [0, r] \to \text{im}(\gamma)$ a pospace isomorphism.

$\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization.
Theorem

The image of a nonconstant directed path on a pospace is isomorphic to $[0, 1]$.

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof:
Suppose that $\text{im}(\gamma) = \text{im}(\gamma')$.
$\phi: [0, r] \rightarrow \text{im}(\gamma)$ a pospace isomorphism.
$\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization.
We have h an elementary homotopy from $\phi^{-1} \circ \gamma$ to $\phi^{-1} \circ \gamma'$.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to \([0, 1]\).

Corollary

Two directed paths on a pospace having the same image are dihomotopic.

proof:

Suppose that \(\text{im}(\gamma) = \text{im}(\gamma')\).

\(\phi : [0, r] \rightarrow \text{im}(\gamma)\) a pospace isomorphism.

\(\phi^{-1} \circ \gamma\) and \(\phi^{-1} \circ \gamma'\) are reparametrization.

We have \(h\) an elementary homotopy from \(\phi^{-1} \circ \gamma\) to \(\phi^{-1} \circ \gamma'\).

Hence \(\phi \circ h\) is an elementary homotopy from \(\gamma\) and \(\gamma'\).
Relation to geometric models
Main theorem

Two weakly dihomotopic paths on the geometric model of a conservative program induce the same action on valuations. Moreover, if one of them is an execution trace, then so is the other.
Main theorem

Two weakly dihomotopic paths on the geometric model of a conservative program induce the same action on valuations. Moreover, if one of them is an execution trace, then so is the other.
Weakly directed homotopy

\[\text{sem: 1 a sync: 1 b} \]
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

\(\text{sem: 1 a sync: 1 b} \)

\[
\begin{align*}
\text{z} &= 1 \\
\text{W(b)} \\
\text{P(a)} \\
\text{x} &= \text{y} \\
\text{V(a)} \\
\text{V(a)} \\
\text{X} \\
\end{align*}
\]
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

\[\text{sem: 1 a sync: 1 b} \]
Weakly directed homotopy

\[\text{sem: 1 a sync: 1 b} \]
Weakly directed homotopy

\[\text{sem: 1 a} \quad \text{sync: 1 b} \]
Weakly directed homotopy

\[\text{sem: 1 a sync: 1 b} \]
Weakly directed homotopy

sem: 1 a sync: 1 b

Homotopy of paths Relation to geometric models
Weakly directed homotopy

sem: 1a sync: 1b
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

sem: 1 a sync: 1 b
Weakly directed homotopy

sem: 1 a sync: 1 b
Proof

By a standard result from general topology, the Curryfication of $h \hat{\circ} h : s \in [0, q] \mapsto (t \in [0, r] \mapsto h(t, s) \in X)$ is a continuous path on $dX[0, r](p, p')$. The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models. By the Lebesgue number theorem there exists a real number $\varepsilon > 0$ such that $|s - s'| \leq \varepsilon$ implies that $\hat{h}(s)$ and $\hat{h}(s')$ belong to the same open ball from the covering. The conclusion follows considering the sequence $\hat{h}(0), \hat{h}(\varepsilon), \hat{h}(2\varepsilon), \hat{h}(3\varepsilon), \cdots, \hat{h}(n\varepsilon), \hat{h}(q)$, where n is the greatest natural number such that $n\varepsilon \leq q$.

40 / 48
Proof

By a standard result from general topology, the Curryfication of h

$$\hat{h} : s \in [0, q] \mapsto (t \in [0, r] \mapsto h(t, s) \in X)$$

is a continuous path on $dX^{[0,r]}(p, p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number $\varepsilon > 0$ such that $|s - s'| \leq \varepsilon$ implies that $\hat{h}(s)$ and $\hat{h}(s')$ belong to the same open ball from the covering.

The conclusion follows considering the sequence $\hat{h}(0), \hat{h}(\varepsilon), \hat{h}(2\varepsilon), \hat{h}(3\varepsilon), \ldots, \hat{h}(n\varepsilon), \hat{h}(q)$ where n is the greatest natural number such that $n\varepsilon \leq q$.

Proof

By a standard result from general topology, the Curryfication of h

$$\hat{h} : s \in [0, q] \mapsto (t \in [0, r] \mapsto h(t, s) \in X)$$

is a continuous path on $dX^{[0, r]}(p, p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.
Proof

By a standard result from general topology, the Curryfication of h

$$\hat{h} : s \in [0, q] \mapsto (t \in [0, r] \mapsto h(t, s) \in X)$$

is a continuous path on $dX^{[0, r]}(p, p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number $\varepsilon > 0$ such that $|s - s'| \leq \varepsilon$ implies that $\hat{h}(s)$ and $\hat{h}(s')$ belong to the same open ball from the covering.
Homotopy of paths

Relation to geometric models

Proof

By a standard result from general topology, the Curryfication of \(h \)

\[
\hat{h} : s \in [0, q] \mapsto (t \in [0, r] \mapsto h(t, s) \in X)
\]

is a continuous path on \(dX_{[0, r]}(p, p') \).

The image of \(\hat{h} \) is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number \(\varepsilon > 0 \) such that \(|s - s'| \leq \varepsilon \) implies that \(\hat{h}(s) \) and \(\hat{h}(s') \) belong to the same open ball from the covering.

The conclusion follows considering the sequence

\[
\hat{h}(0), \hat{h}(\varepsilon), \hat{h}(2\varepsilon), \hat{h}(3\varepsilon), \cdots, \hat{h}(n\varepsilon), \hat{h}(q)
\]

where \(n \) is the greatest natural number such that \(n\varepsilon \leq q \).
Let X be the geometric model of a conservative program whose semaphores have arity 1 (mutex), then two directed paths on X are dihomotopic if and only if they are homotopic.
Let X be the geometric model of a conservative program whose semaphores have arity 1 (mutex), then two directed paths on X are dihomotopic if and only if they are homotopic.
INDEPENDENCE
Two programs P and Q are said to be compatible when their initial valuations and their arity maps coincide on the intersection of their domains of definition. In that case we define the parallel composition $P | Q$. By extension we define the parallel composition of P_1, \ldots, P_N when the programs are pairwise compatible.
Compatible programs

Two programs P and Q are said to be compatible when their initial valuations and their arity maps coincide on the intersection of their domains of definition. In that case we define the parallel composition $P|Q$.
Two programs P and Q are said to be compatible when their initial valuations and their arity maps coincide on the intersection of their domains of definition. In that case we define the parallel composition $P|Q$.

By extension we define the parallel composition of P_1, \ldots, P_N when the programs are pairwise compatible.
Syntactical independence
Two programs are said to be syntactically independent when the set of resources they use are disjoint:

- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.

Syntactically independent programs are compatible. Syntactical independence can be decided statically, it is compositional, but it is too restrictive.
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:

- they have no variables in common,
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:

- they have no variables in common,
- they have no semaphores in common, and
Two programs are said to be syntactically independent when the set of resources they use are disjoint:

- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:
- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.

Syntactically independent programs are compatible.
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:

- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.

Syntactically independent programs are compatible.

Syntactical independence can be decided **statically**,
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:
- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.

Syntactically independent programs are compatible.

Syntactical independence can be decided **statically**, it is **compositional**,
Two programs are said to be **syntactically independent** when the set of resources they use are disjoint:
- they have no variables in common,
- they have no semaphores in common, and
- they have no barriers in common.

Syntactically independent programs are compatible.

Syntactical independence can be decided *statically*, it is *compositional*, but it is too *restrictive*.
Model independence
Model Independence

Suppose the programs P_1, \ldots, P_N are conservative. The programs P_1, \ldots, P_N are said to be model independent when

$$J_{P_1} \mid \cdots \mid J_{P_N} = J_{P_1} \times \cdots \times J_{P_N}$$

Model independence can be decided statically.
Model Independence

Suppose the programs P_1, \ldots, P_N are conservative.
Suppose the programs P_1, \ldots, P_N are conservative.

The programs P_1, \ldots, P_N are said to be model independent when

$$[P_1 | \cdots | P_N] = [P_1] \times \cdots \times [P_N]$$
Suppose the programs P_1, \ldots, P_N are conservative.

The programs P_1, \ldots, P_N are said to be model independent when

$$[[P_1|\cdots|P_N]] = [[P_1]] \times \cdots \times [[P_N]]$$

Model independence can be decided statically.
Observational independence
Compatible permutations

Assume we have a partition \[\{1, \ldots, n\} = S_1 \sqcup \cdots \sqcup S_N \]

Two multi-instructions \(\mu \) and \(\mu' \) can be swapped when

\[j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu) \neq \emptyset \]
\[j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu') \neq \emptyset \]

A permutation \(\pi \) of the set \(\{0, \ldots, q-1\} \) is said to be compatible with the sequence of multi-instructions \(\mu_0, \ldots, \mu_{q-1} \) when it is order preserving on all pairs \(\{k, k'\} \) such that \(\mu_k \) and \(\mu_{k'} \) cannot be swapped.

The permutation \(\pi \) is said to be compatible with the directed path \(\gamma \) when it is compatible with its associated sequence of multi-instructions.
Compatible permutations

Assume we have a partition

\[\{1, \ldots, n\} = S_1 \sqcup \cdots \sqcup S_N \]
Compatible permutations

Assume we have a partition

\[
\{1, \ldots, n\} = S_1 \sqcup \cdots \sqcup S_N
\]

Two multi-instructions \(\mu \) and \(\mu' \) (\(\text{dom}(\mu), \text{dom}(\mu') \subseteq \{1, \ldots, n\} \)) can be swapped when

\[
\{j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu) \neq \emptyset\} \cap \{j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu') \neq \emptyset\} = \emptyset
\]
Compatible permutations

Assume we have a partition

\[\{1, \ldots, n\} = S_1 \sqcup \cdots \sqcup S_N \]

Two multi-instructions μ and μ' ($\text{dom}(\mu), \text{dom}(\mu') \subseteq \{1, \ldots, n\}$) can be swapped when

\[\{j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu) \neq \emptyset\} \cap \{j \in \{1, \ldots, N\} \mid S_j \cap \text{dom}(\mu') \neq \emptyset\} = \emptyset \]

A permutation π of the set $\{0, \ldots, q - 1\}$ is said to be compatible with the sequence of multi-instructions μ_0, \ldots, μ_{q-1} when it is order preserving on all pairs $\{k, k'\}$ such that μ_k and $\mu_{k'}$ cannot be swapped.
Compatible permutations

Assume we have a partition

\[\{1, \ldots, n\} = S_1 \sqcup \cdots \sqcup S_N \]

Two multi-instructions \(\mu \) and \(\mu' \) \((\text{dom}(\mu), \text{dom}(\mu') \subseteq \{1, \ldots, n\})\) can be swapped when

\[\{j \in \{1, \ldots, N\} | S_j \cap \text{dom}(\mu) \neq \emptyset\} \cap \{j \in \{1, \ldots, N\} | S_j \cap \text{dom}(\mu') \neq \emptyset\} = \emptyset \]

A permutation \(\pi \) of the set \(\{0, \ldots, q-1\} \) is said to be compatible with the sequence of multi-instructions \(\mu_0, \ldots, \mu_{q-1} \) when it is order preserving on all pairs \(\{k, k'\} \) such that \(\mu_k \) and \(\mu_{k'} \) cannot be swapped.

The permutation \(\pi \) is said to be compatible with the directed path \(\gamma \) when it is compatible with its associated sequence of multi-instructions.
Assume that $S_1 = \{1, 3, 5\}$ and $S_2 = \{2, 4\}$.
Assume that $S_1 = \{1, 3, 5\}$ and $S_2 = \{2, 4\}$.
Assume that $S_1 = \{1, 3, 5\}$ and $S_2 = \{2, 4\}$.
Assume that \(S_1 = \{1, 3, 5\} \) and \(S_2 = \{2, 4\} \).
Assume that $S_1 = \{1, 3, 5\}$ and $S_2 = \{2, 4\}$.
Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1|\ldots|P_N$ are the elements of \{1, \ldots, n\} with $n = N \times \sum_{j=1}^{n_j}$, and for $j \in \{1, \ldots, N\}$

$$S_j = \{i \in \{1, \ldots, n\} | s_j-1 < i \leq s_j\}$$

The programs P_1, \ldots, P_N are said to be observationally independent when:

- for all execution traces γ - for all permutations π compatible with the sequence of multi-instructions $(\mu_0 \cdots \mu_{q-1})$ associated with γ,

 there exists an execution trace γ' whose associated sequence of multi-instructions is $\pi \cdot (\mu_0 \cdots \mu_{q-1})$, which has the same action on the system state than γ, that is to say $\sigma \cdot (\mu_0 \cdots \mu_{q-1}) = \sigma \cdot (\mu_{\pi(0)} \cdots \mu_{\pi(q-1)})$.

Observational independence cannot be decided statically, moreover it is too loose.
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1|\cdots|P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j,$$

and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k.$$
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1 \mid \cdots \mid P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j,$$
and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k,$$

$$S_j = \{ i \in \{1, \ldots, n\} \mid s_{j-1} < i \leq s_j \}$$
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1 | \cdots | P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j , \quad \text{and for } j \in \{1, \ldots, N\} \quad s_j = \sum_{k=1}^{j} n_k$$

$$S_j = \left\{ i \in \{1, \ldots, n\} \mid s_{j-1} < i \leq s_j \right\}$$

The programs P_1, \ldots, P_N are said to be observationally independent when:

- for all execution traces γ
Observational independence

related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1 | \cdots | P_N$ are the elements of \{1, \ldots, n\} with

$$n = \sum_{j=1}^{N} n_j,$$

and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k.$$

$$S_j = \{ i \in \{1, \ldots, n\} \mid s_{j-1} < i \leq s_j \}$$

The programs P_1, \ldots, P_N are said to be observationally independent when:

- for all execution traces γ
- for all permutations π compatible with the sequence of multi-instructions $(\mu_0 \cdots \mu_{q-1})$ associated with γ,
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1|\cdots|P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j,$$

and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k,$$

$$S_j = \{ i \in \{1, \ldots, n\} \mid s_{j-1} < i \leq s_j \}.$$

The programs P_1, \ldots, P_N are said to be observationally independent when:

- for all execution traces γ

- for all permutations π compatible with the sequence of multi-instructions $(\mu_0 \cdots \mu_{q-1})$ associated with γ,

there exists an execution trace γ' whose associated sequence of multi-instructions is $\pi \cdot (\mu_0 \cdots \mu_{q-1})$, which has the same action on the system state than γ, that is to say

$$\sigma \cdot (\mu_0 \cdots \mu_{q-1}) = \sigma \cdot (\mu_{\pi(0)} \cdots \mu_{\pi(q-1)}) \cdot$$
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1 | \cdots | P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j,$$

and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k$$

$$S_j = \{ \ i \in \{1, \ldots, n\} \ | \ s_{j-1} < i \leq s_j \ \}$$

The programs P_1, \ldots, P_N are said to be observationally independent when:

- for all execution traces γ
- for all permutations π compatible with the sequence of multi-instructions $(\mu_0 \cdots \mu_{q-1})$ associated with γ,

there exists an execution trace γ' whose associated sequence of multi-instructions is $\pi \cdot (\mu_0 \cdots \mu_{q-1})$, which has the same action on the system state than γ, that is to say

$$\sigma \cdot (\mu_0 \cdots \mu_{q-1}) = \sigma \cdot (\mu_{\pi^{-1}(0)} \cdots \mu_{\pi^{-1}(q-1)}) \cdot$$

Observational independence cannot be decided statically,
Observational independence
related to partial order reduction (?)

Suppose that the programs P_1, \ldots, P_N are compatible and that P_j has n_j running processes.

The identifiers of the running processes of $P_1|\cdots|P_N$ are the elements of $\{1, \ldots, n\}$ with

$$n = \sum_{j=1}^{N} n_j,$$

and for $j \in \{1, \ldots, N\}$

$$s_j = \sum_{k=1}^{j} n_k$$

$$S_j = \{ i \in \{1, \ldots, n\} \mid s_{j-1} < i \leq s_j \}$$

The programs P_1, \ldots, P_N are said to be observationaly independent when:

- for all execution traces γ
- for all permutations π compatible with the sequence of multi-instructions $(\mu_0 \cdots \mu_{q-1})$ associated with γ, there exists an execution trace γ' whose associated sequence of multi-instructions is $\pi \cdot (\mu_0 \cdots \mu_{q-1})$, which has the same action on the system state than γ, that is to say

$$\sigma \cdot (\mu_0 \cdots \mu_{q-1}) = \sigma \cdot (\mu_{\pi^{-1}(0)} \cdots \mu_{\pi^{-1}(q-1)}) .$$

Observational independence cannot be decided statically, moreover it is too loose.
Comparison
Main theorem
Main theorem

syntactic independence

⇓

model independence

⇓

observational independence