Exercise 1:
According to the virtual machine of the PAML language give all the possible outputs \((x, y)\) of the following program.

```
#variable x = 3
#process p1 = x:=1
#process p2 = x:=2
#process q = (y:=x)+[x=1]+(y:=x)+[x<>1]+(y:=x)
#init p1 p2 q
```

Exercise 2:
a) Provides the following process with a conservative control flow graph

```
#process p = P(a)+[e = 0]+P(b) with e begin some expression.
```

b) Prove the following process has no finite conservative control flow graph:

```
#process p = P(a).C(p)
```

Exercise 3:
Give the potential function of the following program

```
#mutex a
#process p = P(a).V(a)
#init 2p
```

Exercise 4:
Extend the PAML language and its virtual machine so the instruction \(F(name)\), \(name\) being an identifier, allows dynamic creation of processes. By convention, if \(name\) was not associated to a body of instructions by some line

```
#process name = body of instructions
```

then its is considered as the empty process.

Exercise 5:
Give two precubical sets \(C\) and \(M\) whose realization in the category of topological spaces are respectively the cylinder and the Möbius band (pictures with some explanations suffice).
Exercise 6:
Let \(P \) be the following program

\[
\begin{align*}
\text{#mutex a b c} \\
\text{#process x = Pb.Pa.Va.Pc.Vb} \\
\text{#init x y}
\end{align*}
\]

a) Draw the geometric model (i.e. actually draw the forbidden region in grey) of \(P \) (make a rather large picture)

b) Draw the deadlock attractor of \(P \)

c) Draw the category of components of \(P \)

Observe that the forbidden region of \(P \) is actually contained in some square \([0, r]^2\) with \(r > 0 \). A dipath is then said to be maximal when its image is contained in \([0, r]^2\) and it cannot be extended (by nonconstant dipaths). On a new picture:

d) Draw one representative of each dihomotopy class of the maximal dipaths on the model of \(P \)

e) Give a finite collection \(H_1, \ldots, H_n \) of subregions of the model such that:
- the image of a maximal dipath is contained in a unique \(H_k \)
- two maximal dipaths are dihomotopic iff their image are contained in the same \(H_k \). The subregions may overlap so it is recommended to draw several pictures. Also note that a maximal dipath may not start at the origin.

Exercise 7:
Consider the following PAML program \(P \)

\[
\begin{align*}
\text{#synchronization 2 a} \\
\text{#process p = Wa} \\
\text{#init 2p}
\end{align*}
\]

a) Draw \([P]\) the geometric model of \(P \)

b) Compute the fundamental category \(\pi_1([P]) \)

c) Compute the category of components \(\pi_0(\pi_1([P])) \)

Exercise 8:
Consider the following PAML program \(P \)

\[
\begin{align*}
\text{#mutex a b} \\
\text{#semaphore c} \\
\text{#process p = Pa.Pc.Vc.Va} \\
\text{#process q = Pb.Pc.Vc.Vb} \\
\text{#init 2p 2q}
\end{align*}
\]

a) Compute the forbidden region generated by each resource.

b) Give the maximal cubes of the forbidden region.
c) Compute a decomposition of the state space.

d) Denote by X the geometric model of P and write a PAML program whose geometric model is isomorphic with X.

Exercise 9: An n-grid, for $n \in \mathbb{N}$ is a subset $S \subseteq \mathbb{Z}^n$. A path of length $n \in \mathbb{N}$ on the grid S is a finite sequence of points p_0, \ldots, p_n of S such that for all $k \in \{1, \ldots, n\}$, $p_{k+1} - p_k$ is a vector whose unique nonzero coordinate is 1.

a) We want to define a category $P(S)$ whose morphisms are the paths on the grid S. Describe the sources, the targets, the compositions, and the identities.

b) Prove that $P(S)$ is freely generated by some graph $G(S)$ (describe this graph).

Two paths of length 2 with the same source and the same target are declared to be equivalent so we have a congruence \sim over $P(S)$. Define $F(S)$ as the quotient $P(S)/\sim$.

c) Prove that $F(S)$ is loop-free.

Let S be $\{0, 1, 2\}^3 \setminus \{(1, 1, 1)\}$.

d) Make a picture of the graph $G(S)$.

e) What is the collection of arrows of $G(S)$ that preserve both future cones and past cones in the category $F(S)$?

f) Which square of the graph $G(S)$ are not pushouts of $F(S)$? Same question with pullbacks.

g) What is the greatest system of weak isomorphisms of $F(S)$? What is the category of components of $F(S)$?

Exercise 10:

Recall that $\mathcal{C} \text{Set} = \mathcal{Set}^{\square_{+}^{\text{op}}}$ is the category of precubical sets. For any $n \in \mathbb{N}$ and any precubical set K, define $\text{trunc}_n(K)$ as the precubical sets obtained by discarding all the cubes of dimension greater or equal than n. For $n \in \mathbb{N}$, define $\mathcal{C} \text{Set}_n$ as the full subcategory of $\mathcal{C} \text{Set}$ whose objects are the precubical sets of dimension n i.e. $K_d = \emptyset$ for $d > n$. By convention $\mathcal{C} \text{Set}_{-1}$ is the category with only one morphism (and therefore only one object). Let I_n be the inclusion functor of $\mathcal{C} \text{Set}_n$ into $\mathcal{C} \text{Set}$.

a) Explain why trunc_n actually extends to a functor $\mathcal{C} \text{Set} \to \mathcal{C} \text{Set}_{n-1}$.

b) Prove that trunc_n is right adjoint to I_{n-1}.

The standard n-cube is denoted by \square^n_+. In particular \square^1_+ is the graph with one arrow between two vertex, \square^2_+ is the square, \square^3_+ is the cube. In general \square^n_+ is the n-fold tensor product of \square^1_+.

b) What is the geometric realization (i.e. in \mathcal{Top}) of $\text{trunc}_n(\square^n_+)$?

Let $\mathcal{T}_1 : \mathcal{C} \text{Set} \to \mathcal{Sh} \mathcal{Top}$ denotes the realization in \mathcal{Top} and $\overline{\pi}_1 : \mathcal{Sh} \mathcal{Top} \to \mathcal{Cat}$ be the fundamental category functor. Then for all precubical sets K, define $F(K)$ as the full subcategory of $\overline{\pi}_1(\mathcal{K}_1)$ whose set of objects is K_0.

3
c) What is $F(K)$ when K is a graph (i.e. a 1-dimensional precubical set)

d) Compute $F(□^1)$ and $F(\text{trunc}_3(□^3))$

e) Given a precubcial set K, what is $F(\text{trunc}_3(K))$ (all the cubes of dimension greater of equal than 3 are dropped)

f) Explain why F actually extends to a functor from $\mathcal{C}\text{Set}$ to $\mathcal{C}\text{at}$

g) Prove that $F(K \otimes K') \cong F(K) \times F(K')$

h) Give a direct description of F (i.e. without topological arguments)