

Directed Algebraic Topology

MPRI

thursday, the 12^{th} of february 2009 examination duration : 1h30

Exercice 1

In this exercise, **a** and **b** denote two mutex (a ressource that cannot be shared by two processes or more). Consider the program

P(a).V(a).P(a).V(a)|P(a).V(a).P(a).V(a)

1 - Determine the forbidden area of this program and check that it can be factorized as a product of two cubical areas of dimension 1.

2 - Do the two copies of the process P(a).V(a).P(a).V(a) run independently from each other?

Let P and Q be the following PV programs, recall that the geometric model of a program is the complement of its forbidden area.

 $P = P(a) \cdot P(b) \cdot V(b) \cdot V(a) | P(b) \cdot P(a) \cdot V(a) \cdot V(b) \text{ and}$ $Q = P(a) \cdot P(b) \cdot V(a) \cdot V(b) | P(b) \cdot P(a) \cdot V(b) \cdot V(a)$

3 - Draw the geometric models $[\![P]\!]$ and $[\![Q]\!]$ of these programs and their components.

4 - What can be said about the fundamental categories $\overrightarrow{\pi_1}(\llbracket P \rrbracket)$ and $\overrightarrow{\pi_1}(\llbracket Q \rrbracket)$?

Exercice 2

1 - Suppose **a** and **b** are semaphores of arity 2 (also called mutex). Determine (by means of a picture on which the forbidden area is colored in grey) the geometric model of the following program. What can be said about the fundamental category of the model?

P(a) . P(b) . V(b) . P(b) . V(b) . V(a) |P(b) . P(a) . V(a) . P(a) . V(a) . V(b)

Denote by \vec{X} the corresponding pospace and suppose that all the points on the frontier of the forbidden area belong to the model.

2 - A **directed path** on a pospace \overrightarrow{X} is a continuous increasing map from $[\overrightarrow{0,1}]$ to \overrightarrow{X} . A point $x \in \overrightarrow{X}$ is called a **deadlock** when any directed path δ s.t. $\delta(0) = x$ is constant. Draw the deadlocks on the picture.

3 - The **deadlock attractor** is the biggest subset B of \overline{X} s.t. for all directed paths δ , if $\delta(0) \in B$ then there exists some directed path γ s.t. $\gamma(0) = \delta(1)$ and $\gamma(1)$ is a deadlock. Represent the deadlock attractor on the picture.

4 - Write a PV program P whose <u>forbidden area</u> is

$]1,2[\times]1,2[\times\mathbb{R}]$	U	$]1,2[\times\mathbb{R}\times]1,2[$	U	$\mathbb{R} \times]1,2[\times]1,2[\cup$
$]1,2[\times]3,4[\times\mathbb{R}$	U	$]1,2[\times\mathbb{R}\times]3,4[$	U	$\mathbb{R} \times]1,2[\times]3,4[\cup$
$]3,4[\times]1,2[\times\mathbb{R}]$	U	$]3,4[\times\mathbb{R}\times]1,2[$	U	$\mathbb{R} \times]3,4[\times]1,2[\cup$
$]3,4[\times]3,4[\times\mathbb{R}$	U	$]3,4[\times\mathbb{R}\times]3,4[$	U	$\mathbb{R} \times]3,4[\times]3,4[$

The forbidden area is represented on the pictures below (note that it has been truncated).

5 - By construction, the model of the program $\llbracket P \rrbracket$ is the complement of the forbidden region. Denote by C the fundamental category of $\llbracket P \rrbracket$ (i.e. $C = \overrightarrow{\pi_1}(\llbracket P \rrbracket)$). Then determine the following integer (with some lines of explanation)

$$\max\left\{\mathsf{Card}\big(\mathcal{C}[x,y]\big) \ \Big| \ x,y \in \overrightarrow{X}\right\}$$

Recall that $\mathcal{C}[x, y]$ is the set of directed paths from x to y up to directed homotopy.

Exercice 3

Along this exercise, by "category" we mean "isomorphism class" of category. Denote by 1 the unique category with exactly 1 morphism and by $\mathcal{A} \times \mathcal{B}$ the

Cartesian product of the categories \mathcal{A} and \mathcal{B} . A category \mathcal{C} is said to be **reducible** when there exist two categories $\mathcal{A} \neq \mathbf{1}$ and $\mathcal{B} \neq \mathbf{1}$ such that $\mathcal{C} \cong \mathcal{A} \times \mathcal{B}$, otherwise we say that \mathcal{C} is **irreducible**. When a list of categories is asked, it is understood up to opposite (if both \mathcal{C} and \mathcal{C}^{op} belong to the expected list, you just need to give one of them).

1 - Give the list of all connected loop-free categories of size 8

2 - Denote by \mathbb{M}_f the monoid of finite categories and \mathbb{M}_f^* the submonoid of non-empty finite categories. Give two morphisms of monoids from \mathbb{M}_f^* to $(\mathbb{N}\setminus\{0\}, \times, 1)$

3 - Given $m, x \in \mathbb{N}$ we define $\Phi(m, x)$ as the number of loop-free connected categories with m morphisms and x objects.

3a) For all $m \in \mathbb{N}$ determine $\Phi(m, 1)$ and $\Phi(m, 2)$.

3b) For all $m \in \mathbb{N}$ prove $\lim_{x \to \infty} \Phi(m, x) = 0$

4 - For all objects x and y of a loop-free category \mathcal{C} , write $x \preccurlyeq y$ when $\mathcal{C}[x, y] \neq \emptyset$. Denote by *Pos* the category of partially ordered sets and *Lfc* the category of loop-free categories.

4a) Prove that \preccurlyeq is a partial order.

4b) Deduce a functor R from Lfc to Pos.

4c) Conversely, describe a full embedding I of $\mathcal{P}os$ in $\mathcal{L}fc$ (i.e. check that any partially ordered set X can be seen as a loop-free category I(X), that any morphism of posets induces a functor between the corresponding loop-free categories and conversely that any functor from I(X) to I(Y) comes from a morphism of posets from X to Y.)

4d) Give a natural transformation from id_{Lfc} to $I \circ R$.

5 - By definition, a set X of morphisms of C is said to be generating when any morphism of C can be written as a composite of elements of X.

- 5a) Prove that any finite loop-free category has a minimum generating set (i.e. a generating set which is contained in all the other ones).
- 5b) Suppose A and B are the least generating sets of the finite loop-free categories \mathcal{A} and \mathcal{B} . Determine the least generating set of $\mathcal{A} \times \mathcal{B}$.

6- Prove that the commutative monoid of non-empty finite loop-free categories is *not* free. Hint : a non-connected finite loop-free category is a "sum" of connected ones, therefore finite loop-free categories behave like polynomials.